# Properties

 Label 300.2.w.a.67.20 Level $300$ Weight $2$ Character 300.67 Analytic conductor $2.396$ Analytic rank $0$ Dimension $240$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$300 = 2^{2} \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 300.w (of order $$20$$, degree $$8$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.39551206064$$ Analytic rank: $$0$$ Dimension: $$240$$ Relative dimension: $$30$$ over $$\Q(\zeta_{20})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

## Embedding invariants

 Embedding label 67.20 Character $$\chi$$ $$=$$ 300.67 Dual form 300.2.w.a.103.20

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.611319 - 1.27526i) q^{2} +(0.987688 + 0.156434i) q^{3} +(-1.25258 - 1.55918i) q^{4} +(-0.726283 + 2.11483i) q^{5} +(0.803287 - 1.16393i) q^{6} +(3.39156 - 3.39156i) q^{7} +(-2.75409 + 0.644208i) q^{8} +(0.951057 + 0.309017i) q^{9} +O(q^{10})$$ $$q+(0.611319 - 1.27526i) q^{2} +(0.987688 + 0.156434i) q^{3} +(-1.25258 - 1.55918i) q^{4} +(-0.726283 + 2.11483i) q^{5} +(0.803287 - 1.16393i) q^{6} +(3.39156 - 3.39156i) q^{7} +(-2.75409 + 0.644208i) q^{8} +(0.951057 + 0.309017i) q^{9} +(2.25297 + 2.21904i) q^{10} +(2.54925 - 0.828300i) q^{11} +(-0.993248 - 1.73593i) q^{12} +(-1.36403 - 2.67705i) q^{13} +(-2.25180 - 6.39845i) q^{14} +(-1.04817 + 1.97518i) q^{15} +(-0.862092 + 3.90600i) q^{16} +(0.0551663 + 0.348307i) q^{17} +(0.975476 - 1.02394i) q^{18} +(0.0301061 + 0.0218734i) q^{19} +(4.20713 - 1.51659i) q^{20} +(3.88036 - 2.81925i) q^{21} +(0.502103 - 3.75731i) q^{22} +(-0.826275 + 1.62166i) q^{23} +(-2.82096 + 0.205443i) q^{24} +(-3.94503 - 3.07193i) q^{25} +(-4.24780 + 0.102957i) q^{26} +(0.891007 + 0.453990i) q^{27} +(-9.53626 - 1.03986i) q^{28} +(3.43571 + 4.72885i) q^{29} +(1.87810 + 2.54416i) q^{30} +(-3.91117 + 5.38327i) q^{31} +(4.45415 + 3.48720i) q^{32} +(2.64744 - 0.419313i) q^{33} +(0.477906 + 0.142575i) q^{34} +(4.70935 + 9.63581i) q^{35} +(-0.709460 - 1.86994i) q^{36} +(-8.36414 + 4.26174i) q^{37} +(0.0462987 - 0.0250216i) q^{38} +(-0.928450 - 2.85748i) q^{39} +(0.637856 - 6.29231i) q^{40} +(-2.14293 + 6.59526i) q^{41} +(-1.22314 - 6.67193i) q^{42} +(3.96315 + 3.96315i) q^{43} +(-4.48460 - 2.93723i) q^{44} +(-1.34426 + 1.78689i) q^{45} +(1.56292 + 2.04506i) q^{46} +(1.79499 - 11.3331i) q^{47} +(-1.46251 + 3.72304i) q^{48} -16.0054i q^{49} +(-6.32918 + 3.15300i) q^{50} +0.352648i q^{51} +(-2.46546 + 5.47999i) q^{52} +(-0.934134 + 5.89789i) q^{53} +(1.12365 - 0.858733i) q^{54} +(-0.0997595 + 5.99281i) q^{55} +(-7.15578 + 11.5255i) q^{56} +(0.0263137 + 0.0263137i) q^{57} +(8.13084 - 1.49059i) q^{58} +(-3.53381 + 10.8759i) q^{59} +(4.39258 - 0.839774i) q^{60} +(-1.26478 - 3.89259i) q^{61} +(4.47410 + 8.27866i) q^{62} +(4.27362 - 2.17752i) q^{63} +(7.16999 - 3.54841i) q^{64} +(6.65219 - 0.940388i) q^{65} +(1.08369 - 3.63250i) q^{66} +(8.89404 - 1.40868i) q^{67} +(0.473973 - 0.522296i) q^{68} +(-1.06979 + 1.47243i) q^{69} +(15.1671 - 0.115090i) q^{70} +(-9.59181 - 13.2020i) q^{71} +(-2.81836 - 0.238382i) q^{72} +(4.09605 + 2.08704i) q^{73} +(0.321677 + 13.2717i) q^{74} +(-3.41590 - 3.65125i) q^{75} +(-0.00360574 - 0.0743391i) q^{76} +(5.83669 - 11.4552i) q^{77} +(-4.21161 - 0.562813i) q^{78} +(-1.31184 + 0.953110i) q^{79} +(-7.63440 - 4.66004i) q^{80} +(0.809017 + 0.587785i) q^{81} +(7.10066 + 6.76460i) q^{82} +(0.977173 + 6.16963i) q^{83} +(-9.25618 - 2.51886i) q^{84} +(-0.776676 - 0.136302i) q^{85} +(7.47680 - 2.63130i) q^{86} +(2.65366 + 5.20810i) q^{87} +(-6.48725 + 3.92346i) q^{88} +(-13.2764 + 4.31376i) q^{89} +(1.45698 + 2.80664i) q^{90} +(-13.7056 - 4.45321i) q^{91} +(3.56343 - 0.742940i) q^{92} +(-4.70515 + 4.70515i) q^{93} +(-13.3554 - 9.21725i) q^{94} +(-0.0681241 + 0.0477831i) q^{95} +(3.85379 + 4.14105i) q^{96} +(8.89748 + 1.40922i) q^{97} +(-20.4110 - 9.78438i) q^{98} +2.68044 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$240q + 12q^{8} + O(q^{10})$$ $$240q + 12q^{8} + 8q^{10} + 8q^{12} + 4q^{13} + 20q^{17} - 20q^{20} - 12q^{22} + 20q^{25} + 4q^{28} - 8q^{30} - 20q^{32} - 8q^{33} - 4q^{37} - 76q^{38} - 92q^{40} - 20q^{42} - 140q^{44} - 4q^{45} - 16q^{48} - 164q^{50} - 172q^{52} - 4q^{53} - 120q^{58} + 20q^{60} - 44q^{62} - 60q^{64} - 20q^{65} + 16q^{68} - 44q^{70} + 12q^{72} - 44q^{73} - 48q^{77} + 24q^{78} - 4q^{80} + 60q^{81} + 24q^{82} + 80q^{84} - 64q^{85} + 60q^{88} - 260q^{89} + 48q^{90} + 144q^{92} - 64q^{93} + 40q^{94} - 20q^{96} - 180q^{97} + 256q^{98} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/300\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$151$$ $$277$$ $$\chi(n)$$ $$1$$ $$-1$$ $$e\left(\frac{13}{20}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.611319 1.27526i 0.432268 0.901745i
$$3$$ 0.987688 + 0.156434i 0.570242 + 0.0903175i
$$4$$ −1.25258 1.55918i −0.626289 0.779591i
$$5$$ −0.726283 + 2.11483i −0.324804 + 0.945781i
$$6$$ 0.803287 1.16393i 0.327941 0.475172i
$$7$$ 3.39156 3.39156i 1.28189 1.28189i 0.342298 0.939591i $$-0.388795\pi$$
0.939591 0.342298i $$-0.111205\pi$$
$$8$$ −2.75409 + 0.644208i −0.973717 + 0.227762i
$$9$$ 0.951057 + 0.309017i 0.317019 + 0.103006i
$$10$$ 2.25297 + 2.21904i 0.712452 + 0.701721i
$$11$$ 2.54925 0.828300i 0.768627 0.249742i 0.101650 0.994820i $$-0.467588\pi$$
0.666977 + 0.745078i $$0.267588\pi$$
$$12$$ −0.993248 1.73593i −0.286726 0.501120i
$$13$$ −1.36403 2.67705i −0.378313 0.742481i 0.620827 0.783948i $$-0.286797\pi$$
−0.999140 + 0.0414664i $$0.986797\pi$$
$$14$$ −2.25180 6.39845i −0.601819 1.71006i
$$15$$ −1.04817 + 1.97518i −0.270637 + 0.509989i
$$16$$ −0.862092 + 3.90600i −0.215523 + 0.976499i
$$17$$ 0.0551663 + 0.348307i 0.0133798 + 0.0844767i 0.993475 0.114053i $$-0.0363834\pi$$
−0.980095 + 0.198530i $$0.936383\pi$$
$$18$$ 0.975476 1.02394i 0.229922 0.241344i
$$19$$ 0.0301061 + 0.0218734i 0.00690682 + 0.00501810i 0.591233 0.806501i $$-0.298641\pi$$
−0.584326 + 0.811519i $$0.698641\pi$$
$$20$$ 4.20713 1.51659i 0.940743 0.339119i
$$21$$ 3.88036 2.81925i 0.846765 0.615210i
$$22$$ 0.502103 3.75731i 0.107049 0.801061i
$$23$$ −0.826275 + 1.62166i −0.172290 + 0.338139i −0.960964 0.276673i $$-0.910768\pi$$
0.788674 + 0.614812i $$0.210768\pi$$
$$24$$ −2.82096 + 0.205443i −0.575825 + 0.0419358i
$$25$$ −3.94503 3.07193i −0.789005 0.614387i
$$26$$ −4.24780 + 0.102957i −0.833062 + 0.0201915i
$$27$$ 0.891007 + 0.453990i 0.171474 + 0.0873705i
$$28$$ −9.53626 1.03986i −1.80218 0.196515i
