Properties

 Label 300.3.g.h Level $300$ Weight $3$ Character orbit 300.g Analytic conductor $8.174$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$300 = 2^{2} \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 300.g (of order $$2$$, degree $$1$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$8.17440793081$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-5})$$ Defining polynomial: $$x^{2} + 5$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 60) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{-5}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 2 + \beta ) q^{3} -8 q^{7} + ( -1 + 4 \beta ) q^{9} +O(q^{10})$$ $$q + ( 2 + \beta ) q^{3} -8 q^{7} + ( -1 + 4 \beta ) q^{9} + 4 \beta q^{11} -12 q^{13} + 14 \beta q^{17} + 6 q^{19} + ( -16 - 8 \beta ) q^{21} + 2 \beta q^{23} + ( -22 + 7 \beta ) q^{27} -12 \beta q^{29} + 34 q^{31} + ( -20 + 8 \beta ) q^{33} -44 q^{37} + ( -24 - 12 \beta ) q^{39} -8 \beta q^{41} + 28 q^{43} -2 \beta q^{47} + 15 q^{49} + ( -70 + 28 \beta ) q^{51} + 18 \beta q^{53} + ( 12 + 6 \beta ) q^{57} + 44 \beta q^{59} + 74 q^{61} + ( 8 - 32 \beta ) q^{63} + 92 q^{67} + ( -10 + 4 \beta ) q^{69} -24 \beta q^{71} -56 q^{73} -32 \beta q^{77} + 78 q^{79} + ( -79 - 8 \beta ) q^{81} -46 \beta q^{83} + ( 60 - 24 \beta ) q^{87} -8 \beta q^{89} + 96 q^{91} + ( 68 + 34 \beta ) q^{93} + 32 q^{97} + ( -80 - 4 \beta ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 4 q^{3} - 16 q^{7} - 2 q^{9} + O(q^{10})$$ $$2 q + 4 q^{3} - 16 q^{7} - 2 q^{9} - 24 q^{13} + 12 q^{19} - 32 q^{21} - 44 q^{27} + 68 q^{31} - 40 q^{33} - 88 q^{37} - 48 q^{39} + 56 q^{43} + 30 q^{49} - 140 q^{51} + 24 q^{57} + 148 q^{61} + 16 q^{63} + 184 q^{67} - 20 q^{69} - 112 q^{73} + 156 q^{79} - 158 q^{81} + 120 q^{87} + 192 q^{91} + 136 q^{93} + 64 q^{97} - 160 q^{99} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/300\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$151$$ $$277$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
101.1
 − 2.23607i 2.23607i
0 2.00000 2.23607i 0 0 0 −8.00000 0 −1.00000 8.94427i 0
101.2 0 2.00000 + 2.23607i 0 0 0 −8.00000 0 −1.00000 + 8.94427i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.3.g.h 2
3.b odd 2 1 inner 300.3.g.h 2
4.b odd 2 1 1200.3.l.h 2
5.b even 2 1 300.3.g.e 2
5.c odd 4 2 60.3.b.a 4
12.b even 2 1 1200.3.l.h 2
15.d odd 2 1 300.3.g.e 2
15.e even 4 2 60.3.b.a 4
20.d odd 2 1 1200.3.l.q 2
20.e even 4 2 240.3.c.d 4
40.i odd 4 2 960.3.c.h 4
40.k even 4 2 960.3.c.g 4
45.k odd 12 4 1620.3.t.b 8
45.l even 12 4 1620.3.t.b 8
60.h even 2 1 1200.3.l.q 2
60.l odd 4 2 240.3.c.d 4
120.q odd 4 2 960.3.c.g 4
120.w even 4 2 960.3.c.h 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
60.3.b.a 4 5.c odd 4 2
60.3.b.a 4 15.e even 4 2
240.3.c.d 4 20.e even 4 2
240.3.c.d 4 60.l odd 4 2
300.3.g.e 2 5.b even 2 1
300.3.g.e 2 15.d odd 2 1
300.3.g.h 2 1.a even 1 1 trivial
300.3.g.h 2 3.b odd 2 1 inner
960.3.c.g 4 40.k even 4 2
960.3.c.g 4 120.q odd 4 2
960.3.c.h 4 40.i odd 4 2
960.3.c.h 4 120.w even 4 2
1200.3.l.h 2 4.b odd 2 1
1200.3.l.h 2 12.b even 2 1
1200.3.l.q 2 20.d odd 2 1
1200.3.l.q 2 60.h even 2 1
1620.3.t.b 8 45.k odd 12 4
1620.3.t.b 8 45.l even 12 4

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{3}^{\mathrm{new}}(300, [\chi])$$:

 $$T_{7} + 8$$ $$T_{11}^{2} + 80$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$9 - 4 T + T^{2}$$
$5$ $$T^{2}$$
$7$ $$( 8 + T )^{2}$$
$11$ $$80 + T^{2}$$
$13$ $$( 12 + T )^{2}$$
$17$ $$980 + T^{2}$$
$19$ $$( -6 + T )^{2}$$
$23$ $$20 + T^{2}$$
$29$ $$720 + T^{2}$$
$31$ $$( -34 + T )^{2}$$
$37$ $$( 44 + T )^{2}$$
$41$ $$320 + T^{2}$$
$43$ $$( -28 + T )^{2}$$
$47$ $$20 + T^{2}$$
$53$ $$1620 + T^{2}$$
$59$ $$9680 + T^{2}$$
$61$ $$( -74 + T )^{2}$$
$67$ $$( -92 + T )^{2}$$
$71$ $$2880 + T^{2}$$
$73$ $$( 56 + T )^{2}$$
$79$ $$( -78 + T )^{2}$$
$83$ $$10580 + T^{2}$$
$89$ $$320 + T^{2}$$
$97$ $$( -32 + T )^{2}$$