# Properties

 Label 300.2.w.a.67.15 Level $300$ Weight $2$ Character 300.67 Analytic conductor $2.396$ Analytic rank $0$ Dimension $240$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$300 = 2^{2} \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 300.w (of order $$20$$, degree $$8$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.39551206064$$ Analytic rank: $$0$$ Dimension: $$240$$ Relative dimension: $$30$$ over $$\Q(\zeta_{20})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

## Embedding invariants

 Embedding label 67.15 Character $$\chi$$ $$=$$ 300.67 Dual form 300.2.w.a.103.15

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.194555 - 1.40077i) q^{2} +(-0.987688 - 0.156434i) q^{3} +(-1.92430 + 0.545051i) q^{4} +(1.56105 + 1.60098i) q^{5} +(-0.0269690 + 1.41396i) q^{6} +(1.26539 - 1.26539i) q^{7} +(1.13787 + 2.58945i) q^{8} +(0.951057 + 0.309017i) q^{9} +O(q^{10})$$ $$q+(-0.194555 - 1.40077i) q^{2} +(-0.987688 - 0.156434i) q^{3} +(-1.92430 + 0.545051i) q^{4} +(1.56105 + 1.60098i) q^{5} +(-0.0269690 + 1.41396i) q^{6} +(1.26539 - 1.26539i) q^{7} +(1.13787 + 2.58945i) q^{8} +(0.951057 + 0.309017i) q^{9} +(1.93889 - 2.49814i) q^{10} +(2.45369 - 0.797253i) q^{11} +(1.98587 - 0.237314i) q^{12} +(0.719314 + 1.41173i) q^{13} +(-2.01871 - 1.52633i) q^{14} +(-1.29138 - 1.82547i) q^{15} +(3.40584 - 2.09768i) q^{16} +(-0.968521 - 6.11500i) q^{17} +(0.247828 - 1.39233i) q^{18} +(4.18468 + 3.04035i) q^{19} +(-3.87653 - 2.22991i) q^{20} +(-1.44777 + 1.05186i) q^{21} +(-1.59414 - 3.28194i) q^{22} +(2.77576 - 5.44773i) q^{23} +(-0.718783 - 2.73557i) q^{24} +(-0.126271 + 4.99841i) q^{25} +(1.83756 - 1.28225i) q^{26} +(-0.891007 - 0.453990i) q^{27} +(-1.74529 + 3.12470i) q^{28} +(-2.10923 - 2.90311i) q^{29} +(-2.30582 + 2.16407i) q^{30} +(-3.46723 + 4.77223i) q^{31} +(-3.60098 - 4.36267i) q^{32} +(-2.54820 + 0.403595i) q^{33} +(-8.37726 + 2.54637i) q^{34} +(4.00121 + 0.0505318i) q^{35} +(-1.99855 - 0.0762659i) q^{36} +(8.50512 - 4.33357i) q^{37} +(3.44467 - 6.45327i) q^{38} +(-0.489614 - 1.50688i) q^{39} +(-2.36939 + 5.86396i) q^{40} +(-2.24529 + 6.91028i) q^{41} +(1.75509 + 1.82334i) q^{42} +(1.96263 + 1.96263i) q^{43} +(-4.28709 + 2.87154i) q^{44} +(0.989913 + 2.00501i) q^{45} +(-8.17104 - 2.82831i) q^{46} +(0.00589566 - 0.0372238i) q^{47} +(-3.69206 + 1.53906i) q^{48} +3.79756i q^{49} +(7.02617 - 0.795586i) q^{50} +6.19122i q^{51} +(-2.15364 - 2.32453i) q^{52} +(-1.13623 + 7.17385i) q^{53} +(-0.462586 + 1.33642i) q^{54} +(5.10671 + 2.68376i) q^{55} +(4.71653 + 1.83682i) q^{56} +(-3.65754 - 3.65754i) q^{57} +(-3.65622 + 3.51935i) q^{58} +(2.91440 - 8.96960i) q^{59} +(3.47997 + 2.80888i) q^{60} +(-0.911425 - 2.80508i) q^{61} +(7.35935 + 3.92832i) q^{62} +(1.59449 - 0.812433i) q^{63} +(-5.41050 + 5.89292i) q^{64} +(-1.13727 + 3.35539i) q^{65} +(1.06111 + 3.49091i) q^{66} +(-6.72692 + 1.06544i) q^{67} +(5.19671 + 11.2392i) q^{68} +(-3.59380 + 4.94644i) q^{69} +(-0.707670 - 5.61459i) q^{70} +(1.78138 + 2.45186i) q^{71} +(0.281995 + 2.81433i) q^{72} +(6.68488 + 3.40612i) q^{73} +(-7.72504 - 11.0706i) q^{74} +(0.906640 - 4.91711i) q^{75} +(-9.70971 - 3.56967i) q^{76} +(2.09605 - 4.11372i) q^{77} +(-2.01553 + 0.979005i) q^{78} +(-3.75981 + 2.73166i) q^{79} +(8.67501 + 2.17810i) q^{80} +(0.809017 + 0.587785i) q^{81} +(10.1165 + 1.80070i) q^{82} +(-1.32439 - 8.36187i) q^{83} +(2.21261 - 2.81320i) q^{84} +(8.27808 - 11.0964i) q^{85} +(2.36735 - 3.13103i) q^{86} +(1.62912 + 3.19732i) q^{87} +(4.85643 + 5.44654i) q^{88} +(-2.83952 + 0.922614i) q^{89} +(2.61596 - 1.77672i) q^{90} +(2.69661 + 0.876183i) q^{91} +(-2.37209 + 11.9960i) q^{92} +(4.17109 - 4.17109i) q^{93} +(-0.0532888 - 0.00101640i) q^{94} +(1.66494 + 11.4457i) q^{95} +(2.87418 + 4.87228i) q^{96} +(-12.1121 - 1.91837i) q^{97} +(5.31949 - 0.738832i) q^{98} +2.57996 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$240q + 12q^{8} + O(q^{10})$$ $$240q + 12q^{8} + 8q^{10} + 8q^{12} + 4q^{13} + 20q^{17} - 20q^{20} - 12q^{22} + 20q^{25} + 4q^{28} - 8q^{30} - 20q^{32} - 8q^{33} - 4q^{37} - 76q^{38} - 92q^{40} - 20q^{42} - 140q^{44} - 4q^{45} - 16q^{48} - 164q^{50} - 172q^{52} - 4q^{53} - 120q^{58} + 20q^{60} - 44q^{62} - 60q^{64} - 20q^{65} + 16q^{68} - 44q^{70} + 12q^{72} - 44q^{73} - 48q^{77} + 24q^{78} - 4q^{80} + 60q^{81} + 24q^{82} + 80q^{84} - 64q^{85} + 60q^{88} - 260q^{89} + 48q^{90} + 144q^{92} - 64q^{93} + 40q^{94} - 20q^{96} - 180q^{97} + 256q^{98} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/300\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$151$$ $$277$$ $$\chi(n)$$ $$1$$ $$-1$$ $$e\left(\frac{13}{20}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.194555 1.40077i −0.137571 0.990492i
$$3$$ −0.987688 0.156434i −0.570242 0.0903175i
$$4$$ −1.92430 + 0.545051i −0.962149 + 0.272526i
$$5$$ 1.56105 + 1.60098i 0.698121 + 0.715980i
$$6$$ −0.0269690 + 1.41396i −0.0110100 + 0.577245i
$$7$$ 1.26539 1.26539i 0.478274 0.478274i −0.426305 0.904579i $$-0.640185\pi$$
0.904579 + 0.426305i $$0.140185\pi$$
