# Properties

 Label 300.2.w.a.67.4 Level $300$ Weight $2$ Character 300.67 Analytic conductor $2.396$ Analytic rank $0$ Dimension $240$ CM no Inner twists $4$

# Learn more about

## Newspace parameters

 Level: $$N$$ $$=$$ $$300 = 2^{2} \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 300.w (of order $$20$$, degree $$8$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.39551206064$$ Analytic rank: $$0$$ Dimension: $$240$$ Relative dimension: $$30$$ over $$\Q(\zeta_{20})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

## Embedding invariants

 Embedding label 67.4 Character $$\chi$$ $$=$$ 300.67 Dual form 300.2.w.a.103.4

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.36970 - 0.352033i) q^{2} +(-0.987688 - 0.156434i) q^{3} +(1.75215 + 0.964358i) q^{4} +(1.21468 - 1.87738i) q^{5} +(1.29776 + 0.561967i) q^{6} +(-0.466793 + 0.466793i) q^{7} +(-2.06042 - 1.93769i) q^{8} +(0.951057 + 0.309017i) q^{9} +O(q^{10})$$ $$q+(-1.36970 - 0.352033i) q^{2} +(-0.987688 - 0.156434i) q^{3} +(1.75215 + 0.964358i) q^{4} +(1.21468 - 1.87738i) q^{5} +(1.29776 + 0.561967i) q^{6} +(-0.466793 + 0.466793i) q^{7} +(-2.06042 - 1.93769i) q^{8} +(0.951057 + 0.309017i) q^{9} +(-2.32465 + 2.14383i) q^{10} +(1.78159 - 0.578872i) q^{11} +(-1.57971 - 1.22658i) q^{12} +(0.234433 + 0.460102i) q^{13} +(0.803693 - 0.475039i) q^{14} +(-1.49341 + 1.66425i) q^{15} +(2.14003 + 3.37939i) q^{16} +(-0.610050 - 3.85171i) q^{17} +(-1.19388 - 0.758063i) q^{18} +(-0.124246 - 0.0902702i) q^{19} +(3.93876 - 2.11805i) q^{20} +(0.534069 - 0.388024i) q^{21} +(-2.64402 + 0.165703i) q^{22} +(2.60885 - 5.12015i) q^{23} +(1.73194 + 2.23616i) q^{24} +(-2.04910 - 4.56083i) q^{25} +(-0.159132 - 0.712729i) q^{26} +(-0.891007 - 0.453990i) q^{27} +(-1.26805 + 0.367734i) q^{28} +(-2.19816 - 3.02551i) q^{29} +(2.63139 - 1.75378i) q^{30} +(4.91991 - 6.77167i) q^{31} +(-1.74153 - 5.38211i) q^{32} +(-1.85021 + 0.293044i) q^{33} +(-0.520343 + 5.49043i) q^{34} +(0.309343 + 1.44335i) q^{35} +(1.36839 + 1.45860i) q^{36} +(0.232407 - 0.118417i) q^{37} +(0.138402 + 0.167382i) q^{38} +(-0.159571 - 0.491110i) q^{39} +(-6.14054 + 1.51452i) q^{40} +(3.02867 - 9.32128i) q^{41} +(-0.868111 + 0.343466i) q^{42} +(-1.26309 - 1.26309i) q^{43} +(3.67984 + 0.703818i) q^{44} +(1.73537 - 1.41014i) q^{45} +(-5.37579 + 6.09466i) q^{46} +(-1.19271 + 7.53046i) q^{47} +(-1.58503 - 3.67256i) q^{48} +6.56421i q^{49} +(1.20108 + 6.96831i) q^{50} +3.89972i q^{51} +(-0.0329410 + 1.03224i) q^{52} +(-0.540190 + 3.41063i) q^{53} +(1.06059 + 0.935494i) q^{54} +(1.07730 - 4.04786i) q^{55} +(1.86629 - 0.0572906i) q^{56} +(0.108595 + 0.108595i) q^{57} +(1.94574 + 4.91787i) q^{58} +(-4.23246 + 13.0262i) q^{59} +(-4.22161 + 1.47582i) q^{60} +(-0.806430 - 2.48194i) q^{61} +(-9.12264 + 7.54318i) q^{62} +(-0.588194 + 0.299700i) q^{63} +(0.490698 + 7.98494i) q^{64} +(1.14855 + 0.118757i) q^{65} +(2.63739 + 0.249952i) q^{66} +(0.495584 - 0.0784927i) q^{67} +(2.64553 - 7.33706i) q^{68} +(-3.37769 + 4.64900i) q^{69} +(0.0844020 - 2.08586i) q^{70} +(3.34472 + 4.60362i) q^{71} +(-1.36080 - 2.47956i) q^{72} +(14.3303 + 7.30166i) q^{73} +(-0.360014 + 0.0803809i) q^{74} +(1.31040 + 4.82523i) q^{75} +(-0.130645 - 0.277984i) q^{76} +(-0.561419 + 1.10185i) q^{77} +(0.0456776 + 0.728847i) q^{78} +(4.18276 - 3.03896i) q^{79} +(8.94385 + 0.0872410i) q^{80} +(0.809017 + 0.587785i) q^{81} +(-7.42975 + 11.7011i) q^{82} +(-1.77842 - 11.2285i) q^{83} +(1.30996 - 0.164841i) q^{84} +(-7.97213 - 3.53330i) q^{85} +(1.28540 + 2.17470i) q^{86} +(1.69781 + 3.33213i) q^{87} +(-4.79250 - 2.25944i) q^{88} +(-17.1308 + 5.56614i) q^{89} +(-2.87335 + 1.32055i) q^{90} +(-0.324204 - 0.105340i) q^{91} +(9.50873 - 6.45538i) q^{92} +(-5.91866 + 5.91866i) q^{93} +(4.28462 - 9.89459i) q^{94} +(-0.320391 + 0.123608i) q^{95} +(0.878147 + 5.58828i) q^{96} +(13.4335 + 2.12767i) q^{97} +(2.31082 - 8.99098i) q^{98} +1.87327 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$240q + 12q^{8} + O(q^{10})$$ $$240q + 12q^{8} + 8q^{10} + 8q^{12} + 4q^{13} + 20q^{17} - 20q^{20} - 12q^{22} + 20q^{25} + 4q^{28} - 8q^{30} - 20q^{32} - 8q^{33} - 4q^{37} - 76q^{38} - 92q^{40} - 20q^{42} - 140q^{44} - 4q^{45} - 16q^{48} - 164q^{50} - 172q^{52} - 4q^{53} - 120q^{58} + 20q^{60} - 44q^{62} - 60q^{64} - 20q^{65} + 16q^{68} - 44q^{70} + 12q^{72} - 44q^{73} - 48q^{77} + 24q^{78} - 4q^{80} + 60q^{81} + 24q^{82} + 80q^{84} - 64q^{85} + 60q^{88} - 260q^{89} + 48q^{90} + 144q^{92} - 64q^{93} + 40q^{94} - 20q^{96} - 180q^{97} + 256q^{98} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/300\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$151$$ $$277$$ $$\chi(n)$$ $$1$$ $$-1$$ $$e\left(\frac{13}{20}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
<
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.36970 0.352033i −0.968523 0.248925i
$$3$$ −0.987688 0.156434i −0.570242 0.0903175i
$$4$$ 1.75215 + 0.964358i 0.876073 + 0.482179i
$$5$$ 1.21468 1.87738i 0.543222 0.839589i
$$6$$ 1.29776 + 0.561967i 0.529810 + 0.229422i
$$7$$ −0.466793 + 0.466793i −0.176431 + 0.176431i −0.789798 0.613367i $$-0.789815\pi$$
0.613367 + 0.789798i $$0.289815\pi$$
$$8$$ −2.06042 1.93769i −0.728470 0.685078i
$$9$$ 0.951057 + 0.309017i 0.317019 + 0.103006i
$$10$$ −2.32465 + 2.14383i −0.735118 + 0.677940i
$$11$$ 1.78159 0.578872i 0.537168 0.174537i −0.0278542 0.999612i $$-0.508867\pi$$
0.565023 + 0.825075i $$0.308867\pi$$
$$12$$ −1.57971 1.22658i −0.456024 0.354083i
$$13$$ 0.234433 + 0.460102i 0.0650201 + 0.127609i 0.921229 0.389020i $$-0.127186\pi$$
−0.856209 + 0.516630i $$0.827186\pi$$
$$14$$ 0.803693 0.475039i 0.214796 0.126960i
$$15$$ −1.49341 + 1.66425i −0.385598 + 0.429707i
$$16$$ 2.14003 + 3.37939i 0.535007 + 0.844848i
$$17$$ −0.610050 3.85171i −0.147959 0.934176i −0.944242 0.329252i $$-0.893203\pi$$
0.796283 0.604924i $$-0.206797\pi$$
$$18$$ −1.19388 0.758063i −0.281399 0.178677i
$$19$$ −0.124246 0.0902702i −0.0285041 0.0207094i 0.573442 0.819246i $$-0.305608\pi$$
−0.601946 + 0.798537i $$0.705608\pi$$
$$20$$ 3.93876 2.11805i 0.880734 0.473611i
$$21$$ 0.534069 0.388024i 0.116543 0.0846738i
$$22$$ −2.64402 + 0.165703i −0.563706 + 0.0353281i
$$23$$ 2.60885 5.12015i 0.543982 1.06762i −0.441407 0.897307i $$-0.645521\pi$$
0.985389 0.170318i $$-0.0544795\pi$$
$$24$$ 1.73194 + 2.23616i 0.353530 + 0.456454i
$$25$$ −2.04910 4.56083i −0.409820 0.912167i
$$26$$ −0.159132 0.712729i −0.0312084 0.139778i
$$27$$ −0.891007 0.453990i −0.171474 0.0873705i