$$29$$ 3.43571 + 4.72885i 0.637996 + 0.878126i 0.998507 0.0546290i $$-0.0173976\pi$$
−0.360511 + 0.932755i $$0.617398\pi$$
$$30$$ 1.87810 + 2.54416i 0.342892 + 0.464498i
$$31$$ −3.91117 + 5.38327i −0.702467 + 0.966864i 0.297459 + 0.954735i $$0.403861\pi$$
−0.999926 + 0.0121289i $$0.996139\pi$$
$$32$$ 4.45415 + 3.48720i 0.787390 + 0.616456i
$$33$$ 2.64744 0.419313i 0.460859 0.0729930i
$$34$$ 0.477906 + 0.142575i 0.0819602 + 0.0244514i
$$35$$ 4.70935 + 9.63581i 0.796025 + 1.62875i
$$36$$ −0.709460 1.86994i −0.118243 0.311656i
$$37$$ −8.36414 + 4.26174i −1.37506 + 0.700626i −0.976298 0.216430i $$-0.930559\pi$$
−0.398759 + 0.917056i $$0.630559\pi$$
$$38$$ 0.0462987 0.0250216i 0.00751065 0.00405903i
$$39$$ −0.928450 2.85748i −0.148671 0.457562i
$$40$$ 0.637856 6.29231i 0.100854 0.994901i
$$41$$ −2.14293 + 6.59526i −0.334669 + 1.03001i 0.632215 + 0.774793i $$0.282146\pi$$
−0.966885 + 0.255214i $$0.917854\pi$$
$$42$$ −1.22314 6.67193i −0.188734 1.02950i
$$43$$ 3.96315 + 3.96315i 0.604375 + 0.604375i 0.941470 0.337095i $$-0.109445\pi$$
−0.337095 + 0.941470i $$0.609445\pi$$
$$44$$ −4.48460 2.93723i −0.676079 0.442803i
$$45$$ −1.34426 + 1.78689i −0.200390 + 0.266374i
$$46$$ 1.56292 + 2.04506i 0.230440 + 0.301528i
$$47$$ 1.79499 11.3331i 0.261827 1.65311i −0.409767 0.912190i $$-0.634390\pi$$
0.671594 0.740919i $$-0.265610\pi$$
$$48$$ −1.46251 + 3.72304i −0.211095 + 0.537375i
$$49$$ 16.0054i 2.28648i
$$50$$ −6.32918 + 3.15300i −0.895082 + 0.445902i
$$51$$ 0.352648i 0.0493806i
$$52$$ −2.46546 + 5.47999i −0.341898 + 0.759938i
$$53$$ −0.934134 + 5.89789i −0.128313 + 0.810138i 0.836647 + 0.547742i $$0.184513\pi$$
−0.964960 + 0.262396i $$0.915487\pi$$
$$54$$ 1.12365 0.858733i 0.152909 0.116859i
$$55$$ −0.0997595 + 5.99281i −0.0134516 + 0.808070i
$$56$$ −7.15578 + 11.5255i −0.956232 + 1.54016i
$$57$$ 0.0263137 + 0.0263137i 0.00348534 + 0.00348534i
$$58$$ 8.13084 1.49059i 1.06763 0.195724i
$$59$$ −3.53381 + 10.8759i −0.460063 + 1.41593i 0.405024 + 0.914306i $$0.367263\pi$$
−0.865087 + 0.501622i $$0.832737\pi$$
$$60$$ 4.39258 0.839774i 0.567080 0.108414i
$$61$$ −1.26478 3.89259i −0.161938 0.498395i 0.836859 0.547418i $$-0.184389\pi$$
−0.998798 + 0.0490230i $$0.984389\pi$$
$$62$$ 4.47410 + 8.27866i 0.568211 + 1.05139i
$$63$$ 4.27362 2.17752i 0.538425 0.274341i
$$64$$ 7.16999 3.54841i 0.896249 0.443551i
$$65$$ 6.65219 0.940388i 0.825103 0.116641i
$$66$$ 1.08369 3.63250i 0.133394 0.447130i
$$67$$ 8.89404 1.40868i 1.08658 0.172097i 0.412648 0.910891i $$-0.364604\pi$$
0.673932 + 0.738793i $$0.264604\pi$$
$$68$$ 0.473973 0.522296i 0.0574776 0.0633377i
$$69$$ −1.06979 + 1.47243i −0.128787 + 0.177260i
$$70$$ 15.1671 0.115090i 1.81281 0.0137559i
$$71$$ −9.59181 13.2020i −1.13834 1.56679i −0.771165 0.636635i $$-0.780326\pi$$
−0.367172 0.930153i $$-0.619674\pi$$
$$72$$ −2.81836 0.238382i −0.332147 0.0280935i
$$73$$ 4.09605 + 2.08704i 0.479406 + 0.244270i 0.676956 0.736023i $$-0.263299\pi$$
−0.197550 + 0.980293i $$0.563299\pi$$
$$74$$ 0.321677 + 13.2717i 0.0373942 + 1.54281i
$$75$$ −3.41590 3.65125i −0.394434 0.421610i
$$76$$ −0.00360574 0.0743391i −0.000413607 0.00852728i
$$77$$ 5.83669 11.4552i 0.665153 1.30544i
$$78$$ −4.21161 0.562813i −0.476871 0.0637260i
$$79$$ −1.31184 + 0.953110i −0.147594 + 0.107233i −0.659132 0.752028i $$-0.729076\pi$$
0.511538 + 0.859261i $$0.329076\pi$$
$$80$$ −7.63440 4.66004i −0.853552 0.521008i
$$81$$ 0.809017 + 0.587785i 0.0898908 + 0.0653095i
$$82$$ 7.10066 + 6.76460i 0.784137 + 0.747025i
$$83$$ 0.977173 + 6.16963i 0.107259 + 0.677205i 0.981464 + 0.191648i $$0.0613832\pi$$
−0.874205 + 0.485557i $$0.838617\pi$$
$$84$$ −9.25618 2.51886i −1.00993 0.274830i
$$85$$ −0.776676 0.136302i −0.0842423 0.0147840i
$$86$$ 7.47680 2.63130i 0.806244 0.283741i
$$87$$ 2.65366 + 5.20810i 0.284502 + 0.558367i
$$88$$ −6.48725 + 3.92346i −0.691543 + 0.418242i
$$89$$ −13.2764 + 4.31376i −1.40729 + 0.457257i −0.911542 0.411207i $$-0.865107\pi$$
−0.495751 + 0.868465i $$0.665107\pi$$
$$90$$ 1.45698 + 2.80664i 0.153579 + 0.295845i
$$91$$ −13.7056 4.45321i −1.43673 0.466823i
$$92$$ 3.56343 0.742940i 0.371513 0.0774568i
$$93$$ −4.70515 + 4.70515i −0.487901 + 0.487901i
$$94$$ −13.3554 9.21725i −1.37750 0.950687i
$$95$$ −0.0681241 + 0.0477831i −0.00698939 + 0.00490245i
$$96$$ 3.85379 + 4.14105i 0.393326 + 0.422644i
$$97$$ 8.89748 + 1.40922i 0.903402 + 0.143085i 0.590818 0.806805i $$-0.298805\pi$$
0.312584 + 0.949890i $$0.398805\pi$$
$$98$$ −20.4110 9.78438i −2.06182 0.988372i
$$99$$ 2.68044 0.269394
$$100$$ 0.151754 + 9.99885i 0.0151754 + 0.999885i
$$101$$ −2.30442 −0.229298 −0.114649 0.993406i $$-0.536574\pi$$
−0.114649 + 0.993406i $$0.536574\pi$$
$$102$$ 0.449718 + 0.215580i 0.0445288 + 0.0213456i
$$103$$ 4.48812 + 0.710848i 0.442227 + 0.0700419i 0.373578 0.927599i $$-0.378131\pi$$
0.0686497 + 0.997641i $$0.478131\pi$$
$$104$$ 5.48123 + 6.49412i 0.537479 + 0.636801i
$$105$$ 3.14399 + 10.2539i 0.306822 + 1.00068i
$$106$$ 6.95029 + 4.79676i 0.675072 + 0.465902i
$$107$$ 6.74496 6.74496i 0.652060 0.652060i −0.301429 0.953489i $$-0.597464\pi$$
0.953489 + 0.301429i $$0.0974636\pi$$
$$108$$ −0.408203 1.95790i −0.0392793 0.188399i
$$109$$ 0.913063 + 0.296672i 0.0874556 + 0.0284161i 0.352418 0.935843i $$-0.385360\pi$$
−0.264962 + 0.964259i $$0.585360\pi$$
$$110$$ 7.58141 + 3.79073i 0.722859 + 0.361432i
$$111$$ −8.92785 + 2.90083i −0.847394 + 0.275335i
$$112$$ 10.3236 + 16.1713i 0.975487 + 1.52804i
$$113$$ 0.881591 + 1.73022i 0.0829331 + 0.162765i 0.928749 0.370710i $$-0.120886\pi$$
−0.845816 + 0.533475i $$0.820886\pi$$
$$114$$ 0.0496430 0.0174708i 0.00464949 0.00163629i
$$115$$ −2.82942 2.92521i −0.263845 0.272778i
$$116$$ 3.06964 11.2802i 0.285009 1.04734i
$$117$$ −0.470012 2.96754i −0.0434526 0.274349i
$$118$$ 11.7094 + 11.1552i 1.07794 + 1.02692i
$$119$$ 1.36840 + 0.994203i 0.125441 + 0.0911384i
$$120$$ 1.61434 6.11506i 0.147368 0.558226i
$$121$$ −3.08661 + 2.24255i −0.280601 + 0.203868i
$$122$$ −5.73725 0.766690i −0.519426 0.0694128i
$$123$$ −3.14827 + 6.17883i −0.283870 + 0.557127i
$$124$$ 13.2925 0.644741i 1.19371 0.0578994i
$$125$$ 9.36183 6.11197i 0.837347 0.546671i
$$126$$ −0.164359 6.78113i −0.0146423 0.604111i
$$127$$ −14.5964 7.43723i −1.29522 0.659948i −0.335801 0.941933i $$-0.609007\pi$$
−0.959419 + 0.281985i $$0.909007\pi$$
$$128$$ −0.141997 11.3128i −0.0125509 0.999921i
$$129$$ 3.29439 + 4.53433i 0.290054 + 0.399226i