$$28$$ −1.26805 + 0.367734i −0.239638 + 0.0694952i
$$29$$ −2.19816 3.02551i −0.408189 0.561824i 0.554587 0.832126i $$-0.312876\pi$$
−0.962776 + 0.270302i $$0.912876\pi$$
$$30$$ 2.63139 1.75378i 0.480425 0.320196i
$$31$$ 4.91991 6.77167i 0.883642 1.21623i −0.0917572 0.995781i $$-0.529248\pi$$
0.975399 0.220447i $$-0.0707516\pi$$
$$32$$ −1.74153 5.38211i −0.307863 0.951431i
$$33$$ −1.85021 + 0.293044i −0.322080 + 0.0510124i
$$34$$ −0.520343 + 5.49043i −0.0892381 + 0.941601i
$$35$$ 0.309343 + 1.44335i 0.0522884 + 0.243971i
$$36$$ 1.36839 + 1.45860i 0.228064 + 0.243100i
$$37$$ 0.232407 0.118417i 0.0382074 0.0194677i −0.434782 0.900536i $$-0.643175\pi$$
0.472990 + 0.881068i $$0.343175\pi$$
$$38$$ 0.138402 + 0.167382i 0.0224517 + 0.0271529i
$$39$$ −0.159571 0.491110i −0.0255519 0.0786406i
$$40$$ −6.14054 + 1.51452i −0.970905 + 0.239466i
$$41$$ 3.02867 9.32128i 0.472998 1.45574i −0.375640 0.926766i $$-0.622577\pi$$
0.848639 0.528973i $$-0.177423\pi$$
$$42$$ −0.868111 + 0.343466i −0.133952 + 0.0529979i
$$43$$ −1.26309 1.26309i −0.192619 0.192619i 0.604208 0.796827i $$-0.293490\pi$$
−0.796827 + 0.604208i $$0.793490\pi$$
$$44$$ 3.67984 + 0.703818i 0.554756 + 0.106105i
$$45$$ 1.73537 1.41014i 0.258694 0.210211i
$$46$$ −5.37579 + 6.09466i −0.792617 + 0.898608i
$$47$$ −1.19271 + 7.53046i −0.173974 + 1.09843i 0.733921 + 0.679235i $$0.237688\pi$$
−0.907896 + 0.419196i $$0.862312\pi$$
$$48$$ −1.58503 3.67256i −0.228779 0.530088i
$$49$$ 6.56421i 0.937744i
$$50$$ 1.20108 + 6.96831i 0.169859 + 0.985468i
$$51$$ 3.89972i 0.546070i
$$52$$ −0.0329410 + 1.03224i −0.00456810 + 0.143146i
$$53$$ −0.540190 + 3.41063i −0.0742008 + 0.468485i 0.922409 + 0.386214i $$0.126217\pi$$
−0.996610 + 0.0822713i $$0.973783\pi$$
$$54$$ 1.06059 + 0.935494i 0.144328 + 0.127305i
$$55$$ 1.07730 4.04786i 0.145263 0.545813i
$$56$$ 1.86629 0.0572906i 0.249394 0.00765579i
$$57$$ 0.108595 + 0.108595i 0.0143838 + 0.0143838i
$$58$$ 1.94574 + 4.91787i 0.255488 + 0.645748i
$$59$$ −4.23246 + 13.0262i −0.551019 + 1.69586i 0.155211 + 0.987881i $$0.450394\pi$$
−0.706231 + 0.707982i $$0.749606\pi$$
$$60$$ −4.22161 + 1.47582i −0.545007 + 0.190527i
$$61$$ −0.806430 2.48194i −0.103253 0.317779i 0.886064 0.463564i $$-0.153429\pi$$
−0.989316 + 0.145784i $$0.953429\pi$$
$$62$$ −9.12264 + 7.54318i −1.15858 + 0.957985i
$$63$$ −0.588194 + 0.299700i −0.0741055 + 0.0377586i
$$64$$ 0.490698 + 7.98494i 0.0613373 + 0.998117i
$$65$$ 1.14855 + 0.118757i 0.142460 + 0.0147299i
$$66$$ 2.63739 + 0.249952i 0.324640 + 0.0307670i
$$67$$ 0.495584 0.0784927i 0.0605452 0.00958941i −0.126088 0.992019i $$-0.540242\pi$$
0.186634 + 0.982430i $$0.440242\pi$$
$$68$$ 2.64553 7.33706i 0.320817 0.889749i
$$69$$ −3.37769 + 4.64900i −0.406627 + 0.559674i
$$70$$ 0.0844020 2.08586i 0.0100880 0.249308i
$$71$$ 3.34472 + 4.60362i 0.396946 + 0.546349i 0.959974 0.280089i $$-0.0903639\pi$$
−0.563029 + 0.826437i $$0.690364\pi$$
$$72$$ −1.36080 2.47956i −0.160372 0.292219i
$$73$$ 14.3303 + 7.30166i 1.67724 + 0.854594i 0.991995 + 0.126278i $$0.0403033\pi$$
0.685241 + 0.728316i $$0.259697\pi$$
$$74$$ −0.360014 + 0.0803809i −0.0418507 + 0.00934409i
$$75$$ 1.31040 + 4.82523i 0.151312 + 0.557170i
$$76$$ −0.130645 0.277984i −0.0149860 0.0318870i
$$77$$ −0.561419 + 1.10185i −0.0639796 + 0.125567i
$$78$$ 0.0456776 + 0.728847i 0.00517197 + 0.0825257i
$$79$$ 4.18276 3.03896i 0.470598 0.341909i −0.327076 0.944998i $$-0.606063\pi$$
0.797674 + 0.603089i $$0.206063\pi$$
$$80$$ 8.94385 + 0.0872410i 0.999952 + 0.00975384i
$$81$$ 0.809017 + 0.587785i 0.0898908 + 0.0653095i
$$82$$ −7.42975 + 11.7011i −0.820479 + 1.29218i
$$83$$ −1.77842 11.2285i −0.195207 1.23249i −0.869465 0.493994i $$-0.835536\pi$$
0.674258 0.738496i $$-0.264464\pi$$
$$84$$ 1.30996 0.164841i 0.142928 0.0179856i
$$85$$ −7.97213 3.53330i −0.864699 0.383240i
$$86$$ 1.28540 + 2.17470i 0.138609 + 0.234504i
$$87$$ 1.69781 + 3.33213i 0.182024 + 0.357242i
$$88$$ −4.79250 2.25944i −0.510882 0.240857i
$$89$$ −17.1308 + 5.56614i −1.81586 + 0.590010i −0.815934 + 0.578145i $$0.803777\pi$$
−0.999930 + 0.0118654i $$0.996223\pi$$
$$90$$ −2.87335 + 1.32055i −0.302878 + 0.139198i
$$91$$ −0.324204 0.105340i −0.0339859 0.0110427i
$$92$$ 9.50873 6.45538i 0.991354 0.673020i
$$93$$ −5.91866 + 5.91866i −0.613736 + 0.613736i
$$94$$ 4.28462 9.89459i 0.441925 1.02055i
$$95$$ −0.320391 + 0.123608i −0.0328714 + 0.0126819i
$$96$$ 0.878147 + 5.58828i 0.0896255 + 0.570351i
$$97$$ 13.4335 + 2.12767i 1.36397 + 0.216032i 0.795141 0.606424i $$-0.207397\pi$$
0.568829 + 0.822456i $$0.307397\pi$$
$$98$$ 2.31082 8.99098i 0.233428 0.908226i
$$99$$ 1.87327 0.188271
$$100$$ 0.807956 9.96731i 0.0807956 0.996731i
$$101$$ 8.89432 0.885018 0.442509 0.896764i $$-0.354088\pi$$
0.442509 + 0.896764i $$0.354088\pi$$
$$102$$ 1.37283 5.34144i 0.135930 0.528881i
$$103$$ 0.918328 + 0.145449i 0.0904855 + 0.0143315i 0.201513 0.979486i $$-0.435414\pi$$
−0.111027 + 0.993817i $$0.535414\pi$$
$$104$$ 0.408503 1.40226i 0.0400570 0.137503i
$$105$$ −0.0797439 1.47398i −0.00778221 0.143845i
$$106$$ 1.94055 4.48136i 0.188483 0.435268i
$$107$$ −13.1698 + 13.1698i −1.27317 + 1.27317i −0.328751 + 0.944417i $$0.606628\pi$$
−0.944417 + 0.328751i $$0.893372\pi$$
$$108$$ −1.12336 1.65471i −0.108096 0.159224i
$$109$$ −9.23857 3.00179i −0.884895 0.287520i −0.168907 0.985632i $$-0.554024\pi$$
−0.715988 + 0.698112i $$0.754024\pi$$
$$110$$ −2.90055 + 5.16510i −0.276557 + 0.492473i
$$111$$ −0.248070 + 0.0806028i −0.0235457 + 0.00765048i
$$112$$ −2.57643 0.578527i −0.243450 0.0546656i
$$113$$ 4.23938 + 8.32026i 0.398808 + 0.782704i 0.999864 0.0165027i $$-0.00525322\pi$$
−0.601056 + 0.799207i $$0.705253\pi$$
$$114$$ −0.110514 0.186972i −0.0103505 0.0175115i
$$115$$ −6.44354 11.1171i −0.600863 1.03668i
$$116$$ −0.933826 7.42096i −0.0867036 0.689019i
$$117$$ 0.0807803 + 0.510027i 0.00746814 + 0.0471520i
$$118$$ 10.3828 16.3520i 0.955817 1.50532i
$$119$$ 2.08272 + 1.51318i 0.190923 + 0.138713i
$$120$$ 6.30186 0.535279i 0.575279 0.0488641i
$$121$$ −6.06023 + 4.40302i −0.550930 + 0.400274i
$$122$$ 0.230842 + 3.68339i 0.0208995 + 0.333479i
$$123$$ −4.44955 + 8.73273i −0.401202 + 0.787404i
$$124$$ 15.1507 7.12040i 1.36057 0.639431i
$$125$$ −11.0514 1.69303i −0.988468 0.151429i
$$126$$ 0.911153 0.203435i 0.0811719 0.0181234i
$$127$$ 1.83675 + 0.935873i 0.162986 + 0.0830453i 0.533580 0.845749i $$-0.320846\pi$$
−0.370595 + 0.928795i $$0.620846\pi$$
$$128$$ 2.13885 11.1097i 0.189050 0.981968i
$$129$$ 1.04995 + 1.44513i 0.0924428 + 0.127237i
$$130$$ −1.53136 0.566987i −0.134309 0.0497280i
$$131$$ 5.23162 7.20070i 0.457088 0.629128i −0.516813 0.856098i $$-0.672882\pi$$
0.973902 + 0.226970i $$0.0728819\pi$$
$$132$$ −3.52443 1.27081i −0.306762 0.110609i
$$133$$ 0.100135 0.0158598i 0.00868280 0.00137522i
$$134$$ −0.706432 0.0669504i −0.0610264 0.00578364i
$$135$$ −1.93460 + 1.12130i −0.166504 + 0.0965064i
$$136$$ −6.20646 + 9.11824i −0.532199 + 0.781883i
$$137$$ −3.17579 + 1.61814i −0.271326 + 0.138247i −0.584360 0.811494i $$-0.698654\pi$$
0.313034 + 0.949742i $$0.398654\pi$$
$$138$$ 6.26302 5.17866i 0.533144 0.440837i
$$139$$ −4.51261 13.8884i −0.382755 1.17800i −0.938096 0.346376i $$-0.887412\pi$$
0.555341 0.831623i $$-0.312588\pi$$
$$140$$ −0.849896 + 2.82728i −0.0718293 + 0.238949i
$$141$$ 2.35605 7.25117i 0.198415 0.610659i
$$142$$ −2.96064 7.48302i −0.248451 0.627961i
$$143$$ 0.684004 + 0.684004i 0.0571992 + 0.0571992i
$$144$$ 0.990998 + 3.87530i 0.0825832 + 0.322941i
$$145$$ −8.35010 + 0.451751i −0.693438 + 0.0375159i
$$146$$ −17.0578 15.0458i −1.41171 1.24520i
$$147$$ 1.02687 6.48339i 0.0846947 0.534741i
$$148$$ 0.521407 + 0.0166392i 0.0428594 + 0.00136773i
$$149$$ 16.6477i 1.36383i 0.731431 + 0.681916i $$0.238853\pi$$
−0.731431 + 0.681916i $$0.761147\pi$$
$$150$$ −0.0962107 7.07041i −0.00785557 0.577297i
$$151$$ 3.92894i 0.319733i −0.987139 0.159866i $$-0.948894\pi$$
0.987139 0.159866i $$-0.0511063\pi$$
$$152$$ 0.0810842 + 0.426746i 0.00657680 + 0.0346137i
$$153$$ 0.610050 3.85171i 0.0493196 0.311392i
$$154$$ 1.15686 1.31156i 0.0932225 0.105688i
$$155$$ −6.73687 17.4620i −0.541119 1.40258i
$$156$$ 0.194014 1.01438i 0.0155335 0.0812155i
$$157$$ 15.5356 + 15.5356i 1.23987 + 1.23987i 0.960052 + 0.279822i $$0.0902755\pi$$
0.279822 + 0.960052i $$0.409724\pi$$
$$158$$ −6.79894 + 2.68998i −0.540894 + 0.214003i
$$159$$ 1.06708 3.28413i 0.0846248 0.260448i
$$160$$ −12.2197 3.26802i −0.966049 0.258360i
$$161$$ 1.17226 + 3.60784i 0.0923870 + 0.284338i
$$162$$ −0.901189 1.08989i −0.0708041 0.0856298i
$$163$$ −1.83685 + 0.935924i −0.143874 + 0.0733072i −0.524445 0.851444i $$-0.675727\pi$$
0.380572 + 0.924751i $$0.375727\pi$$
$$164$$ 14.2957 13.4115i 1.11631 1.04726i
$$165$$ −1.69726 + 3.82949i −0.132131 + 0.298126i
$$166$$ −1.51691 + 16.0057i −0.117735 + 1.24229i
$$167$$ 11.1843 1.77142i 0.865468 0.137077i 0.292113 0.956384i $$-0.405642\pi$$
0.573355 + 0.819307i $$0.305642\pi$$
$$168$$ −1.85228 0.235368i −0.142906 0.0181590i
$$169$$ 7.48447 10.3015i 0.575729 0.792423i
$$170$$ 9.67557 + 7.64601i 0.742082 + 0.586422i
$$171$$ −0.0902702 0.124246i −0.00690314 0.00950135i
$$172$$ −0.995047 3.43119i −0.0758716 0.261626i
$$173$$ 11.4844 + 5.85160i 0.873144 + 0.444889i 0.832332 0.554278i $$-0.187005\pi$$
0.0408123 + 0.999167i $$0.487005\pi$$
$$174$$ −1.15246 5.16170i −0.0873679 0.391308i
$$175$$ 3.08547 + 1.17246i 0.233240 + 0.0886297i
$$176$$ 5.76888 + 4.78187i 0.434846 + 0.360447i
$$177$$ 6.21809 12.2037i 0.467381 0.917286i
$$178$$ 25.4235 1.59332i 1.90557 0.119424i
$$179$$ −5.65626 + 4.10951i −0.422769 + 0.307160i −0.778751 0.627333i $$-0.784146\pi$$
0.355982 + 0.934493i $$0.384146\pi$$
$$180$$ 4.40050 0.797243i 0.327994 0.0594230i
$$181$$ 1.50517 + 1.09357i 0.111878 + 0.0812843i 0.642318 0.766439i $$-0.277973\pi$$
−0.530439 + 0.847723i $$0.677973\pi$$
$$182$$ 0.406979 + 0.258415i 0.0301673 + 0.0191550i
$$183$$ 0.408241 + 2.57753i 0.0301781 + 0.190537i
$$184$$ −15.2966 + 5.49454i −1.12768 + 0.405063i
$$185$$ 0.0599863 0.580154i 0.00441028 0.0426538i
$$186$$ 10.1903 6.02321i 0.747192 0.441643i
$$187$$ −3.31650 6.50900i −0.242527 0.475986i
$$188$$ −9.35186 + 12.0443i −0.682055 + 0.878419i
$$189$$ 0.627836 0.203996i 0.0456683 0.0148385i
$$190$$ 0.482353 0.0565171i 0.0349936 0.00410018i
$$191$$ 3.81762 + 1.24042i 0.276233 + 0.0897536i 0.443858 0.896097i $$-0.353610\pi$$
−0.167624 + 0.985851i $$0.553610\pi$$
$$192$$ 0.764462 7.96339i 0.0551703 0.574708i
$$193$$ −7.39886 + 7.39886i −0.532582 + 0.532582i −0.921340 0.388758i $$-0.872904\pi$$
0.388758 + 0.921340i $$0.372904\pi$$
$$194$$ −17.6509 7.64331i −1.26726 0.548758i
$$195$$ −1.11583 0.296967i −0.0799061 0.0212662i
$$196$$ −6.33025 + 11.5014i −0.452160 + 0.821532i
$$197$$ 19.1368 + 3.03096i 1.36344 + 0.215947i 0.794915 0.606721i $$-0.207515\pi$$
0.568522 + 0.822668i $$0.307515\pi$$
$$198$$ −2.56581 0.659453i −0.182345 0.0468653i
$$199$$ 26.2562 1.86126 0.930628 0.365968i $$-0.119262\pi$$
0.930628 + 0.365968i $$0.119262\pi$$
$$200$$ −4.61548 + 13.3678i −0.326364 + 0.945244i
$$201$$ −0.501761 −0.0353915
$$202$$ −12.1825 3.13110i −0.857160 0.220303i
$$203$$ 2.43838 + 0.386201i 0.171141 + 0.0271060i
$$204$$ −3.76072 + 6.83287i −0.263303 + 0.478397i
$$205$$ −13.8207 17.0083i −0.965279 1.18791i
$$206$$ −1.20663 0.522503i −0.0840698 0.0364045i
$$207$$ 4.06337 4.06337i 0.282424 0.282424i
$$208$$ −1.05317 + 1.77687i −0.0730241 + 0.123204i
$$209$$ −0.273610 0.0889014i −0.0189260 0.00614944i
$$210$$ −0.409663 + 2.04697i −0.0282694 + 0.141255i
$$211$$ −20.9571 + 6.80937i −1.44274 + 0.468776i −0.922752 0.385394i $$-0.874065\pi$$
−0.519993 + 0.854171i $$0.674065\pi$$
$$212$$ −4.23555 + 5.45498i −0.290899 + 0.374649i
$$213$$ −2.58338 5.07017i −0.177010 0.347402i
$$214$$ 22.6748 13.4024i 1.55002 0.916169i
$$215$$ −3.90555 + 0.837046i −0.266356 + 0.0570861i
$$216$$ 0.956158 + 2.66191i 0.0650583 + 0.181120i
$$217$$ 0.864392 + 5.45755i 0.0586787 + 0.370483i
$$218$$ 11.5973 + 7.36384i 0.785470 + 0.498742i
$$219$$ −13.0117 9.45352i −0.879246 0.638810i
$$220$$ 5.79116 6.05353i 0.390440 0.408129i
$$221$$ 1.62916 1.18365i 0.109589 0.0796212i
$$222$$ 0.368156 0.0230727i 0.0247090 0.00154854i
$$223$$ −9.67185 + 18.9821i −0.647675 + 1.27113i 0.300620 + 0.953744i $$0.402806\pi$$
−0.948295 + 0.317390i $$0.897194\pi$$
$$224$$ 3.32527 + 1.69939i 0.222179 + 0.113546i
$$225$$ −0.539434 4.97082i −0.0359622 0.331388i
$$226$$ −2.87767 12.8886i −0.191420 0.857340i
$$227$$ −18.6257 9.49027i −1.23623 0.629891i −0.291134 0.956682i $$-0.594033\pi$$
−0.945097 + 0.326791i $$0.894033\pi$$
$$228$$ 0.0855500 + 0.294999i 0.00566569 + 0.0195368i
$$229$$ −10.5496 14.5203i −0.697140 0.959531i −0.999979 0.00648916i $$-0.997934\pi$$
0.302839 0.953042i $$-0.402066\pi$$
$$230$$ 4.91210 + 17.4955i 0.323895 + 1.15362i
$$231$$ 0.726874 1.00046i 0.0478248 0.0658252i
$$232$$ −1.33336 + 10.4932i −0.0875395 + 0.688913i