$$130$$ 2.86737 9.05815i 0.251485 0.794453i
$$131$$ −6.08229 + 8.37156i −0.531412 + 0.731426i −0.987345 0.158588i $$-0.949306\pi$$
0.455933 + 0.890014i $$0.349306\pi$$
$$132$$ −3.96991 3.60261i −0.345536 0.313567i
$$133$$ 0.176292 0.0279219i 0.0152864 0.00242113i
$$134$$ 3.64066 12.2034i 0.314505 1.05421i
$$135$$ −1.60724 + 1.55460i −0.138329 + 0.133799i
$$136$$ −0.376315 0.923728i −0.0322687 0.0792090i
$$137$$ 6.62679 3.37652i 0.566165 0.288475i −0.147386 0.989079i $$-0.547086\pi$$
0.713550 + 0.700604i $$0.247086\pi$$
$$138$$ 1.22376 + 2.26438i 0.104173 + 0.192757i
$$139$$ −1.52421 4.69104i −0.129282 0.397889i 0.865375 0.501125i $$-0.167080\pi$$
−0.994657 + 0.103236i $$0.967080\pi$$
$$140$$ 9.12515 19.4123i 0.771216 1.64064i
$$141$$ 3.54579 10.9128i 0.298609 0.919025i
$$142$$ −22.6996 + 4.16143i −1.90491 + 0.349219i
$$143$$ −5.69465 5.69465i −0.476210 0.476210i
$$144$$ −2.02692 + 3.44842i −0.168910 + 0.287368i
$$145$$ −12.4960 + 3.83147i −1.03774 + 0.318186i
$$146$$ 5.16551 3.94768i 0.427501 0.326712i
$$147$$ 2.50379 15.8083i 0.206509 1.30385i
$$148$$ 17.1216 + 7.70304i 1.40739 + 0.633186i
$$149$$ 4.51885i 0.370199i 0.982720 + 0.185099i $$0.0592607\pi$$
−0.982720 + 0.185099i $$0.940739\pi$$
$$150$$ −6.74450 + 2.12408i −0.550686 + 0.173431i
$$151$$ 23.1084i 1.88053i −0.340438 0.940267i $$-0.610575\pi$$
0.340438 0.940267i $$-0.389425\pi$$
$$152$$ −0.0970060 0.0408466i −0.00786822 0.00331310i
$$153$$ −0.0551663 + 0.348307i −0.00445993 + 0.0281589i
$$154$$ −11.0402 14.4461i −0.889647 1.16410i
$$155$$ −8.54409 12.1813i −0.686277 0.978422i
$$156$$ −3.29237 + 5.02684i −0.263600 + 0.402469i
$$157$$ −2.93743 2.93743i −0.234433 0.234433i 0.580107 0.814540i $$-0.303011\pi$$
−0.814540 + 0.580107i $$0.803011\pi$$
$$158$$ 0.413509 + 2.25560i 0.0328970 + 0.179446i
$$159$$ −1.84527 + 5.67915i −0.146339 + 0.450386i
$$160$$ −10.6098 + 6.88708i −0.838779 + 0.544471i
$$161$$ 2.69758 + 8.30231i 0.212599 + 0.654314i
$$162$$ 1.24415 0.672383i 0.0977494 0.0528274i
$$163$$ 16.0221 8.16368i 1.25495 0.639429i 0.305155 0.952303i $$-0.401292\pi$$
0.949795 + 0.312874i $$0.101292\pi$$
$$164$$ 12.9674 4.91987i 1.01258 0.384177i
$$165$$ −1.03601 + 5.90342i −0.0806535 + 0.459581i
$$166$$ 8.46525 + 2.52546i 0.657031 + 0.196014i
$$167$$ −10.4908 + 1.66158i −0.811801 + 0.128577i −0.548515 0.836141i $$-0.684807\pi$$
−0.263287 + 0.964718i $$0.584807\pi$$
$$168$$ −8.87067 + 10.2642i −0.684387 + 0.791901i
$$169$$ 2.33516 3.21407i 0.179627 0.247236i
$$170$$ −0.648617 + 0.907141i −0.0497466 + 0.0695745i
$$171$$ 0.0218734 + 0.0301061i 0.00167270 + 0.00230227i
$$172$$ 1.21511 11.1434i 0.0926513 0.849679i
$$173$$ −4.09233 2.08515i −0.311134 0.158531i 0.291450 0.956586i $$-0.405862\pi$$
−0.602584 + 0.798055i $$0.705862\pi$$
$$174$$ 8.26391 0.200298i 0.626486 0.0151846i
$$175$$ −23.7984 + 2.96114i −1.79899 + 0.223841i
$$176$$ 1.03765 + 10.6714i 0.0782160 + 0.804388i
$$177$$ −5.19167 + 10.1892i −0.390230 + 0.765870i
$$178$$ −2.61493 + 19.5679i −0.195998 + 1.46668i
$$179$$ 9.71609 7.05915i 0.726214 0.527626i −0.162149 0.986766i $$-0.551843\pi$$
0.888364 + 0.459141i $$0.151843\pi$$
$$180$$ 4.46987 0.142284i 0.333165 0.0106052i
$$181$$ −15.7632 11.4527i −1.17167 0.851269i −0.180463 0.983582i $$-0.557760\pi$$
−0.991208 + 0.132313i $$0.957760\pi$$
$$182$$ −14.0575 + 14.7559i −1.04201 + 1.09378i
$$183$$ −0.640272 4.04252i −0.0473303 0.298832i
$$184$$ 1.23095 4.99848i 0.0907468 0.368492i
$$185$$ −2.93813 20.7840i −0.216016 1.52807i
$$186$$ 3.12395 + 8.87664i 0.229059 + 0.650867i
$$187$$ 0.429135 + 0.842225i 0.0313815 + 0.0615896i
$$188$$ −19.9188 + 11.3969i −1.45273 + 0.831207i
$$189$$ 4.56164 1.48217i 0.331810 0.107812i
$$190$$ 0.0192904 + 0.116087i 0.00139947 + 0.00842182i
$$191$$ −7.51089 2.44043i −0.543469 0.176584i 0.0244009 0.999702i $$-0.492232\pi$$
−0.567870 + 0.823119i $$0.692232\pi$$
$$192$$ 7.63681 2.38309i 0.551139 0.171985i
$$193$$ 12.4322 12.4322i 0.894893 0.894893i −0.100086 0.994979i $$-0.531912\pi$$
0.994979 + 0.100086i $$0.0319118\pi$$
$$194$$ 7.23632 10.4851i 0.519537 0.752788i
$$195$$ 6.71740 + 0.111821i 0.481043 + 0.00800770i
$$196$$ −24.9553 + 20.0480i −1.78252 + 1.43200i
$$197$$ −5.51782 0.873937i −0.393128 0.0622654i −0.0432589 0.999064i $$-0.513774\pi$$
−0.349869 + 0.936798i $$0.613774\pi$$
$$198$$ 1.63860 3.41826i 0.116450 0.242925i
$$199$$ 18.0700 1.28095 0.640476 0.767978i $$-0.278737\pi$$
0.640476 + 0.767978i $$0.278737\pi$$
$$200$$ 12.8439 + 5.91896i 0.908201 + 0.418533i
$$201$$ 9.00490 0.635157
$$202$$ −1.40873 + 2.93873i −0.0991181 + 0.206768i
$$203$$ 27.6906 + 4.38576i 1.94350 + 0.307820i
$$204$$ 0.549842 0.441720i 0.0384967 0.0309266i
$$205$$ −12.3915 9.32197i −0.865459 0.651074i
$$206$$ 3.65019 5.28896i 0.254321 0.368500i
$$207$$ −1.28695 + 1.28695i −0.0894495 + 0.0894495i
$$208$$ 11.6325 3.02002i 0.806567 0.209401i
$$209$$ 0.0948657 + 0.0308237i 0.00656200 + 0.00213212i
$$210$$ 14.9984 + 2.25898i 1.03499 + 0.155885i
$$211$$ 7.52169 2.44395i 0.517815 0.168248i −0.0384386 0.999261i $$-0.512238\pi$$
0.556253 + 0.831013i $$0.312238\pi$$
$$212$$ 10.3660 5.93109i 0.711937 0.407349i
$$213$$ −7.40847 14.5399i −0.507620 0.996260i
$$214$$ −4.47826 12.7249i −0.306127 0.869856i
$$215$$ −11.2598 + 5.50303i −0.767910 + 0.375303i
$$216$$ −2.74637 0.676336i −0.186867 0.0460188i
$$217$$ 4.99270 + 31.5227i 0.338927 + 2.13990i
$$218$$ 0.936507 0.983032i 0.0634283 0.0665794i
$$219$$ 3.71913 + 2.70211i 0.251316 + 0.182592i
$$220$$ 9.46883 7.35092i 0.638388 0.495599i
$$221$$ 0.857187 0.622783i 0.0576607 0.0418929i
$$222$$ −1.75844 + 13.1587i −0.118019 + 0.883152i
$$223$$ −9.58505 + 18.8117i −0.641862 + 1.25973i 0.309280 + 0.950971i $$0.399912\pi$$
−0.951142 + 0.308754i $$0.900088\pi$$
$$224$$ 26.9336 3.27947i 1.79957 0.219119i
$$225$$ −2.80266 4.14066i −0.186844 0.276044i
$$226$$ 2.74541 0.0665426i 0.182622 0.00442634i
$$227$$ 3.75568 + 1.91361i 0.249273 + 0.127011i 0.574163 0.818741i $$-0.305327\pi$$
−0.324890 + 0.945752i $$0.605327\pi$$
$$228$$ 0.00806785 0.0739879i 0.000534306 0.00489997i
$$229$$ 9.56819 + 13.1695i 0.632284 + 0.870264i 0.998175 0.0603935i $$-0.0192355\pi$$
−0.365891 + 0.930658i $$0.619236\pi$$
$$230$$ −5.46009 + 1.82001i −0.360028 + 0.120008i
$$231$$ 7.55682 10.4011i 0.497202 0.684340i
$$232$$ −12.5086 10.8104i −0.821231 0.709735i
$$233$$ −3.96847 + 0.628543i −0.259983 + 0.0411772i −0.285065 0.958508i $$-0.592015\pi$$
0.0250823 + 0.999685i $$0.492015\pi$$