$$233$$ −6.11304 + 0.968210i −0.400478 + 0.0634295i −0.353425 0.935463i $$-0.614983\pi$$
−0.0470533 + 0.998892i $$0.514983\pi$$
$$234$$ 0.0689016 0.727020i 0.00450424 0.0475268i
$$235$$ 12.6888 + 11.3863i 0.827724 + 0.742759i
$$236$$ −19.9778 + 18.7421i −1.30044 + 1.22001i
$$237$$ −4.60666 + 2.34721i −0.299235 + 0.152468i
$$238$$ −2.32001 2.80579i −0.150384 0.181872i
$$239$$ −1.34493 4.13926i −0.0869961 0.267746i 0.898089 0.439813i $$-0.144955\pi$$
−0.985085 + 0.172067i $$0.944955\pi$$
$$240$$ −8.82009 1.48529i −0.569334 0.0958752i
$$241$$ −0.568954 + 1.75106i −0.0366496 + 0.112796i −0.967708 0.252075i $$-0.918887\pi$$
0.931058 + 0.364871i $$0.118887\pi$$
$$242$$ 9.85069 3.89740i 0.633227 0.250534i
$$243$$ −0.707107 0.707107i −0.0453609 0.0453609i
$$244$$ 0.980492 5.12640i 0.0627696 0.328184i
$$245$$ 12.3235 + 7.97342i 0.787320 + 0.509403i
$$246$$ 9.16874 10.3948i 0.584578 0.662749i
$$247$$ 0.0124060 0.0783283i 0.000789374 0.00498391i
$$248$$ −23.2585 + 4.41925i −1.47692 + 0.280623i
$$249$$ 11.3685i 0.720449i
$$250$$ 14.5411 + 6.20939i 0.919660 + 0.392717i
$$251$$ 28.1716i 1.77817i 0.457737 + 0.889087i $$0.348660\pi$$
−0.457737 + 0.889087i $$0.651340\pi$$
$$252$$ −1.31962 0.0421118i −0.0831282 0.00265280i
$$253$$ 1.68397 10.6322i 0.105870 0.668439i
$$254$$ −2.18634 1.92846i −0.137183 0.121002i
$$255$$ 7.32125 + 4.73691i 0.458474 + 0.296637i
$$256$$ −6.84056 + 14.4640i −0.427535 + 0.903999i
$$257$$ −7.52224 7.52224i −0.469224 0.469224i 0.432439 0.901663i $$-0.357653\pi$$
−0.901663 + 0.432439i $$0.857653\pi$$
$$258$$ −0.929379 2.34901i −0.0578606 0.146243i
$$259$$ −0.0532096 + 0.163762i −0.00330628 + 0.0101757i
$$260$$ 1.89790 + 1.31569i 0.117703 + 0.0815956i
$$261$$ −1.15564 3.55671i −0.0715325 0.220155i
$$262$$ −9.70062 + 8.02109i −0.599306 + 0.495544i
$$263$$ 9.95605 5.07286i 0.613916 0.312806i −0.119241 0.992865i $$-0.538046\pi$$
0.733157 + 0.680059i $$0.238046\pi$$
$$264$$ 4.38004 + 2.98134i 0.269573 + 0.183489i
$$265$$ 5.74688 + 5.15696i 0.353028 + 0.316790i
$$266$$ −0.142738 0.0135276i −0.00875181 0.000829433i
$$267$$ 17.7907 2.81776i 1.08877 0.172444i
$$268$$ 0.944030 + 0.340389i 0.0576658 + 0.0207926i
$$269$$ 6.02380 8.29105i 0.367278 0.505514i −0.584881 0.811119i $$-0.698859\pi$$
0.952158 + 0.305605i $$0.0988587\pi$$
$$270$$ 3.04455 0.854802i 0.185286 0.0520216i
$$271$$ 1.40293 + 1.93096i 0.0852217 + 0.117298i 0.849499 0.527590i $$-0.176904\pi$$
−0.764278 + 0.644888i $$0.776904\pi$$
$$272$$ 11.7109 10.3044i 0.710077 0.624793i
$$273$$ 0.303734 + 0.154760i 0.0183828 + 0.00936652i
$$274$$ 4.91951 1.09839i 0.297198 0.0663560i
$$275$$ −6.29079 6.93935i −0.379349 0.418459i
$$276$$ −10.4015 + 4.88841i −0.626097 + 0.294248i
$$277$$ 1.04875 2.05829i 0.0630135 0.123671i −0.857352 0.514731i $$-0.827892\pi$$
0.920365 + 0.391060i $$0.127892\pi$$
$$278$$ 1.29174 + 20.6115i 0.0774737 + 1.23620i
$$279$$ 6.77167 4.91991i 0.405409 0.294547i
$$280$$ 2.15940 3.57333i 0.129049 0.213547i
$$281$$ −13.4390 9.76398i −0.801701 0.582470i 0.109711 0.993963i $$-0.465007\pi$$
−0.911413 + 0.411493i $$0.865007\pi$$
$$282$$ −5.77973 + 9.10251i −0.344178 + 0.542046i
$$283$$ 3.69142 + 23.3067i 0.219432 + 1.38544i 0.813752 + 0.581212i $$0.197421\pi$$
−0.594320 + 0.804228i $$0.702579\pi$$
$$284$$ 1.42091 + 11.2917i 0.0843153 + 0.670040i
$$285$$ 0.335783 0.0719657i 0.0198901 0.00426288i
$$286$$ −0.696086 1.17767i −0.0411605 0.0696371i
$$287$$ 2.93735 + 5.76487i 0.173386 + 0.340290i
$$288$$ 0.00686393 5.65685i 0.000404461 0.333333i
$$289$$ 1.70448 0.553819i 0.100264 0.0325776i
$$290$$ 11.5962 + 2.32075i 0.680950 + 0.136279i
$$291$$ −12.9353 4.20294i −0.758282 0.246381i
$$292$$ 18.0674 + 26.6131i 1.05731 + 1.55741i
$$293$$ −18.6714 + 18.6714i −1.09080 + 1.09080i −0.0953524 + 0.995444i $$0.530398\pi$$
−0.995444 + 0.0953524i $$0.969602\pi$$
$$294$$ −3.68887 + 8.51880i −0.215139 + 0.496826i
$$295$$ 19.3140 + 23.7686i 1.12450 + 1.38386i
$$296$$ −0.708312 0.206343i −0.0411698 0.0119934i
$$297$$ −1.85021 0.293044i −0.107360 0.0170041i
$$298$$ 5.86053 22.8023i 0.339492 1.32090i
$$299$$ 2.96739 0.171609
$$300$$ −2.35724 + 9.71820i −0.136095 + 0.561081i
$$301$$ 1.17920 0.0679682
$$302$$ −1.38312 + 5.38146i −0.0795894 + 0.309668i
$$303$$ −8.78482 1.39138i −0.504675 0.0799326i
$$304$$ 0.0391678 0.613058i 0.00224643 0.0351613i
$$305$$ −5.63909 1.50079i −0.322893 0.0859349i
$$306$$ −2.19151 + 5.06092i −0.125280 + 0.289313i
$$307$$ −0.833602 + 0.833602i −0.0475762 + 0.0475762i −0.730495 0.682918i $$-0.760710\pi$$
0.682918 + 0.730495i $$0.260710\pi$$
$$308$$ −2.04626 + 1.38919i −0.116597 + 0.0791563i
$$309$$ −0.884268 0.287316i −0.0503043 0.0163449i
$$310$$ 3.08029 + 26.2892i 0.174949 + 1.49313i
$$311$$ 21.7855 7.07853i 1.23534 0.401387i 0.382695 0.923875i $$-0.374996\pi$$
0.852647 + 0.522488i $$0.174996\pi$$
$$312$$ −0.622836 + 1.32110i −0.0352611 + 0.0747924i
$$313$$ −7.42212 14.5667i −0.419523 0.823360i −0.999959 0.00905407i $$-0.997118\pi$$
0.580436 0.814306i $$-0.302882\pi$$
$$314$$ −15.8100 26.7481i −0.892211 1.50948i
$$315$$ −0.151818 + 1.46830i −0.00855400 + 0.0827295i
$$316$$ 10.2595 1.29101i 0.577139 0.0726251i
$$317$$ −2.08040 13.1351i −0.116847 0.737742i −0.974645 0.223756i $$-0.928168\pi$$
0.857798 0.513986i $$-0.171832\pi$$
$$318$$ −2.61770 + 4.12262i −0.146793 + 0.231185i
$$319$$ −5.66761 4.11776i −0.317325 0.230550i
$$320$$ 15.5868 + 8.77793i 0.871328 + 0.490701i
$$321$$ 15.0678 10.9474i 0.841003 0.611025i
$$322$$ −0.335562 5.35433i −0.0187001 0.298385i
$$323$$ −0.271898 + 0.533630i −0.0151288 + 0.0296919i
$$324$$ 0.850680 + 1.81007i 0.0472600 + 0.100559i
$$325$$ 1.61807 2.01201i 0.0897543 0.111606i
$$326$$ 2.84541 0.635300i 0.157593 0.0351860i
$$327$$ 8.65525 + 4.41007i 0.478636 + 0.243877i
$$328$$ −24.3021 + 13.3372i −1.34186 + 0.736422i
$$329$$ −2.95842 4.07192i −0.163103 0.224492i
$$330$$ 3.67284 4.64776i 0.202183 0.255851i
$$331$$ −10.6400 + 14.6447i −0.584826 + 0.804944i −0.994214 0.107417i $$-0.965742\pi$$
0.409388 + 0.912360i $$0.365742\pi$$
$$332$$ 7.71226 21.3890i 0.423265 1.17388i
$$333$$ 0.257625 0.0408038i 0.0141177 0.00223603i
$$334$$ −15.9427 1.51093i −0.872347 0.0826746i
$$335$$ 0.454616 1.02574i 0.0248383 0.0560422i
$$336$$ 2.45421 + 0.974446i 0.133888 + 0.0531604i
$$337$$ −9.56642 + 4.87434i −0.521116 + 0.265522i −0.694703 0.719297i $$-0.744464\pi$$
0.173587 + 0.984819i $$0.444464\pi$$
$$338$$ −13.8779 + 11.4752i −0.754860 + 0.624166i
$$339$$ −2.88561 8.88101i −0.156725 0.482350i
$$340$$ −10.5610 13.8788i −0.572748 0.752686i