$$234$$ −4.07171 1.21472i −0.266176 0.0794090i
$$235$$ 22.6640 + 12.0272i 1.47844 + 0.784567i
$$236$$ 21.3839 8.11313i 1.39198 0.528120i
$$237$$ −1.44479 + 0.736158i −0.0938493 + 0.0478186i
$$238$$ 2.10440 1.13730i 0.136408 0.0737199i
$$239$$ −0.935034 2.87774i −0.0604823 0.186145i 0.916250 0.400606i $$-0.131201\pi$$
−0.976733 + 0.214461i $$0.931201\pi$$
$$240$$ −6.81142 5.79695i −0.439675 0.374191i
$$241$$ −5.19805 + 15.9980i −0.334836 + 1.03052i 0.631967 + 0.774995i $$0.282248\pi$$
−0.966803 + 0.255524i $$0.917752\pi$$
$$242$$ 0.972938 + 5.30715i 0.0625428 + 0.341156i
$$243$$ 0.707107 + 0.707107i 0.0453609 + 0.0453609i
$$244$$ −4.48502 + 6.84780i −0.287124 + 0.438385i
$$245$$ 33.8487 + 11.6244i 2.16251 + 0.742658i
$$246$$ 5.95503 + 7.79211i 0.379679 + 0.496807i
$$247$$ 0.0174907 0.110432i 0.00111290 0.00702660i
$$248$$ 7.30377 17.3456i 0.463790 1.10145i
$$249$$ 6.24653i 0.395858i
$$250$$ −2.07129 15.6751i −0.131000 0.991382i
$$251$$ 5.01058i 0.316265i 0.987418 + 0.158132i $$0.0505473\pi$$
−0.987418 + 0.158132i $$0.949453\pi$$
$$252$$ −8.74818 3.93583i −0.551084 0.247934i
$$253$$ −0.763160 + 4.81841i −0.0479795 + 0.302931i
$$254$$ −18.4075 + 14.0677i −1.15499 + 0.882685i
$$255$$ −0.745792 0.256123i −0.0467033 0.0160390i
$$256$$ −14.5136 6.73465i −0.907100 0.420916i
$$257$$ −8.87423 8.87423i −0.553559 0.553559i 0.373907 0.927466i $$-0.378018\pi$$
−0.927466 + 0.373907i $$0.878018\pi$$
$$258$$ 7.79637 1.42928i 0.485381 0.0889829i
$$259$$ −13.9135 + 42.8215i −0.864545 + 2.66080i
$$260$$ −9.79863 9.19406i −0.607685 0.570191i
$$261$$ 1.80626 + 5.55910i 0.111805 + 0.344100i
$$262$$ 6.95770 + 12.8742i 0.429848 + 0.795370i
$$263$$ 13.9737 7.11993i 0.861652 0.439034i 0.0334351 0.999441i $$-0.489355\pi$$
0.828217 + 0.560407i $$0.189355\pi$$
$$264$$ −7.02114 + 2.86032i −0.432122 + 0.176041i
$$265$$ −11.7946 6.25908i −0.724537 0.384492i
$$266$$ 0.0721628 0.241887i 0.00442459 0.0148311i
$$267$$ −13.7877 + 2.18376i −0.843796 + 0.133644i
$$268$$ −13.3369 12.1029i −0.814679 0.739305i
$$269$$ −6.69890 + 9.22024i −0.408439 + 0.562168i −0.962837 0.270084i $$-0.912949\pi$$
0.554398 + 0.832252i $$0.312949\pi$$
$$270$$ 0.999990 + 3.00000i 0.0608575 + 0.182574i
$$271$$ 14.5904 + 20.0820i 0.886305 + 1.21989i 0.974635 + 0.223802i $$0.0718470\pi$$
−0.0883300 + 0.996091i $$0.528153\pi$$
$$272$$ −1.40804 0.0847928i −0.0853751 0.00514132i
$$273$$ −12.8402 6.54241i −0.777124 0.395965i
$$274$$ −0.254860 10.5150i −0.0153966 0.635235i
$$275$$ −12.6013 4.56345i −0.759889 0.275186i
$$276$$ 3.63578 0.176350i 0.218848 0.0106150i
$$277$$ −6.27732 + 12.3199i −0.377168 + 0.740233i −0.999081 0.0428524i $$-0.986355\pi$$
0.621914 + 0.783086i $$0.286355\pi$$
$$278$$ −6.91408 0.923955i −0.414679 0.0554151i
$$279$$ −5.38327 + 3.91117i −0.322288 + 0.234156i
$$280$$ −19.1774 23.5041i −1.14607 1.40464i
$$281$$ −0.275686 0.200297i −0.0164460 0.0119487i 0.579532 0.814950i $$-0.303235\pi$$
−0.595978 + 0.803001i $$0.703235\pi$$
$$282$$ −11.7491 11.1930i −0.699648 0.666534i
$$283$$ −1.04683 6.60944i −0.0622278 0.392891i −0.999069 0.0431363i $$-0.986265\pi$$
0.936841 0.349754i $$-0.113735\pi$$
$$284$$ −8.56980 + 31.4919i −0.508524 + 1.86870i
$$285$$ −0.0747604 + 0.0365379i −0.00442842 + 0.00216432i
$$286$$ −10.7434 + 3.78092i −0.635271 + 0.223570i
$$287$$ 15.1004 + 29.6361i 0.891346 + 1.74936i
$$288$$ 3.15854 + 4.69293i 0.186119 + 0.276534i
$$289$$ 16.0497 5.21486i 0.944099 0.306756i
$$290$$ −2.75294 + 18.2779i −0.161658 + 1.07332i
$$291$$ 8.56748 + 2.78374i 0.502235 + 0.163186i
$$292$$ −1.87655 9.00066i −0.109817 0.526724i
$$293$$ 8.69276 8.69276i 0.507837 0.507837i −0.406025 0.913862i $$-0.633086\pi$$
0.913862 + 0.406025i $$0.133086\pi$$
$$294$$ −18.6291 12.8569i −1.08647 0.749830i
$$295$$ −20.4342 15.3724i −1.18973 0.895017i
$$296$$ 20.2901 17.1255i 1.17934 0.995397i
$$297$$ 2.64744 + 0.419313i 0.153620 + 0.0243310i
$$298$$ 5.76272 + 2.76246i 0.333825 + 0.160025i
$$299$$ 5.46832 0.316241
$$300$$ −1.41428 + 9.89949i −0.0816534 + 0.571547i
$$301$$ 26.8825 1.54948
$$302$$ −29.4692 14.1266i −1.69576 0.812894i
$$303$$ −2.27604 0.360490i −0.130755 0.0207096i
$$304$$ −0.111392 + 0.0987376i −0.00638875 + 0.00566299i
$$305$$ 9.15076 + 0.152328i 0.523971 + 0.00872230i
$$306$$ 0.410457 + 0.283278i 0.0234643 + 0.0161939i
$$307$$ −8.92000 + 8.92000i −0.509091 + 0.509091i −0.914248 0.405156i $$-0.867217\pi$$
0.405156 + 0.914248i $$0.367217\pi$$
$$308$$ −25.1716 + 5.24803i −1.43428 + 0.299034i
$$309$$ 4.32166 + 1.40419i 0.245851 + 0.0798817i
$$310$$ −20.7574 + 3.44931i −1.17894 + 0.195908i
$$311$$ 2.46111 0.799664i 0.139557 0.0453448i −0.238406 0.971166i $$-0.576625\pi$$
0.377963 + 0.925821i $$0.376625\pi$$
$$312$$ 4.39784 + 7.27162i 0.248979 + 0.411675i
$$313$$ −3.76802 7.39517i −0.212981 0.417999i 0.759657 0.650324i $$-0.225367\pi$$
−0.972638 + 0.232325i $$0.925367\pi$$
$$314$$ −5.54170 + 1.95029i −0.312736 + 0.110061i
$$315$$ 1.50122 + 10.6195i 0.0845844 + 0.598339i
$$316$$ 3.12926 + 0.851556i 0.176035 + 0.0479038i
$$317$$ −4.41319 27.8638i −0.247869 1.56498i −0.726624 0.687036i $$-0.758912\pi$$
0.478754 0.877949i $$-0.341088\pi$$
$$318$$ 6.11435 + 5.82497i 0.342876 + 0.326648i
$$319$$ 12.6754 + 9.20921i 0.709686 + 0.515617i
$$320$$ 2.29684 + 17.7405i 0.128397 + 0.991723i
$$321$$ 7.71706 5.60677i 0.430724 0.312939i
$$322$$ 12.2367 + 1.63523i 0.681924 + 0.0911280i
$$323$$ −0.00595780 + 0.0116928i −0.000331501 + 0.000650607i
$$324$$ −0.0968940 1.99765i −0.00538300 0.110981i
$$325$$ −2.84261 + 14.7513i −0.157680 + 0.818252i
$$326$$ −0.616196 25.4230i −0.0341279 1.40805i
$$327$$ 0.855412 + 0.435854i 0.0473044 + 0.0241028i
$$328$$ 1.65310 19.5444i 0.0912770 1.07916i
$$329$$ −32.3492 44.5249i −1.78347 2.45474i
$$330$$ 6.89507 + 4.93006i 0.379561 + 0.271391i
$$331$$ 1.20304 1.65584i 0.0661251 0.0910134i −0.774674 0.632361i $$-0.782086\pi$$
0.840799 + 0.541348i $$0.182086\pi$$
$$332$$ 8.39558 9.25154i 0.460768 0.507744i
$$333$$ −9.27172 + 1.46850i −0.508087 + 0.0804731i
$$334$$ −4.29427 + 14.3942i −0.234972 + 0.787618i
$$335$$ −3.48048 + 19.8325i −0.190159 + 1.08356i
$$336$$ 7.66674 + 17.5871i 0.418255 + 0.959456i
$$337$$ 11.0019 5.60576i 0.599313 0.305365i −0.127890 0.991788i $$-0.540820\pi$$
0.727202 + 0.686423i $$0.240820\pi$$
$$338$$ −2.67125 4.94275i −0.145297 0.268850i
$$339$$ 0.600071 + 1.84683i 0.0325914 + 0.100306i
$$340$$ 0.760329 + 1.38171i 0.0412346 + 0.0749336i