$$341$$ 4.84531 14.9123i 0.262388 0.807547i
$$342$$ 0.0799041 + 0.201958i 0.00432072 + 0.0109206i
$$343$$ −6.33168 6.33168i −0.341879 0.341879i
$$344$$ 0.155022 + 5.04998i 0.00835823 + 0.272277i
$$345$$ 4.62511 + 11.9883i 0.249007 + 0.645426i
$$346$$ −13.6702 12.0578i −0.734916 0.648233i
$$347$$ 3.88238 24.5124i 0.208417 1.31589i −0.632428 0.774619i $$-0.717942\pi$$
0.840845 0.541275i $$-0.182058\pi$$
$$348$$ −0.238565 + 7.47568i −0.0127884 + 0.400738i
$$349$$ 4.03089i 0.215768i −0.994163 0.107884i $$-0.965592\pi$$
0.994163 0.107884i $$-0.0344076\pi$$
$$350$$ −3.81342 2.69211i −0.203836 0.143899i
$$351$$ 0.516384i 0.0275625i
$$352$$ −6.21825 8.58056i −0.331434 0.457345i
$$353$$ 3.68545 23.2690i 0.196157 1.23848i −0.671381 0.741112i $$-0.734299\pi$$
0.867538 0.497372i $$-0.165701\pi$$
$$354$$ −12.8130 + 14.5264i −0.681004 + 0.772070i
$$355$$ 12.7055 0.687383i 0.674338 0.0364825i
$$356$$ −35.3835 6.76755i −1.87532 0.358680i
$$357$$ −1.82036 1.82036i −0.0963438 0.0963438i
$$358$$ 9.19405 3.63760i 0.485921 0.192253i
$$359$$ −9.50212 + 29.2445i −0.501503 + 1.54347i 0.305069 + 0.952330i $$0.401321\pi$$
−0.806571 + 0.591137i $$0.798679\pi$$
$$360$$ −6.30801 0.457139i −0.332461 0.0240934i
$$361$$ −5.86403 18.0476i −0.308633 0.949876i
$$362$$ −1.67665 2.02773i −0.0881229 0.106575i
$$363$$ 6.67440 3.40078i 0.350315 0.178495i
$$364$$ −0.466468 0.497221i −0.0244495 0.0260615i
$$365$$ 31.1147 18.0342i 1.62862 0.943955i
$$366$$ 0.348210 3.67416i 0.0182012 0.192051i
$$367$$ 16.4328 2.60269i 0.857783 0.135859i 0.287976 0.957638i $$-0.407018\pi$$
0.569807 + 0.821778i $$0.307018\pi$$
$$368$$ 22.8860 2.14095i 1.19301 0.111605i
$$369$$ 5.76087 7.92915i 0.299899 0.412775i
$$370$$ −0.286397 + 0.773519i −0.0148891 + 0.0402133i
$$371$$ −1.33990 1.84421i −0.0695642 0.0957469i
$$372$$ −16.0781 + 4.66265i −0.833609 + 0.241747i
$$373$$ 11.9791 + 6.10365i 0.620254 + 0.316035i 0.735730 0.677275i $$-0.236839\pi$$
−0.115476 + 0.993310i $$0.536839\pi$$
$$374$$ 2.25122 + 10.0829i 0.116408 + 0.521374i
$$375$$ 10.6505 + 3.40100i 0.549990 + 0.175627i
$$376$$ 17.0492 13.2049i 0.879246 0.680988i
$$377$$ 0.876721 1.72066i 0.0451534 0.0886185i
$$378$$ −0.931759 + 0.0583943i −0.0479245 + 0.00300348i
$$379$$ −20.6167 + 14.9789i −1.05901 + 0.769415i −0.973905 0.226957i $$-0.927122\pi$$
−0.0851045 + 0.996372i $$0.527122\pi$$
$$380$$ −0.680574 0.0923928i −0.0349127 0.00473965i
$$381$$ −1.66774 1.21168i −0.0854408 0.0620764i
$$382$$ −4.79232 3.04293i −0.245196 0.155690i
$$383$$ −3.55759 22.4617i −0.181784 1.14774i −0.894759 0.446550i $$-0.852652\pi$$
0.712975 0.701190i $$-0.247348\pi$$
$$384$$ −3.85046 + 10.6383i −0.196493 + 0.542885i
$$385$$ 1.38664 + 2.39239i 0.0706696 + 0.121927i
$$386$$ 12.7389 7.52956i 0.648391 0.383245i
$$387$$ −0.810954 1.59159i −0.0412231 0.0809049i
$$388$$ 21.4857 + 16.6827i 1.09077 + 0.846937i
$$389$$ 6.63915 2.15719i 0.336618 0.109374i −0.135830 0.990732i $$-0.543370\pi$$
0.472449 + 0.881358i $$0.343370\pi$$
$$390$$ 1.42381 + 0.799563i 0.0720972 + 0.0404875i
$$391$$ −21.3128 6.92496i −1.07784 0.350210i
$$392$$ 12.7194 13.5251i 0.642427 0.683118i
$$393$$ −6.29364 + 6.29364i −0.317472 + 0.317472i
$$394$$ −25.1446 10.8883i −1.26677 0.548543i
$$395$$ −0.624545 11.5440i −0.0314242 0.580841i
$$396$$ 3.28224 + 1.80650i 0.164939 + 0.0907802i
$$397$$ −13.2885 2.10468i −0.666928 0.105631i −0.186215 0.982509i $$-0.559622\pi$$
−0.480713 + 0.876878i $$0.659622\pi$$
$$398$$ −35.9631 9.24306i −1.80267 0.463313i
$$399$$ −0.101383 −0.00507550
$$400$$ 11.0277 16.6850i 0.551385 0.834251i
$$401$$ −8.16004 −0.407493 −0.203746 0.979024i $$-0.565312\pi$$
−0.203746 + 0.979024i $$0.565312\pi$$
$$402$$ 0.687261 + 0.176636i 0.0342775 + 0.00880983i
$$403$$ 4.26905 + 0.676151i 0.212656 + 0.0336815i
$$404$$ 15.5841 + 8.57731i 0.775340 + 0.426737i
$$405$$ 2.08619 0.804859i 0.103664 0.0399938i
$$406$$ −3.20389 1.38737i −0.159006 0.0688540i
$$407$$ 0.345504 0.345504i 0.0171260 0.0171260i
$$408$$ 7.55645 8.03508i 0.374100 0.397795i
$$409$$ 29.1233 + 9.46272i 1.44005 + 0.467901i 0.921914 0.387395i $$-0.126625\pi$$
0.518139 + 0.855297i $$0.326625\pi$$
$$410$$ 12.9427 + 28.1616i 0.639194 + 1.39080i
$$411$$ 3.38982 1.10142i 0.167208 0.0543290i
$$412$$ 1.46878 + 1.14044i 0.0723616 + 0.0561857i
$$413$$ −4.10485 8.05622i −0.201986 0.396421i
$$414$$ −6.99604 + 4.13515i −0.343836 + 0.203232i
$$415$$ −23.2404 10.3003i −1.14083 0.505622i
$$416$$ 2.06804 2.06303i 0.101394 0.101148i
$$417$$ 2.28443 + 14.4233i 0.111869 + 0.706314i
$$418$$ 0.343467 + 0.218088i 0.0167995 + 0.0106670i
$$419$$ −8.28642 6.02044i −0.404818 0.294118i 0.366683 0.930346i $$-0.380494\pi$$
−0.771501 + 0.636229i $$0.780494\pi$$
$$420$$ 1.28172 2.65952i 0.0625414 0.129771i
$$421$$ 3.46287 2.51593i 0.168770 0.122619i −0.500194 0.865913i $$-0.666738\pi$$
0.668964 + 0.743295i $$0.266738\pi$$
$$422$$ 31.1020 1.94919i 1.51402 0.0948853i
$$423$$ −3.46137 + 6.79333i −0.168298 + 0.330303i
$$424$$ 7.72176 5.98061i 0.375002 0.290444i
$$425$$ −16.3169 + 10.6749i −0.791488 + 0.517807i
$$426$$ 1.75358 + 7.85403i 0.0849614 + 0.380529i
$$427$$ 1.53499 + 0.782116i 0.0742833 + 0.0378492i
$$428$$ −35.7757 + 10.3750i −1.72928 + 0.501493i
$$429$$ −0.568581 0.782584i −0.0274513 0.0377835i
$$430$$ 5.64409 + 0.228382i 0.272182 + 0.0110136i
$$431$$ 8.79922 12.1111i 0.423844 0.583371i −0.542683 0.839938i $$-0.682591\pi$$
0.966526 + 0.256567i $$0.0825914\pi$$
$$432$$ −0.372567 3.98261i −0.0179252 0.191613i
$$433$$ 11.6158 1.83976i 0.558218 0.0884130i 0.129051 0.991638i $$-0.458807\pi$$
0.429167 + 0.903225i $$0.358807\pi$$
$$434$$ 0.737284 7.77950i 0.0353908 0.373428i
$$435$$ 8.31797 + 0.860055i 0.398816 + 0.0412365i
$$436$$ −13.2925 14.1689i −0.636596 0.678566i
$$437$$ −0.786336 + 0.400658i −0.0376156 + 0.0191661i
$$438$$ 14.4941 + 17.5290i 0.692554 + 0.837568i
$$439$$ −6.49959 20.0037i −0.310209 0.954724i −0.977682 0.210090i $$-0.932624\pi$$
0.667473 0.744634i $$-0.267376\pi$$
$$440$$ −10.0632 + 6.25283i −0.479744 + 0.298092i
$$441$$ −2.02845 + 6.24293i −0.0965929 + 0.297282i
$$442$$ −2.64814 + 1.04773i −0.125959 + 0.0498355i
$$443$$ 14.6462 + 14.6462i 0.695864 + 0.695864i 0.963516 0.267652i $$-0.0862477\pi$$
−0.267652 + 0.963516i $$0.586248\pi$$
$$444$$ −0.512384 0.0980003i −0.0243167 0.00465089i
$$445$$ −10.3587 + 38.9221i −0.491051 + 1.84509i
$$446$$ 19.9298 22.5949i 0.943705 1.06990i
$$447$$ 2.60427 16.4427i 0.123178 0.777714i
$$448$$ −3.95637 3.49826i −0.186921 0.165277i
$$449$$ 16.9769i 0.801188i 0.916256 + 0.400594i $$0.131196\pi$$
−0.916256 + 0.400594i $$0.868804\pi$$
$$450$$ −1.01103 + 6.99842i −0.0476604 + 0.329908i
$$451$$ 18.3599i 0.864532i
$$452$$ −0.595690 + 18.6666i −0.0280189 + 0.878002i
$$453$$ −0.614621 + 3.88057i −0.0288774 + 0.182325i
$$454$$ 22.1707 + 19.5557i 1.04052 + 0.917793i
$$455$$ −0.591569 + 0.480699i −0.0277332 + 0.0225355i
$$456$$ −0.0133281 0.434176i −0.000624148 0.0203322i
$$457$$ −9.33909 9.33909i −0.436864 0.436864i 0.454091 0.890955i $$-0.349964\pi$$
−0.890955 + 0.454091i $$0.849964\pi$$
$$458$$ 9.33819 + 23.6023i 0.436345 + 1.10286i
$$459$$ −1.20508 + 3.70885i −0.0562483 + 0.173114i
$$460$$ −0.569117 25.6927i −0.0265352 1.19793i
$$461$$ 9.65012 + 29.7000i 0.449451 + 1.38327i 0.877528 + 0.479526i $$0.159191\pi$$
−0.428077 + 0.903742i $$0.640809\pi$$
$$462$$ −1.34779 + 1.11444i −0.0627049 + 0.0518484i
$$463$$ −9.29083 + 4.73391i −0.431781 + 0.220004i −0.656353 0.754454i $$-0.727902\pi$$
0.224572 + 0.974458i $$0.427902\pi$$
$$464$$ 5.52026 13.9031i 0.256272 0.645437i
$$465$$ 3.92228 + 18.3008i 0.181891 + 0.848682i
$$466$$ 8.71386 + 0.825836i 0.403662 + 0.0382561i
$$467$$ −15.0045 + 2.37648i −0.694327 + 0.109971i −0.493616 0.869680i $$-0.664325\pi$$
−0.200711 + 0.979651i $$0.564325\pi$$
$$468$$ −0.350309 + 0.971542i −0.0161931 + 0.0449095i
$$469$$ −0.194695 + 0.267975i −0.00899019 + 0.0123739i
$$470$$ −13.3714 20.0626i −0.616778 0.925420i
$$471$$ −12.9140 17.7746i −0.595046 0.819011i
$$472$$ 33.9614 18.6382i 1.56320 0.857894i
$$473$$ −2.98147 1.51914i −0.137088 0.0698500i
$$474$$ 7.13604 1.59327i 0.327769 0.0731815i
$$475$$ −0.157114 + 0.751639i −0.00720891 + 0.0344876i
$$476$$ 2.18998 + 4.65980i 0.100377 + 0.213582i
$$477$$ −1.56769 + 3.07677i −0.0717797 + 0.140876i
$$478$$ 0.384988 + 6.14299i 0.0176089 + 0.280974i
$$479$$ 23.5993 17.1459i 1.07828 0.783416i 0.100897 0.994897i $$-0.467829\pi$$
0.977382 + 0.211481i $$0.0678286\pi$$
$$480$$ 11.5580 + 5.13936i 0.527547 + 0.234579i
$$481$$ 0.108968 + 0.0791697i 0.00496850 + 0.00360983i
$$482$$ 1.39573 2.19813i 0.0635736 0.100122i
$$483$$ −0.593436 3.74681i −0.0270023 0.170486i
$$484$$ −14.8645 + 1.87049i −0.675659 + 0.0850224i
$$485$$ 20.3119 22.6354i 0.922316 1.02782i
$$486$$ 0.719598 + 1.21745i 0.0326416 + 0.0552245i
$$487$$ 9.87340 + 19.3776i 0.447406 + 0.878084i 0.999032 + 0.0439926i $$0.0140078\pi$$
−0.551625 + 0.834092i $$0.685992\pi$$
$$488$$ −3.14764 + 6.67646i −0.142487 + 0.302229i
$$489$$ 1.96065 0.637054i 0.0886637 0.0288086i
$$490$$ −14.0726 15.2595i −0.635734 0.689352i
$$491$$ 31.7883 + 10.3287i 1.43459 + 0.466126i 0.920205 0.391436i $$-0.128021\pi$$
0.514382 + 0.857561i $$0.328021\pi$$
$$492$$ −16.2177 + 11.0101i −0.731152 + 0.496372i
$$493$$ −10.3124 + 10.3124i −0.464447 + 0.464447i
$$494$$ −0.0445666 + 0.102919i −0.00200515 + 0.00463053i
$$495$$ 2.27543 3.51684i 0.102273 0.158070i
$$496$$ 33.4129 + 2.13472i 1.50028 + 0.0958519i
$$497$$ −3.71023 0.587643i −0.166427 0.0263594i
$$498$$ 4.00208 15.5714i 0.179338 0.697771i
$$499$$ −34.6232 −1.54995 −0.774973 0.631994i $$-0.782237\pi$$
−0.774973 + 0.631994i $$0.782237\pi$$
$$500$$ −17.7310 13.6239i −0.792954 0.609281i
$$501$$ −11.3237 −0.505906
$$502$$ 9.91733 38.5866i 0.442632 1.72220i
$$503$$ −6.32790 1.00224i −0.282147 0.0446877i 0.0137570 0.999905i $$-0.495621\pi$$
−0.295904 + 0.955218i $$0.595621\pi$$
$$504$$ 1.79266 + 0.522230i 0.0798512 + 0.0232620i
$$505$$ 10.8038 16.6980i 0.480761 0.743052i
$$506$$ −6.04941 + 13.9701i −0.268929 + 0.621045i
$$507$$ −9.00384 + 9.00384i −0.399874 + 0.399874i
$$508$$ 2.31574 + 3.41107i 0.102745 + 0.151342i
$$509$$ 10.9090 + 3.54457i 0.483535 + 0.157110i 0.540633 0.841258i $$-0.318185\pi$$
−0.0570980 + 0.998369i $$0.518185\pi$$
$$510$$ −8.36035 9.06546i −0.370202 0.401425i
$$511$$ −10.0977 + 3.28093i −0.446694 + 0.145140i
$$512$$ 14.4613 17.4032i 0.639105 0.769119i
$$513$$ 0.0697224 + 0.136838i 0.00307832 + 0.00604154i
$$514$$ 7.65512 + 12.9513i 0.337653 + 0.571256i
$$515$$ 1.38854 1.54737i 0.0611863 0.0681855i
$$516$$ 0.446040 + 3.54461i 0.0196358 + 0.156043i
$$517$$ 2.23427 + 14.1066i 0.0982629 + 0.620407i
$$518$$ 0.130531 0.205573i 0.00573519 0.00903237i
$$519$$ −10.4276 7.57612i −0.457722 0.332555i
$$520$$ −2.13638 2.47022i −0.0936865 0.108326i
$$521$$ −16.5330 + 12.0119i −0.724322 + 0.526251i −0.887762 0.460303i $$-0.847741\pi$$
0.163440 + 0.986553i $$0.447741\pi$$
$$522$$ 0.330805 + 5.27844i 0.0144789 + 0.231031i
$$523$$ 3.52578 6.91973i 0.154172 0.302579i −0.800983 0.598688i $$-0.795689\pi$$
0.955154 + 0.296109i $$0.0956891\pi$$
$$524$$ 16.1106 7.57153i 0.703795 0.330764i
$$525$$ −2.86407 1.64070i −0.124998 0.0716060i
$$526$$ −15.4226 + 3.44343i −0.672457 + 0.150141i
$$527$$ −29.0839 14.8190i −1.26691 0.645525i
$$528$$ −4.94981 5.62545i −0.215413 0.244816i
$$529$$ −5.89079 8.10797i −0.256121 0.352521i
$$530$$ −6.05606 9.08657i −0.263059 0.394696i
$$531$$ −8.05062 + 11.0807i −0.349367 + 0.480862i
$$532$$ 0.190745 + 0.0687772i 0.00826986 + 0.00298187i
$$533$$ 4.99875 0.791725i 0.216520 0.0342934i
$$534$$ −25.3598 2.40341i −1.09742 0.104006i
$$535$$ 8.72755 + 40.7217i 0.377325 + 1.76055i
$$536$$ −1.17321 0.798560i −0.0506748 0.0344925i
$$537$$ 6.22949 3.17409i 0.268822 0.136972i
$$538$$ −11.1695 + 9.23566i −0.481552 + 0.398177i
$$539$$ 3.79984 + 11.6947i 0.163671 + 0.503726i
$$540$$ −4.47104 + 0.0990376i −0.192403 + 0.00426190i
$$541$$ −12.2423 + 37.6779i −0.526338 + 1.61990i 0.235317 + 0.971919i $$0.424387\pi$$
−0.761655 + 0.647983i $$0.775613\pi$$
$$542$$ −1.24182 3.13871i −0.0533409 0.134819i
$$543$$ −1.31556 1.31556i −0.0564563 0.0564563i
$$544$$ −19.6679 + 9.99124i −0.843253 + 0.428371i
$$545$$ −16.8574 + 13.6981i −0.722093 + 0.586761i
$$546$$ −0.361543 0.318899i −0.0154726 0.0136476i
$$547$$ 0.879288 5.55161i 0.0375956 0.237370i −0.961734 0.273986i $$-0.911658\pi$$
0.999329 + 0.0366162i $$0.0116579\pi$$
$$548$$ −7.12491 0.227371i −0.304361 0.00971280i
$$549$$ 2.60966i 0.111378i
$$550$$ 6.17360 + 11.7194i 0.263243 + 0.499716i
$$551$$ 0.574338i 0.0244676i
$$552$$ 15.9678 3.03398i 0.679635 0.129135i
$$553$$ −0.533922 + 3.37105i −0.0227047 + 0.143352i
$$554$$ −2.16106 + 2.45005i −0.0918148 + 0.104092i
$$555$$ −0.150004 + 0.563628i −0.00636731 + 0.0239247i
$$556$$ 5.48663 28.6863i 0.232685 1.21657i
$$557$$ −14.0532 14.0532i −0.595452 0.595452i 0.343647 0.939099i $$-0.388338\pi$$
−0.939099 + 0.343647i $$0.888338\pi$$