$$341$$ −5.51158 + 16.9629i −0.298469 + 0.918593i
$$342$$ 0.0517648 0.00948983i 0.00279912 0.000513151i
$$343$$ −30.5423 30.5423i −1.64913 1.64913i
$$344$$ −13.4680 8.36177i −0.726144 0.450836i
$$345$$ −2.33698 3.33182i −0.125819 0.179379i
$$346$$ −5.16082 + 3.94410i −0.277448 + 0.212036i
$$347$$ 2.22959 14.0770i 0.119690 0.755695i −0.852711 0.522382i $$-0.825043\pi$$
0.972402 0.233313i $$-0.0749567\pi$$
$$348$$ 4.79645 10.6611i 0.257117 0.571494i
$$349$$ 18.7834i 1.00545i 0.864445 + 0.502727i $$0.167670\pi$$
−0.864445 + 0.502727i $$0.832330\pi$$
$$350$$ −10.7722 + 32.1594i −0.575799 + 1.71899i
$$351$$ 3.00453i 0.160370i
$$352$$ 14.2432 + 5.20036i 0.759164 + 0.277180i
$$353$$ −1.30877 + 8.26323i −0.0696586 + 0.439807i 0.928068 + 0.372412i $$0.121469\pi$$
−0.997726 + 0.0673957i $$0.978531\pi$$
$$354$$ 9.82016 + 12.8496i 0.521936 + 0.682949i
$$355$$ 34.8863 10.6967i 1.85158 0.567720i
$$356$$ 23.3556 + 15.2970i 1.23785 + 0.810737i
$$357$$ 1.19603 + 1.19603i 0.0633005 + 0.0633005i
$$358$$ −3.06263 16.7059i −0.161865 0.882936i
$$359$$ −6.27998 + 19.3278i −0.331445 + 1.02008i 0.637002 + 0.770862i $$0.280174\pi$$
−0.968447 + 0.249220i $$0.919826\pi$$
$$360$$ 2.55107 5.78723i 0.134453 0.305014i
$$361$$ −5.87089 18.0688i −0.308994 0.950987i
$$362$$ −24.2415 + 13.1010i −1.27410 + 0.688573i
$$363$$ −3.39942 + 1.73209i −0.178423 + 0.0909112i
$$364$$ 10.2240 + 26.9475i 0.535881 + 1.41243i
$$365$$ −7.38863 + 7.14667i −0.386738 + 0.374074i
$$366$$ −5.54668 1.65475i −0.289929 0.0864954i
$$367$$ 29.5302 4.67713i 1.54147 0.244144i 0.672905 0.739729i $$-0.265046\pi$$
0.868560 + 0.495584i $$0.165046\pi$$
$$368$$ −5.62186 4.62544i −0.293059 0.241118i
$$369$$ −4.07610 + 5.61026i −0.212193 + 0.292059i
$$370$$ −28.3011 8.95876i −1.47131 0.465744i
$$371$$ 16.8349 + 23.1712i 0.874024 + 1.20299i
$$372$$ 13.2298 + 1.44261i 0.685931 + 0.0747958i
$$373$$ 22.6709 + 11.5514i 1.17386 + 0.598110i 0.928504 0.371324i $$-0.121096\pi$$
0.245354 + 0.969434i $$0.421096\pi$$
$$374$$ 1.33639 0.0323912i 0.0691033 0.00167491i
$$375$$ 10.2027 4.57221i 0.526865 0.236108i
$$376$$ 2.35733 + 32.3688i 0.121570 + 1.66929i
$$377$$ 7.97299 15.6479i 0.410630 0.805907i
$$378$$ 0.898467 6.72336i 0.0462122 0.345812i
$$379$$ 7.12172 5.17423i 0.365818 0.265783i −0.389656 0.920960i $$-0.627406\pi$$
0.755475 + 0.655178i $$0.227406\pi$$
$$380$$ 0.159833 + 0.0463657i 0.00819928 + 0.00237851i
$$381$$ −13.2532 9.62905i −0.678984 0.493311i
$$382$$ −7.70374 + 8.08645i −0.394157 + 0.413739i
$$383$$ −2.70392 17.0719i −0.138164 0.872332i −0.955246 0.295811i $$-0.904410\pi$$
0.817083 0.576521i $$-0.195590\pi$$
$$384$$ 1.62947 11.1958i 0.0831533 0.571331i
$$385$$ 19.9866 + 20.6633i 1.01861 + 1.05310i
$$386$$ −8.25429 23.4544i −0.420132 1.19380i
$$387$$ 2.54450 + 4.99386i 0.129344 + 0.253852i
$$388$$ −8.94756 15.6379i −0.454244 0.793896i
$$389$$ −1.60757 + 0.522332i −0.0815072 + 0.0264833i −0.349487 0.936941i $$-0.613644\pi$$
0.267980 + 0.963425i $$0.413644\pi$$
$$390$$ 4.24907 8.49808i 0.215160 0.430317i
$$391$$ −0.610416 0.198336i −0.0308701 0.0100303i
$$392$$ 10.3108 + 44.0802i 0.520774 + 2.22639i
$$393$$ −7.31701 + 7.31701i −0.369094 + 0.369094i
$$394$$ −4.48764 + 6.50240i −0.226084 + 0.327586i
$$395$$ −1.06290 3.46655i −0.0534801 0.174421i
$$396$$ −3.35746 4.17929i −0.168719 0.210017i
$$397$$ 24.6975 + 3.91170i 1.23953 + 0.196322i 0.741569 0.670876i $$-0.234082\pi$$
0.497962 + 0.867199i $$0.334082\pi$$
$$398$$ 11.0466 23.0440i 0.553714 1.15509i
$$399$$ 0.178489 0.00893564
$$400$$ 15.3999 12.7610i 0.769997 0.638048i
$$401$$ −34.9493 −1.74529 −0.872644 0.488358i $$-0.837596\pi$$
−0.872644 + 0.488358i $$0.837596\pi$$
$$402$$ 5.50487 11.4836i 0.274558 0.572750i
$$403$$ 19.7463 + 3.12750i 0.983631 + 0.155792i
$$404$$ 2.88646 + 3.59300i 0.143607 + 0.178759i
$$405$$ −1.83064 + 1.28404i −0.0909654 + 0.0638043i
$$406$$ 22.5208 32.6317i 1.11769 1.61948i
$$407$$ −17.7923 + 17.7923i −0.881930 + 0.881930i
$$408$$ −0.227179 0.971224i −0.0112470 0.0480828i
$$409$$ −9.56258 3.10707i −0.472839 0.153635i 0.0628973 0.998020i $$-0.479966\pi$$
−0.535736 + 0.844385i $$0.679966\pi$$
$$410$$ −19.4631 + 10.1037i −0.961213 + 0.498986i
$$411$$ 7.07340 2.29829i 0.348905 0.113366i
$$412$$ −4.51338 7.88818i −0.222358 0.388623i
$$413$$ 24.9013 + 48.8716i 1.22531 + 2.40481i
$$414$$ 0.854462 + 2.42794i 0.0419945 + 0.119327i
$$415$$ −13.7574 2.41434i −0.675326 0.118515i
$$416$$ 3.25984 16.6806i 0.159827 0.817835i
$$417$$ −0.771606 4.87173i −0.0377857 0.238570i
$$418$$ 0.0973015 0.102135i 0.00475917 0.00499561i
$$419$$ −8.26609 6.00566i −0.403825 0.293396i 0.367272 0.930113i $$-0.380292\pi$$
−0.771097 + 0.636718i $$0.780292\pi$$
$$420$$ 12.0496 17.7459i 0.587959 0.865909i
$$421$$ −20.6955 + 15.0362i −1.00864 + 0.732817i −0.963923 0.266182i $$-0.914238\pi$$
−0.0447139 + 0.999000i $$0.514238\pi$$
$$422$$ 1.48148 11.0861i 0.0721175 0.539665i
$$423$$ 5.20928 10.2238i 0.253284 0.497097i
$$424$$ −1.22678 16.8451i −0.0595778 0.818070i
$$425$$ 0.852342 1.54355i 0.0413447 0.0748729i
$$426$$ −23.0711 + 0.559192i −1.11780 + 0.0270929i
$$427$$ −17.4915 8.91238i −0.846474 0.431300i
$$428$$ −18.9652 2.06802i −0.916718 0.0999615i
$$429$$ −4.73370 6.51538i −0.228545 0.314565i
$$430$$ 0.134486 + 17.7232i 0.00648551 + 0.854691i
$$431$$ 17.6050 24.2312i 0.848003 1.16718i −0.136296 0.990668i $$-0.543520\pi$$
0.984299 0.176508i $$-0.0564801\pi$$
$$432$$ −2.54141 + 3.08889i −0.122274 + 0.148614i
$$433$$ −18.5450 + 2.93724i −0.891215 + 0.141155i −0.585216 0.810877i $$-0.698990\pi$$
−0.305999 + 0.952032i $$0.598990\pi$$
$$434$$ 43.2517 + 12.9034i 2.07615 + 0.619383i
$$435$$ −12.9416 + 1.82949i −0.620500 + 0.0877171i
$$436$$ −0.681118 1.79524i −0.0326196 0.0859762i
$$437$$ −0.0603471 + 0.0307484i −0.00288679 + 0.00147089i
$$438$$ 5.71947 3.09101i 0.273287 0.147694i
$$439$$ −10.6931 32.9099i −0.510353 1.57070i −0.791582 0.611063i $$-0.790742\pi$$
0.281229 0.959641i $$-0.409258\pi$$
$$440$$ −3.58587 16.5690i −0.170950 0.789895i
$$441$$ 4.94593 15.2220i 0.235521 0.724858i
$$442$$ −0.270196 1.47386i −0.0128519 0.0701042i
$$443$$ −16.6791 16.6791i −0.792447 0.792447i 0.189445 0.981891i $$-0.439331\pi$$
−0.981891 + 0.189445i $$0.939331\pi$$
$$444$$ 15.7058 + 10.2866i 0.745363 + 0.488181i
$$445$$ 0.519543 31.2103i 0.0246287 1.47951i
$$446$$ 18.1303 + 23.7234i 0.858495 + 1.12333i
$$447$$ −0.706904 + 4.46322i −0.0334354 + 0.211103i