$$558$$ −11.0071 + 4.35494i −0.465968 + 0.184359i
$$559$$ 0.285039 0.877261i 0.0120559 0.0371042i
$$560$$ −4.21565 + 4.13421i −0.178144 + 0.174702i
$$561$$ 2.25744 + 6.94768i 0.0953092 + 0.293331i
$$562$$ 14.9701 + 18.1047i 0.631475 + 0.763699i
$$563$$ 30.6565 15.6203i 1.29202 0.658316i 0.333340 0.942807i $$-0.391824\pi$$
0.958679 + 0.284490i $$0.0918243\pi$$
$$564$$ 11.1209 10.4330i 0.468273 0.439310i
$$565$$ 20.7698 + 2.14754i 0.873791 + 0.0903475i
$$566$$ 3.14860 33.2227i 0.132346 1.39645i
$$567$$ −0.652018 + 0.103270i −0.0273822 + 0.00433691i
$$568$$ 2.02884 15.9664i 0.0851283 0.669937i
$$569$$ 16.6510 22.9181i 0.698045 0.960777i −0.301927 0.953331i $$-0.597630\pi$$
0.999972 0.00744590i $$-0.00237013\pi$$
$$570$$ −0.485256 0.0196354i −0.0203251 0.000822435i
$$571$$ 5.23495 + 7.20530i 0.219076 + 0.301532i 0.904383 0.426722i $$-0.140332\pi$$
−0.685307 + 0.728255i $$0.740332\pi$$
$$572$$ 0.538850 + 1.85810i 0.0225304 + 0.0776910i
$$573$$ −3.57657 1.82236i −0.149414 0.0761300i
$$574$$ −1.99386 8.93018i −0.0832219 0.372738i
$$575$$ −28.6979 1.40682i −1.19679 0.0586685i
$$576$$ −2.00080 + 7.74576i −0.0833666 + 0.322740i
$$577$$ 2.56439 5.03290i 0.106757 0.209522i −0.831448 0.555603i $$-0.812488\pi$$
0.938205 + 0.346080i $$0.112488\pi$$
$$578$$ −2.52959 + 0.158532i −0.105217 + 0.00659406i
$$579$$ 8.46521 6.15033i 0.351802 0.255599i
$$580$$ −15.0662 7.26095i −0.625592 0.301495i
$$581$$ 6.07156 + 4.41124i 0.251891 + 0.183009i
$$582$$ 16.2379 + 10.3104i 0.673083 + 0.427381i
$$583$$ 1.01192 + 6.38902i 0.0419095 + 0.264606i
$$584$$ −15.3782 42.8122i −0.636353 1.77158i
$$585$$ 1.05564 + 0.467865i 0.0436451 + 0.0193438i
$$586$$ 32.1472 19.0013i 1.32799 0.784934i
$$587$$ 1.15370 + 2.26427i 0.0476185 + 0.0934565i 0.913590 0.406637i $$-0.133299\pi$$
−0.865971 + 0.500094i $$0.833299\pi$$
$$588$$ 8.05153 10.3696i 0.332040 0.427634i
$$589$$ −1.22256 + 0.397234i −0.0503747 + 0.0163677i
$$590$$ −18.0870 39.3549i −0.744629 1.62022i
$$591$$ −18.4270 5.98730i −0.757985 0.246284i
$$592$$ 0.897534 + 0.531977i 0.0368884 + 0.0218641i
$$593$$ −10.2988 + 10.2988i −0.422922 + 0.422922i −0.886209 0.463287i $$-0.846670\pi$$
0.463287 + 0.886209i $$0.346670\pi$$
$$594$$ 2.43106 + 1.05272i 0.0997478 + 0.0431935i
$$595$$ 5.37066 2.07202i 0.220176 0.0849443i
$$596$$ −16.0543 + 29.1692i −0.657611 + 1.19482i
$$597$$ −25.9330 4.10738i −1.06137 0.168104i
$$598$$ −4.06443 1.04462i −0.166207 0.0427177i
$$599$$ 33.7978 1.38094 0.690470 0.723361i $$-0.257404\pi$$
0.690470 + 0.723361i $$0.257404\pi$$
$$600$$ 6.64983 12.4812i 0.271478 0.509542i
$$601$$ −1.37594 −0.0561258 −0.0280629 0.999606i $$-0.508934\pi$$
−0.0280629 + 0.999606i $$0.508934\pi$$
$$602$$ −1.61515 0.415119i −0.0658288 0.0169190i
$$603$$ 0.495584 + 0.0784927i 0.0201817 + 0.00319647i
$$604$$ 3.78890 6.88407i 0.154168 0.280109i
$$605$$ 0.904876 + 16.7256i 0.0367885 + 0.679993i
$$606$$ 11.5427 + 4.99832i 0.468892 + 0.203043i
$$607$$ 1.92999 1.92999i 0.0783357 0.0783357i −0.666853 0.745189i $$-0.732359\pi$$
0.745189 + 0.666853i $$0.232359\pi$$
$$608$$ −0.269465 + 0.825915i −0.0109282 + 0.0334953i
$$609$$ −2.34794 0.762893i −0.0951435 0.0309140i
$$610$$ 7.19552 + 4.04077i 0.291338 + 0.163606i
$$611$$ −3.74439 + 1.21663i −0.151482 + 0.0492194i
$$612$$ 4.78332 6.16044i 0.193354 0.249021i
$$613$$ −17.2610 33.8767i −0.697166 1.36827i −0.919420 0.393277i $$-0.871341\pi$$
0.222254 0.974989i $$-0.428659\pi$$
$$614$$ 1.43524 0.848328i 0.0579215 0.0342357i
$$615$$ 10.9899 + 18.9610i 0.443154 + 0.764580i
$$616$$ 3.29180 1.18241i 0.132630 0.0476408i
$$617$$ −1.12869 7.12627i −0.0454393 0.286893i 0.954496 0.298222i $$-0.0963936\pi$$
−0.999936 + 0.0113295i $$0.996394\pi$$
$$618$$ 1.11004 + 0.704828i 0.0446522 + 0.0283523i
$$619$$ 31.7345 + 23.0565i 1.27552 + 0.926718i 0.999408 0.0344083i $$-0.0109547\pi$$
0.276110 + 0.961126i $$0.410955\pi$$
$$620$$ 5.03560 37.0926i 0.202234 1.48968i
$$621$$ −4.64900 + 3.37769i −0.186558 + 0.135542i
$$622$$ −32.3314 + 2.02624i −1.29637 + 0.0812450i
$$623$$ 5.39832 10.5948i 0.216279 0.424472i
$$624$$ 1.31817 1.59024i 0.0527689 0.0636607i
$$625$$ −16.6024 + 18.6912i −0.664096 + 0.747648i
$$626$$ 5.03809 + 22.5648i 0.201363 + 0.901872i
$$627$$ 0.256335 + 0.130609i 0.0102370 + 0.00521602i
$$628$$ 12.2387 + 42.2024i 0.488379 + 1.68406i
$$629$$ −0.597888 0.822922i −0.0238393 0.0328120i
$$630$$ 0.724836 1.95769i 0.0288782 0.0779961i
$$631$$ 0.281835 0.387913i 0.0112197 0.0154426i −0.803370 0.595480i $$-0.796962\pi$$
0.814590 + 0.580037i $$0.196962\pi$$
$$632$$ −14.5068 1.84337i −0.577051 0.0733253i
$$633$$ 21.7643 3.44712i 0.865053 0.137011i
$$634$$ −1.77448 + 18.7235i −0.0704736 + 0.743606i
$$635$$ 3.98806 2.31149i 0.158261 0.0917289i
$$636$$ 5.03675 4.72523i 0.199720 0.187368i
$$637$$ −3.02020 + 1.53887i −0.119665 + 0.0609723i
$$638$$ 6.31332 + 7.63527i 0.249947 + 0.302283i
$$639$$ 1.75842 + 5.41187i 0.0695622 + 0.214090i
$$640$$ −18.2591 17.5102i −0.721753 0.692150i
$$641$$ −12.7819 + 39.3385i −0.504853 + 1.55378i 0.296164 + 0.955137i $$0.404292\pi$$
−0.801017 + 0.598641i $$0.795708\pi$$
$$642$$ −24.4922 + 9.69027i −0.966630 + 0.382445i
$$643$$ 3.73251 + 3.73251i 0.147196 + 0.147196i 0.776864 0.629668i $$-0.216809\pi$$
−0.629668 + 0.776864i $$0.716809\pi$$
$$644$$ −1.42528 + 7.45195i −0.0561640 + 0.293648i
$$645$$ 3.98841 0.215778i 0.157043 0.00849625i
$$646$$ 0.560273 0.635194i 0.0220437 0.0249914i
$$647$$ −6.75154 + 42.6275i −0.265430 + 1.67586i 0.390162 + 0.920746i $$0.372419\pi$$
−0.655593 + 0.755115i $$0.727581\pi$$
$$648$$ −0.527972 2.77871i −0.0207407 0.109158i
$$649$$ 25.6573i 1.00714i
$$650$$ −2.92456 + 2.18623i −0.114711 + 0.0857508i
$$651$$ 5.52558i 0.216565i
$$652$$ −4.12100 0.131510i −0.161391 0.00515032i
$$653$$ 5.04111 31.8283i 0.197274 1.24554i −0.667970 0.744188i $$-0.732837\pi$$
0.865244 0.501351i $$-0.167163\pi$$
$$654$$ −10.3026 9.08740i −0.402863 0.355345i
$$655$$ −7.16369 18.5683i −0.279909 0.725523i
$$656$$ 37.9817 9.71274i 1.48293 0.379219i
$$657$$ 11.3726 + 11.3726i 0.443687 + 0.443687i
$$658$$ 2.61870 + 6.61876i 0.102087 + 0.258026i
$$659$$ −8.49446 + 26.1432i −0.330897 + 1.01840i 0.637811 + 0.770193i $$0.279840\pi$$
−0.968708 + 0.248203i $$0.920160\pi$$
$$660$$ −6.66685 + 5.07307i −0.259507 + 0.197469i
$$661$$ 0.735294 + 2.26300i 0.0285996 + 0.0880205i 0.964337 0.264676i $$-0.0852649\pi$$
−0.935738 + 0.352696i $$0.885265\pi$$
$$662$$ 19.7290 16.3131i 0.766788 0.634029i
$$663$$ −1.79427 + 0.914225i −0.0696835 + 0.0355055i