$$448$$ 12.2828 36.3521i 0.580309 1.71748i
$$449$$ 17.2460i 0.813887i 0.913453 + 0.406943i $$0.133405\pi$$
−0.913453 + 0.406943i $$0.866595\pi$$
$$450$$ −6.99374 + 1.04286i −0.329688 + 0.0491609i
$$451$$ 18.5879i 0.875272i
$$452$$ 1.59346 3.54180i 0.0749502 0.166592i
$$453$$ 3.61495 22.8239i 0.169845 1.07236i
$$454$$ 4.73627 3.61964i 0.222284 0.169878i
$$455$$ 19.3719 25.7507i 0.908170 1.20721i
$$456$$ −0.0894218 0.0555188i −0.00418756 0.00259991i
$$457$$ 14.6247 + 14.6247i 0.684114 + 0.684114i 0.960925 0.276811i $$-0.0892774\pi$$
−0.276811 + 0.960925i $$0.589277\pi$$
$$458$$ 22.6437 4.15119i 1.05807 0.193972i
$$459$$ −0.108974 + 0.335388i −0.00508648 + 0.0156546i
$$460$$ −1.01687 + 8.07564i −0.0474117 + 0.376529i
$$461$$ 2.25667 + 6.94532i 0.105104 + 0.323476i 0.989755 0.142778i $$-0.0456034\pi$$
−0.884651 + 0.466254i $$0.845603\pi$$
$$462$$ −8.64445 15.9953i −0.402176 0.744168i
$$463$$ −4.74359 + 2.41698i −0.220453 + 0.112327i −0.560730 0.827999i $$-0.689479\pi$$
0.340276 + 0.940325i $$0.389479\pi$$
$$464$$ −21.4328 + 9.34317i −0.994992 + 0.433746i
$$465$$ −6.53333 13.3679i −0.302976 0.619920i
$$466$$ −1.62444 + 5.44507i −0.0752508 + 0.252238i
$$467$$ −3.91689 + 0.620374i −0.181252 + 0.0287075i −0.246401 0.969168i $$-0.579248\pi$$
0.0651486 + 0.997876i $$0.479248\pi$$
$$468$$ −4.03820 + 4.44991i −0.186666 + 0.205697i
$$469$$ 25.3871 34.9423i 1.17227 1.61348i
$$470$$ 29.1927 21.5501i 1.34656 0.994032i
$$471$$ −2.44175 3.36079i −0.112510 0.154857i
$$472$$ 2.72605 32.2298i 0.125476 1.48350i
$$473$$ 13.3857 + 6.82037i 0.615477 + 0.313601i
$$474$$ 0.0555653 + 2.29251i 0.00255220 + 0.105299i
$$475$$ −0.0515759 0.178775i −0.00236646 0.00820277i
$$476$$ −0.163890 3.37891i −0.00751190 0.154872i
$$477$$ −2.71096 + 5.32057i −0.124126 + 0.243612i
$$478$$ −4.24147 0.566803i −0.194000 0.0259250i
$$479$$ 7.13723 5.18550i 0.326108 0.236932i −0.412669 0.910881i $$-0.635403\pi$$
0.738778 + 0.673949i $$0.235403\pi$$
$$480$$ −11.5566 + 5.14255i −0.527483 + 0.234724i
$$481$$ 22.8178 + 16.5781i 1.04040 + 0.755898i
$$482$$ 17.2239 + 16.4087i 0.784527 + 0.747397i
$$483$$ 1.36560 + 8.62209i 0.0621372 + 0.392319i
$$484$$ 7.36277 + 2.00361i 0.334671 + 0.0910731i
$$485$$ −9.44236 + 17.7932i −0.428755 + 0.807946i
$$486$$ 1.33401 0.469478i 0.0605121 0.0212959i
$$487$$ −3.40456 6.68183i −0.154275 0.302782i 0.800913 0.598780i $$-0.204348\pi$$
−0.955189 + 0.295998i $$0.904348\pi$$
$$488$$ 5.99095 + 9.90575i 0.271198 + 0.448412i
$$489$$ 17.1019 5.55676i 0.773377 0.251285i
$$490$$ 35.5165 36.0596i 1.60447 1.62901i
$$491$$ 22.0491 + 7.16420i 0.995063 + 0.323316i 0.760891 0.648880i $$-0.224762\pi$$
0.234172 + 0.972195i $$0.424762\pi$$
$$492$$ 13.5774 2.83075i 0.612116 0.127620i
$$493$$ −1.45755 + 1.45755i −0.0656450 + 0.0656450i
$$494$$ −0.130137 0.0898141i −0.00585513 0.00404093i
$$495$$ −1.94676 + 5.66867i −0.0875002 + 0.254788i
$$496$$ −17.6552 19.9179i −0.792743 0.894340i
$$497$$ −77.3065 12.2442i −3.46767 0.549225i
$$498$$ 7.96596 + 3.81862i 0.356963 + 0.171117i
$$499$$ −30.1851 −1.35127 −0.675636 0.737235i $$-0.736131\pi$$
−0.675636 + 0.737235i $$0.736131\pi$$
$$500$$ −21.2561 6.94106i −0.950602 0.310414i
$$501$$ −10.6216 −0.474536
$$502$$ 6.38979 + 3.06306i 0.285190 + 0.136711i
$$503$$ −26.9819 4.27351i −1.20306 0.190546i −0.477455 0.878656i $$-0.658441\pi$$
−0.725607 + 0.688110i $$0.758441\pi$$
$$504$$ −10.3671 + 8.75017i −0.461789 + 0.389763i
$$505$$ 1.67366 4.87345i 0.0744768 0.216866i
$$506$$ 5.67819 + 3.91881i 0.252426 + 0.174212i
$$507$$ 2.80920 2.80920i 0.124761 0.124761i
$$508$$ 6.68714 + 32.0741i 0.296694 + 1.42306i
$$509$$ −29.0971 9.45423i −1.28971 0.419051i −0.417718 0.908577i $$-0.637170\pi$$
−0.871989 + 0.489526i $$0.837170\pi$$
$$510$$ −0.782539 + 0.794506i −0.0346514 + 0.0351813i
$$511$$ 20.9703 6.81367i 0.927672 0.301419i
$$512$$ −17.4609 + 14.3916i −0.771669 + 0.636025i
$$513$$ 0.0168945 + 0.0331572i 0.000745909 + 0.00146393i
$$514$$ −16.7419 + 5.89197i −0.738455 + 0.259884i
$$515$$ −4.76297 + 8.97534i −0.209881 + 0.395501i
$$516$$ 2.94337 10.8162i 0.129575 0.476155i
$$517$$ −4.81137 30.3778i −0.211604 1.33601i
$$518$$ 46.1029 + 43.9210i 2.02565 + 1.92978i
$$519$$ −3.71576 2.69966i −0.163104 0.118502i
$$520$$ −17.7149 + 6.87531i −0.776850 + 0.301502i
$$521$$ 28.5539 20.7457i 1.25097 0.908883i 0.252693 0.967547i $$-0.418684\pi$$
0.998278 + 0.0586631i $$0.0186838\pi$$
$$522$$ 8.19350 + 1.09493i 0.358620 + 0.0479237i
$$523$$ −4.66469 + 9.15497i −0.203973 + 0.400319i −0.970219 0.242227i $$-0.922122\pi$$
0.766247 + 0.642546i $$0.222122\pi$$
$$524$$ 20.6713 1.00264i 0.903031 0.0438006i
$$525$$ −23.9687 0.798212i −1.04608 0.0348368i
$$526$$ −0.537413 22.1726i −0.0234323 0.966771i
$$527$$ −2.09079 1.06531i −0.0910764 0.0464057i
$$528$$ −0.644500 + 10.7024i −0.0280483 + 0.465760i
$$529$$ 11.5720 + 15.9275i 0.503131 + 0.692501i
$$530$$ −15.1922 + 11.2149i −0.659908 + 0.487144i
$$531$$ −6.72170 + 9.25163i −0.291697 + 0.401487i
$$532$$ −0.264355 0.239896i −0.0114612 0.0104008i
$$533$$ 20.5789 3.25938i 0.891371 0.141179i
$$534$$ −5.64384 + 18.9179i −0.244233 + 0.818659i
$$535$$ 9.36570 + 19.1632i 0.404914 + 0.828497i
$$536$$ −23.5875 + 9.60923i −1.01882 + 0.415056i
$$537$$ 10.7008 5.45231i 0.461772 0.235285i
$$538$$ 7.66305 + 14.1793i 0.330377 + 0.611315i
$$539$$ −13.2573 40.8016i −0.571031 1.75745i
$$540$$ 4.43710 + 0.558710i 0.190942 + 0.0240431i
$$541$$ 5.83972 17.9728i 0.251069 0.772711i −0.743510 0.668725i $$-0.766840\pi$$
0.994579 0.103986i $$-0.0331597\pi$$
$$542$$ 34.5292 6.33009i 1.48315 0.271901i
$$543$$ −13.7776 13.7776i −0.591252 0.591252i
$$544$$ −0.968895 + 1.74379i −0.0415410 + 0.0747642i
$$545$$ −1.29055 + 1.71551i −0.0552813 + 0.0734843i
$$546$$ −16.1927 + 12.3751i −0.692985 + 0.529606i
$$547$$ −4.20606 + 26.5560i −0.179838 + 1.13545i 0.718298 + 0.695736i $$0.244921\pi$$
−0.898136 + 0.439718i $$0.855079\pi$$
$$548$$ −13.5652 6.10301i −0.579475 0.260708i
$$549$$ 4.09291i 0.174681i
$$550$$ −13.5230 + 13.2803i −0.576623 + 0.566272i
$$551$$ 0.217518i 0.00926659i
$$552$$ 1.99773 4.74437i 0.0850290 0.201934i
$$553$$ −1.21667 + 7.68173i −0.0517379 + 0.326660i
$$554$$ 11.8737 + 15.5366i 0.504465 + 0.660088i
$$555$$ 0.349373 20.9877i 0.0148301 0.890879i
$$556$$ −5.40499 + 8.25243i −0.229223 + 0.349981i
$$557$$ 27.7402 + 27.7402i 1.17539 + 1.17539i 0.980906 + 0.194483i $$0.0623029\pi$$
0.194483 + 0.980906i $$0.437697\pi$$