$$664$$ −18.0931 + 26.5816i −0.702149 + 1.03156i
$$665$$ 0.0918571 0.207256i 0.00356207 0.00803703i
$$666$$ −0.367232 0.0348036i −0.0142300 0.00134861i
$$667$$ −21.2258 + 3.36183i −0.821865 + 0.130171i
$$668$$ 21.3048 + 7.68189i 0.824308 + 0.297221i
$$669$$ 12.5222 17.2354i 0.484137 0.666358i
$$670$$ −0.983781 + 1.24492i −0.0380068 + 0.0480953i
$$671$$ −2.87345 3.95496i −0.110928 0.152680i
$$672$$ −3.01849 2.19866i −0.116441 0.0848151i
$$673$$ 18.8496 + 9.60435i 0.726598 + 0.370220i 0.777837 0.628466i $$-0.216317\pi$$
−0.0512386 + 0.998686i $$0.516317\pi$$
$$674$$ 14.8190 3.30867i 0.570808 0.127445i
$$675$$ −0.244815 + 4.99400i −0.00942292 + 0.192219i
$$676$$ 23.0482 10.8320i 0.886470 0.416616i
$$677$$ −19.3407 + 37.9583i −0.743324 + 1.45886i 0.140028 + 0.990148i $$0.455281\pi$$
−0.883353 + 0.468709i $$0.844719\pi$$
$$678$$ 0.826012 + 13.1801i 0.0317228 + 0.506180i
$$679$$ −7.26387 + 5.27751i −0.278762 + 0.202532i
$$680$$ 9.57952 + 22.7276i 0.367358 + 0.871565i
$$681$$ 16.9118 + 12.2871i 0.648061 + 0.470844i
$$682$$ −11.8862 + 18.7197i −0.455147 + 0.716813i
$$683$$ 1.06653 + 6.73380i 0.0408096 + 0.257662i 0.999655 0.0262671i $$-0.00836204\pi$$
−0.958845 + 0.283929i $$0.908362\pi$$
$$684$$ −0.0383487 0.304750i −0.00146630 0.0116524i
$$685$$ −0.819700 + 7.92768i −0.0313191 + 0.302901i
$$686$$ 6.44353 + 10.9015i 0.246015 + 0.416220i
$$687$$ 8.14828 + 15.9919i 0.310876 + 0.610129i
$$688$$ 1.56543 6.97152i 0.0596814 0.265787i
$$689$$ −1.69587 + 0.551022i −0.0646076 + 0.0209923i
$$690$$ −2.11473 18.0485i −0.0805065 0.687094i
$$691$$ 16.0044 + 5.20015i 0.608836 + 0.197823i 0.597177 0.802109i $$-0.296289\pi$$
0.0116588 + 0.999932i $$0.496289\pi$$
$$692$$ 14.4793 + 21.3279i 0.550422 + 0.810767i
$$693$$ −0.874430 + 0.874430i −0.0332169 + 0.0332169i
$$694$$ −13.9469 + 32.2079i −0.529416 + 1.22259i
$$695$$ −31.5552 8.39809i −1.19696 0.318558i
$$696$$ 2.95845 10.1554i 0.112140 0.384941i
$$697$$ −37.7505 5.97908i −1.42990 0.226474i
$$698$$ −1.41901 + 5.52110i −0.0537101 + 0.208977i
$$699$$ 6.18924 0.234098
$$700$$ 4.27553 + 5.02982i 0.161600 + 0.190109i
$$701$$ 1.14847 0.0433772 0.0216886 0.999765i $$-0.493096\pi$$
0.0216886 + 0.999765i $$0.493096\pi$$
$$702$$ −0.181784 + 0.707290i −0.00686100 + 0.0266950i
$$703$$ −0.0395652 0.00626651i −0.00149223 0.000236346i
$$704$$ 5.49648 + 13.9418i 0.207156 + 0.525451i
$$705$$ −10.7513 13.2311i −0.404919 0.498310i
$$706$$ −13.2394 + 30.5741i −0.498272 + 1.15067i
$$707$$ −4.15181 + 4.15181i −0.156145 + 0.156145i
$$708$$ 22.6637 15.3862i 0.851755 0.578248i
$$709$$ 4.78724 + 1.55547i 0.179789 + 0.0584168i 0.397528 0.917590i $$-0.369868\pi$$
−0.217739 + 0.976007i $$0.569868\pi$$
$$710$$ −17.6447 3.53125i −0.662193 0.132525i
$$711$$ 4.91713 1.59767i 0.184407 0.0599174i
$$712$$ 46.0822 + 21.7257i 1.72701 + 0.814203i
$$713$$ −21.8367 42.8569i −0.817791 1.60500i
$$714$$ 1.85252 + 3.13418i 0.0693288 + 0.117294i
$$715$$ 2.11498 0.453287i 0.0790958 0.0169520i
$$716$$ −13.8736 + 1.74581i −0.518482 + 0.0652439i
$$717$$ 0.680846 + 4.29869i 0.0254266 + 0.160538i
$$718$$ 23.3101 36.7111i 0.869924 1.37005i
$$719$$ −2.05400 1.49232i −0.0766011 0.0556540i 0.548826 0.835937i $$-0.315075\pi$$
−0.625427 + 0.780283i $$0.715075\pi$$
$$720$$ 8.47914 + 2.84677i 0.315999 + 0.106093i
$$721$$ −0.496564 + 0.360775i −0.0184930 + 0.0134360i
$$722$$ 1.67859 + 26.7842i 0.0624707 + 0.996803i
$$723$$ 0.835876 1.64050i 0.0310866 0.0610108i
$$724$$ 1.58268 + 3.36761i 0.0588199 + 0.125156i
$$725$$ −9.29461 + 16.2250i −0.345193 + 0.602583i
$$726$$ −10.3391 + 2.30843i −0.383720 + 0.0856738i
$$727$$ 39.3024 + 20.0256i 1.45764 + 0.742707i 0.989981 0.141199i $$-0.0450959\pi$$
0.467664 + 0.883907i $$0.345096\pi$$
$$728$$ 0.463882 + 0.845254i 0.0171926 + 0.0313272i
$$729$$ 0.587785 + 0.809017i 0.0217698 + 0.0299636i
$$730$$ −48.9664 + 13.7480i −1.81233 + 0.508837i
$$731$$ −4.09450 + 5.63560i −0.151441 + 0.208440i
$$732$$ −1.77037 + 4.90991i −0.0654346 + 0.181475i
$$733$$ −25.8356 + 4.09196i −0.954260 + 0.151140i −0.614100 0.789228i $$-0.710481\pi$$
−0.340159 + 0.940368i $$0.610481\pi$$
$$734$$ −23.4241 2.21997i −0.864601 0.0819406i
$$735$$ −10.9245 9.80307i −0.402955 0.361592i
$$736$$ −32.1006 5.12417i −1.18324 0.188879i
$$737$$ 0.837487 0.426721i 0.0308492 0.0157185i
$$738$$ −10.6820 + 8.83253i −0.393209 + 0.325130i
$$739$$ 0.301873 + 0.929069i 0.0111046 + 0.0341764i 0.956455 0.291879i $$-0.0942804\pi$$
−0.945351 + 0.326055i $$0.894280\pi$$
$$740$$ 0.664581 0.958666i 0.0244305 0.0352413i
$$741$$ −0.0245065 + 0.0754232i −0.000900268 + 0.00277074i
$$742$$ 1.18603 + 2.99771i 0.0435407 + 0.110049i
$$743$$ −26.4861 26.4861i −0.971681 0.971681i 0.0279291 0.999610i $$-0.491109\pi$$
−0.999610 + 0.0279291i $$0.991109\pi$$
$$744$$ 23.6635 0.726411i 0.867546 0.0266315i
$$745$$ 31.2540 + 20.2216i 1.14506 + 0.740863i
$$746$$ −14.2591 12.5772i −0.522061 0.460484i
$$747$$ 1.77842 11.2285i 0.0650691 0.410830i
$$748$$ 0.466013 14.6030i 0.0170391 0.533939i
$$749$$ 12.2951i 0.449253i
$$750$$ −13.3907 8.40768i −0.488959 0.307005i
$$751$$ 41.0628i 1.49840i −0.662343 0.749201i $$-0.730438\pi$$
0.662343 0.749201i $$-0.269562\pi$$
$$752$$ −28.0008 + 12.0848i −1.02108 + 0.440686i
$$753$$ 4.40701 27.8247i 0.160600 1.01399i
$$754$$ −1.80657 + 2.04815i −0.0657915 + 0.0745893i
$$755$$ −7.37611 4.77241i −0.268444 0.173686i
$$756$$ 1.29679 + 0.248027i 0.0471636 + 0.00902067i
$$757$$ −21.5446 21.5446i −0.783052 0.783052i 0.197292 0.980345i $$-0.436785\pi$$
−0.980345 + 0.197292i $$0.936785\pi$$
$$758$$ 33.5117 13.2588i 1.21720 0.481582i
$$759$$ −3.32648 + 10.2378i −0.120743 + 0.371610i
$$760$$ 0.899655 + 0.366135i 0.0326339 + 0.0132811i
$$761$$ 8.21601 + 25.2863i 0.297830 + 0.916627i 0.982256 + 0.187544i $$0.0600529\pi$$
−0.684426 + 0.729082i $$0.739947\pi$$
$$762$$ 1.85774 + 2.24674i 0.0672990 + 0.0813907i
$$763$$ 5.71373 2.91129i 0.206851 0.105396i
$$764$$ 5.49282 + 5.85495i 0.198723 + 0.211825i
$$765$$ −6.49009 5.82389i −0.234650 0.210563i
$$766$$ −3.03445 + 32.0182i −0.109639 + 1.15686i
$$767$$ −6.98559 + 1.10641i −0.252235 + 0.0399501i
$$768$$ 9.01901 13.2158i 0.325445 0.476884i
$$769$$ 15.9264 21.9208i 0.574320 0.790484i −0.418738 0.908107i $$-0.637528\pi$$
0.993058 + 0.117623i $$0.0375275\pi$$
$$770$$ −1.05708 3.76499i −0.0380944 0.135681i
$$771$$ 6.25289 + 8.60636i 0.225192 + 0.309951i
$$772$$ −20.0990 + 5.82873i −0.723380 + 0.209781i
$$773$$ 43.9863 + 22.4122i 1.58208 + 0.806109i 0.999975