$$558$$ 1.69687 + 9.25604i 0.0718343 + 0.391840i
$$559$$ 5.20373 16.0154i 0.220094 0.677380i
$$560$$ −41.6973 + 10.0877i −1.76203 + 0.426284i
$$561$$ 0.292099 + 0.898987i 0.0123324 + 0.0379553i
$$562$$ −0.423963 + 0.229126i −0.0178838 + 0.00966508i
$$563$$ −11.2472 + 5.73075i −0.474014 + 0.241522i −0.674642 0.738145i $$-0.735702\pi$$
0.200628 + 0.979668i $$0.435702\pi$$
$$564$$ −21.4564 + 8.14064i −0.903479 + 0.342783i
$$565$$ −4.29941 + 0.607786i −0.180877 + 0.0255698i
$$566$$ −9.06871 2.70549i −0.381186 0.113720i
$$567$$ 4.73734 0.750321i 0.198950 0.0315105i
$$568$$ 34.9215 + 30.1803i 1.46527 + 1.26634i
$$569$$ −7.12484 + 9.80651i −0.298689 + 0.411110i −0.931812 0.362941i $$-0.881773\pi$$
0.633123 + 0.774051i $$0.281773\pi$$
$$570$$ 0.000892935 0.117675i 3.74009e−5 0.00492887i
$$571$$ −8.14919 11.2164i −0.341033 0.469391i 0.603710 0.797204i $$-0.293689\pi$$
−0.944743 + 0.327813i $$0.893689\pi$$
$$572$$ −1.74599 + 16.0120i −0.0730036 + 0.669495i
$$573$$ −7.03665 3.58535i −0.293960 0.149780i
$$574$$ 47.0249 1.13978i 1.96278 0.0475733i
$$575$$ 8.24130 3.85921i 0.343686 0.160940i
$$576$$ 7.91559 1.15909i 0.329816 0.0482954i
$$577$$ −6.88925 + 13.5209i −0.286803 + 0.562883i −0.988791 0.149306i $$-0.952296\pi$$
0.701988 + 0.712189i $$0.252296\pi$$
$$578$$ 3.16117 23.6555i 0.131487 0.983938i
$$579$$ 14.2240 10.3344i 0.591130 0.429481i
$$580$$ 21.6262 + 14.6844i 0.897980 + 0.609735i
$$581$$ 24.2388 + 17.6105i 1.00560 + 0.730608i
$$582$$ 8.78746 9.22402i 0.364252 0.382348i
$$583$$ 2.50389 + 15.8089i 0.103700 + 0.654739i
$$584$$ −12.6254 3.10918i −0.522441 0.128659i
$$585$$ 6.61720 + 1.16128i 0.273588 + 0.0480129i
$$586$$ −5.77149 16.3996i −0.238418 0.677461i
$$587$$ −14.2971 28.0597i −0.590106 1.15815i −0.972228 0.234037i $$-0.924806\pi$$
0.382121 0.924112i $$-0.375194\pi$$
$$588$$ −27.7842 + 15.8973i −1.14580 + 0.655594i
$$589$$ −0.235501 + 0.0765188i −0.00970364 + 0.00315290i
$$590$$ −32.0957 + 16.6615i −1.32136 + 0.685945i
$$591$$ −5.31317 1.72635i −0.218555 0.0710127i
$$592$$ −9.43569 36.3443i −0.387805 1.49374i
$$593$$ −11.4197 + 11.4197i −0.468950 + 0.468950i −0.901574 0.432624i $$-0.857588\pi$$
0.432624 + 0.901574i $$0.357588\pi$$
$$594$$ 2.15316 3.11984i 0.0883452 0.128008i
$$595$$ −3.09642 + 2.17187i −0.126941 + 0.0890379i
$$596$$ 7.04571 5.66022i 0.288604 0.231852i
$$597$$ 17.8476 + 2.82678i 0.730453 + 0.115692i
$$598$$ 3.34289 6.97354i 0.136701 0.285169i
$$599$$ 2.22321 0.0908378 0.0454189 0.998968i $$-0.485538\pi$$
0.0454189 + 0.998968i $$0.485538\pi$$
$$600$$ 11.7598 + 7.85531i 0.480094 + 0.320692i
$$601$$ 25.3987 1.03603 0.518017 0.855370i $$-0.326670\pi$$
0.518017 + 0.855370i $$0.326670\pi$$
$$602$$ 16.4338 34.2822i 0.669792 1.39724i
$$603$$ 8.89404 + 1.40868i 0.362193 + 0.0573658i
$$604$$ −36.0302 + 28.9451i −1.46605 + 1.17776i
$$605$$ −2.50087 8.15639i −0.101675 0.331604i
$$606$$ −1.85111 + 2.68218i −0.0751961 + 0.108956i
$$607$$ −26.4929 + 26.4929i −1.07531 + 1.07531i −0.0783895 + 0.996923i $$0.524978\pi$$
−0.996923 + 0.0783895i $$0.975022\pi$$
$$608$$ 0.0578204 + 0.202413i 0.00234493 + 0.00820895i
$$609$$ 26.6636 + 8.66354i 1.08046 + 0.351064i
$$610$$ 5.78829 11.5765i 0.234361 0.468718i
$$611$$ −32.7879 + 10.6534i −1.32646 + 0.430992i
$$612$$ 0.612173 0.350267i 0.0247456 0.0141587i
$$613$$ −20.4288 40.0938i −0.825111 1.61937i −0.784445 0.620199i $$-0.787052\pi$$
−0.0406662 0.999173i $$-0.512948\pi$$
$$614$$ 5.92236 + 16.8283i 0.239007 + 0.679135i
$$615$$ −10.7807 11.1457i −0.434718 0.449436i
$$616$$ −8.69526 + 35.3085i −0.350342 + 1.42262i
$$617$$ 1.08266 + 6.83563i 0.0435862 + 0.275192i 0.999850 0.0173129i $$-0.00551115\pi$$
−0.956264 + 0.292505i $$0.905511\pi$$
$$618$$ 4.43262 4.65283i 0.178306 0.187164i
$$619$$ −21.2578 15.4447i −0.854425 0.620776i 0.0719377 0.997409i $$-0.477082\pi$$
−0.926362 + 0.376633i $$0.877082\pi$$
$$620$$ −8.29064 + 28.5798i −0.332960 + 1.14779i
$$621$$ −1.47243 + 1.06979i −0.0590867 + 0.0429290i
$$622$$ 0.484744 3.62741i 0.0194365 0.145446i
$$623$$ −30.3973 + 59.6580i −1.21784 + 2.39015i
$$624$$ 11.9617 1.16312i 0.478851 0.0465619i
$$625$$ 6.12644 + 24.2377i 0.245058 + 0.969508i
$$626$$ −11.7342 + 0.284411i −0.468994 + 0.0113673i
$$627$$ 0.0888759 + 0.0452845i 0.00354936 + 0.00180849i
$$628$$ −0.900624 + 8.25936i −0.0359388 + 0.329584i
$$629$$ −1.94581 2.67818i −0.0775846 0.106786i
$$630$$ 14.4603 + 4.57743i 0.576113 + 0.182369i
$$631$$ −8.12239 + 11.1795i −0.323347 + 0.445049i −0.939485 0.342589i $$-0.888696\pi$$
0.616138 + 0.787638i $$0.288696\pi$$
$$632$$ 2.99893 3.47005i 0.119291 0.138031i
$$633$$ 7.81141 1.23721i 0.310476 0.0491745i
$$634$$ −38.2314 11.4057i −1.51836 0.452977i
$$635$$ 26.3296 25.4674i 1.04486 1.01064i
$$636$$ 11.1662 4.23648i 0.442767 0.167987i
$$637$$ −42.8473 + 21.8318i −1.69767 + 0.865006i
$$638$$ 19.4928 10.5347i 0.771729 0.417071i
$$639$$ −5.04271 15.5199i −0.199487 0.613956i
$$640$$ 24.0278 + 7.91601i 0.949784 + 0.312908i
$$641$$ −4.52717 + 13.9332i −0.178813 + 0.550328i −0.999787 0.0206365i $$-0.993431\pi$$
0.820975 + 0.570965i $$0.193431\pi$$
$$642$$ −2.43251 13.2688i −0.0960036 0.523677i
$$643$$ −7.98979 7.98979i −0.315087 0.315087i 0.531790 0.846876i $$-0.321520\pi$$
−0.846876 + 0.531790i $$0.821520\pi$$
$$644$$ 9.56587 14.6053i 0.376948 0.575530i
$$645$$ −11.9820 + 3.67386i −0.471791 + 0.144658i
$$646$$ 0.0112693 + 0.0147458i 0.000443385 + 0.000580166i
$$647$$ −1.32584 + 8.37100i −0.0521240 + 0.329098i 0.947823 + 0.318797i $$0.103279\pi$$
−0.999947 + 0.0103008i $$0.996721\pi$$
$$648$$ −2.60676 1.09764i −0.102403 0.0431192i
$$649$$ 30.6525i 1.20322i
$$650$$ 17.0739 + 12.6428i 0.669695 + 0.495891i
$$651$$ 31.9156i 1.25087i
$$652$$ −32.7976 14.7557i −1.28445 0.577879i
$$653$$ 2.70934 17.1061i 0.106025 0.669413i −0.876235 0.481885i $$-0.839952\pi$$
0.982259 0.187528i $$-0.0600476\pi$$
$$654$$ 1.07876 0.824428i 0.0421827 0.0322377i
$$655$$ −13.2870 18.9431i −0.519165 0.740170i
$$656$$ −23.9137 14.0560i −0.933671 0.548794i
$$657$$ 3.25064 + 3.25064i 0.126820 + 0.126820i
$$658$$ −76.5565 + 14.0348i −2.98448 + 0.547133i
$$659$$ −5.39595 + 16.6070i −0.210196 + 0.646917i 0.789264 + 0.614054i $$0.210462\pi$$
−0.999460 + 0.0328630i $$0.989538\pi$$
$$660$$ 10.5022 5.77917i 0.408797 0.224954i
$$661$$ 0.873558 + 2.68854i 0.0339775 + 0.104572i 0.966607 0.256264i $$-0.0824915\pi$$
−0.932629 + 0.360836i $$0.882492\pi$$
$$662$$ −1.37619 2.54644i −0.0534872 0.0989701i
$$663$$ 0.944059 0.481022i 0.0366642 0.0186813i
$$664$$ −6.66575 16.3622i −0.258681 0.634976i
$$665$$ −0.0689877 + 0.393107i −0.00267523 + 0.0152440i
$$666$$ −3.79526 + 12.7216i −0.147063 + 0.492951i
$$667$$ −10.5074 + 1.66421i −0.406849 + 0.0644385i
$$668$$ 15.7312 + 14.2758i 0.608660 + 0.552347i
$$669$$ −12.4098 + 17.0807i −0.479792 + 0.660377i
$$670$$ 23.1639 + 16.5625i 0.894900 + 0.639865i
$$671$$ −6.44847 8.87555i −0.248940 0.342637i
$$672$$ 27.1150 + 0.974247i 1.04598 + 0.0375824i
$$673$$ −30.3795 15.4791i −1.17104 0.596677i −0.243321 0.969946i $$-0.578237\pi$$
−0.927723 + 0.373269i $$0.878237\pi$$
$$674$$ −0.423123 17.4572i −0.0162981 0.672427i
$$675$$ −2.12041 4.52812i −0.0816148 0.174287i
$$676$$ −7.93628 + 0.384941i −0.305242 + 0.0148054i
$$677$$ 9.43439 18.5160i 0.362593 0.711629i −0.635581 0.772034i $$-0.719239\pi$$
0.998174 + 0.0604054i $$0.0192393\pi$$
$$678$$ 2.72202 + 0.363754i 0.104539 + 0.0139699i
$$679$$ 34.9558 25.3969i 1.34148 0.974643i
$$680$$ 2.22684 0.124954i 0.0853954 0.00479177i
$$681$$ 3.41008 + 2.47757i 0.130675 + 0.0949407i
$$682$$ 18.2628 + 17.3984i 0.699318 + 0.666221i
$$683$$ 3.51625 + 22.2008i 0.134546 + 0.849488i 0.958968 + 0.283513i $$0.0915001\pi$$
−0.824423 + 0.565975i $$0.808500\pi$$
$$684$$ 0.0195428 0.0718149i 0.000747237 0.00274591i
$$685$$ 2.32784 + 16.4668i 0.0889421 + 0.629166i
$$686$$ −57.6204 + 20.2783i −2.19996 + 0.774229i
$$687$$ 7.39023 + 14.5041i 0.281955 + 0.553368i
$$688$$ −18.8967 + 12.0635i −0.720428 + 0.459915i
$$689$$ 17.0632 5.54416i 0.650055 0.211216i
$$690$$ −5.67758 + 0.943456i −0.216142 + 0.0359168i
$$691$$ 5.65723 + 1.83814i 0.215211 + 0.0699263i 0.414638 0.909986i $$-0.363908\pi$$
−0.199427 + 0.979913i $$0.563908\pi$$
$$692$$ 1.87485 + 8.99250i 0.0712709 + 0.341843i
$$693$$ 9.09086 9.09086i 0.345333 0.345333i
$$694$$ −16.5889 11.4489i −0.629707 0.434593i
$$695$$ 11.0278 + 0.183574i 0.418307 + 0.00696337i
$$696$$ −10.6635 12.6340i −0.404199 0.478892i
$$697$$ −2.41539 0.382560i −0.0914894 0.0144905i
$$698$$ 23.9538 + 11.4827i 0.906663 + 0.434625i
$$699$$ −4.01793 −0.151972
$$700$$ 34.4264 + 33.3970i 1.30120 + 1.26229i
$$701$$ −2.92229 −0.110374 −0.0551868 0.998476i $$-0.517575\pi$$
−0.0551868 + 0.998476i $$0.517575\pi$$
$$702$$ −3.83156 1.83672i −0.144613 0.0693227i
$$703$$ −0.345031 0.0546475i −0.0130131 0.00206107i
$$704$$ 15.3389 14.9847i 0.578108 0.564756i
$$705$$ 20.5035 + 15.4245i 0.772208 + 0.580922i
$$706$$ 9.73769 + 6.72048i 0.366483 + 0.252929i
$$707$$ −7.81557 + 7.81557i −0.293935 + 0.293935i
$$708$$ 22.3898 4.66806i 0.841462 0.175436i
$$709$$ −17.0212 5.53052i −0.639244 0.207703i −0.0285783 0.999592i $$-0.509098\pi$$
−0.610666 + 0.791889i $$0.709098\pi$$
$$710$$ 7.68564 51.0283i 0.288437 1.91506i
$$711$$ −1.54216 + 0.501079i −0.0578357 + 0.0187919i
$$712$$ 33.7853 20.4332i 1.26616 0.765767i
$$713$$ −5.49811 10.7906i −0.205906 0.404113i
$$714$$ 2.25640 0.794093i 0.0844437 0.0297182i
$$715$$ 16.1792 7.90729i 0.605066 0.295716i
$$716$$ −23.1767 6.30700i −0.866153 0.235704i
$$717$$ −0.473345 2.98858i −0.0176774 0.111611i
$$718$$ 20.8089 + 19.8241i 0.776582 + 0.739827i
$$719$$ 22.8599 + 16.6087i 0.852530 + 0.619399i 0.925842 0.377910i $$-0.123357\pi$$
−0.0733124 + 0.997309i $$0.523357\pi$$
$$720$$ −5.82071 6.79112i −0.216925 0.253090i
$$721$$ 17.6326 12.8108i 0.656673 0.477101i
$$722$$ −26.6314 3.55885i −0.991117 0.132447i
$$723$$ −7.63669 + 14.9878i −0.284011 + 0.557404i
$$724$$ 1.88792 + 38.9231i 0.0701641 + 1.44656i
$$725$$ 0.972751 29.2097i 0.0361271 1.08482i
$$726$$ 0.130738 + 5.39401i 0.00485216 + 0.200190i
$$727$$ 30.9208 + 15.7550i 1.14679 + 0.584319i 0.920887 0.389831i $$-0.127466\pi$$
0.225904 + 0.974150i $$0.427466\pi$$
$$728$$ 40.6152 + 3.43529i 1.50530 + 0.127320i
$$729$$ 0.587785 + 0.809017i 0.0217698 + 0.0299636i
$$730$$ 4.59705 + 13.7913i 0.170145 + 0.510440i
$$731$$ −1.16176 + 1.59902i −0.0429692 + 0.0591420i
$$732$$ −5.50103 + 6.06188i −0.203324 + 0.224053i
$$733$$ −18.5838 + 2.94338i −0.686407 + 0.108716i −0.489890 0.871784i $$-0.662963\pi$$
−0.196517 + 0.980500i $$0.562963\pi$$
$$734$$ 12.0878 40.5179i 0.446170 1.49554i
$$735$$ 31.6135 + 16.7764i 1.16608 + 0.618808i
$$736$$ −9.33539 + 4.34171i −0.344107 + 0.160038i
$$737$$ 21.5063 10.9580i 0.792194 0.403643i
$$738$$ 4.66276 + 8.62774i 0.171638 + 0.317592i
$$739$$ −8.48650 26.1188i −0.312181 0.960794i −0.976899 0.213700i $$-0.931448\pi$$
0.664718 0.747094i $$-0.268552\pi$$
$$740$$ −28.7258 + 30.6147i −1.05598 + 1.12542i
$$741$$ 0.0345507 0.106336i 0.00126925 0.00390635i
$$742$$ 39.8408 7.30386i 1.46260 0.268133i
$$743$$ −24.4972 24.4972i −0.898716 0.898716i 0.0966068 0.995323i $$-0.469201\pi$$
−0.995323 + 0.0966068i $$0.969201\pi$$
$$744$$ 9.92730 15.9895i 0.363952 0.586203i
$$745$$ −9.55661 3.28197i −0.350127 0.120242i
$$746$$ 28.5902 21.8498i 1.04676 0.799977i
$$747$$ −0.977173 + 6.16963i −0.0357529 + 0.225735i
$$748$$ 0.775656 1.72405i 0.0283608 0.0630376i
$$749$$ 45.7519i 1.67174i
$$750$$ 0.406340 15.8062i 0.0148374 0.577160i
$$751$$ 20.0362i 0.731131i 0.930786 + 0.365565i $$0.119124\pi$$
−0.930786 + 0.365565i $$0.880876\pi$$
$$752$$ 42.7198 + 16.7815i 1.55783 + 0.611957i
$$753$$ −0.783827 + 4.94889i −0.0285642 + 0.180348i
$$754$$ −15.0811 19.7335i −0.549221 0.718651i
$$755$$ 48.8703 + 16.7832i 1.77857 + 0.610804i
$$756$$ −8.02478 5.25589i −0.291858 0.191155i
$$757$$ −21.6448 21.6448i −0.786693 0.786693i 0.194257 0.980951i $$-0.437770\pi$$
−0.980951 + 0.194257i $$0.937770\pi$$
$$758$$ −2.24486 12.2452i −0.0815368 0.444764i
$$759$$ −1.50753 + 4.63970i −0.0547199 + 0.168410i
$$760$$ 0.156838 0.175485i 0.00568910 0.00636551i
$$761$$ −10.0218 30.8439i −0.363289 1.11809i −0.951045 0.309051i $$-0.899989\pi$$
0.587756 0.809038i $$-0.300011\pi$$
$$762$$ −20.3815 + 11.0149i −0.738344 + 0.399029i
$$763$$ 4.10289 2.09053i 0.148535 0.0756822i
$$764$$ 5.60290 + 14.7677i 0.202706 + 0.534276i
$$765$$ −0.696543 0.369637i −0.0251836 0.0133642i
$$766$$ −23.4240 6.98815i −0.846345 0.252492i
$$767$$ 33.9357 5.37489i 1.22535 0.194076i
$$768$$ −13.2814 8.92216i −0.479250 0.321951i
$$769$$ 12.5344 17.2521i 0.452001 0.622126i −0.520825 0.853664i $$-0.674376\pi$$
0.972826 + 0.231537i $$0.0743756\pi$$
$$770$$ 38.5693 12.8563i 1.38994 0.463309i
$$771$$ −7.37674 10.1532i −0.265667 0.365659i
$$772$$ −34.9565 3.81175i −1.25811 0.137188i
$$773$$ 34.3860 + 17.5205i 1.23678 + 0.630169i 0.945236 0.326389i $$-0.105832\pi$$