$$8$$ 1.13787 + 2.58945i 0.402298 + 0.915509i
$$9$$ 0.951057 + 0.309017i 0.317019 + 0.103006i
$$10$$ 1.93889 2.49814i 0.613131 0.789981i
$$11$$ 2.45369 0.797253i 0.739816 0.240381i 0.0852225 0.996362i $$-0.472840\pi$$
0.654593 + 0.755981i $$0.272840\pi$$
$$12$$ 1.98587 0.237314i 0.573271 0.0685068i
$$13$$ 0.719314 + 1.41173i 0.199502 + 0.391544i 0.968984 0.247124i $$-0.0794856\pi$$
−0.769482 + 0.638668i $$0.779486\pi$$
$$14$$ −2.01871 1.52633i −0.539523 0.407930i
$$15$$ −1.29138 1.82547i −0.333432 0.471334i
$$16$$ 3.40584 2.09768i 0.851460 0.524420i
$$17$$ −0.968521 6.11500i −0.234901 1.48310i −0.769852 0.638222i $$-0.779670\pi$$
0.534952 0.844883i $$-0.320330\pi$$
$$18$$ 0.247828 1.39233i 0.0584137 0.328175i
$$19$$ 4.18468 + 3.04035i 0.960031 + 0.697503i 0.953158 0.302473i $$-0.0978122\pi$$
0.00687313 + 0.999976i $$0.497812\pi$$
$$20$$ −3.87653 2.22991i −0.866819 0.498623i
$$21$$ −1.44777 + 1.05186i −0.315928 + 0.229535i
$$22$$ −1.59414 3.28194i −0.339872 0.699712i
$$23$$ 2.77576 5.44773i 0.578786 1.13593i −0.397126 0.917764i $$-0.629992\pi$$
0.975912 0.218167i $$-0.0700077\pi$$
$$24$$ −0.718783 2.73557i −0.146721 0.558396i
$$25$$ −0.126271 + 4.99841i −0.0252543 + 0.999681i
$$26$$ 1.83756 1.28225i 0.360376 0.251470i
$$27$$ −0.891007 0.453990i −0.171474 0.0873705i
$$28$$ −1.74529 + 3.12470i −0.329829 + 0.590512i
$$29$$ −2.10923 2.90311i −0.391674 0.539093i 0.566956 0.823748i $$-0.308121\pi$$
−0.958630 + 0.284655i $$0.908121\pi$$
$$30$$ −2.30582 + 2.16407i −0.420982 + 0.395104i
$$31$$ −3.46723 + 4.77223i −0.622733 + 0.857119i −0.997548 0.0699809i $$-0.977706\pi$$
0.374815 + 0.927100i $$0.377706\pi$$
$$32$$ −3.60098 4.36267i −0.636570 0.771219i
$$33$$ −2.54820 + 0.403595i −0.443585 + 0.0702569i
$$34$$ −8.37726 + 2.54637i −1.43669 + 0.436699i
$$35$$ 4.00121 + 0.0505318i 0.676328 + 0.00854144i
$$36$$ −1.99855 0.0762659i −0.333091 0.0127110i
$$37$$ 8.50512 4.33357i 1.39823 0.712435i 0.417662 0.908602i $$-0.362850\pi$$
0.980570 + 0.196167i $$0.0628495\pi$$
$$38$$ 3.44467 6.45327i 0.558799 1.04686i
$$39$$ −0.489614 1.50688i −0.0784010 0.241293i
$$40$$ −2.36939 + 5.86396i −0.374633 + 0.927173i
$$41$$ −2.24529 + 6.91028i −0.350655 + 1.07920i 0.607831 + 0.794066i $$0.292040\pi$$
−0.958486 + 0.285139i $$0.907960\pi$$
$$42$$ 1.75509 + 1.82334i 0.270816 + 0.281347i
$$43$$ 1.96263 + 1.96263i 0.299299 + 0.299299i 0.840739 0.541440i $$-0.182121\pi$$
−0.541440 + 0.840739i $$0.682121\pi$$
$$44$$ −4.28709 + 2.87154i −0.646303 + 0.432901i
$$45$$ 0.989913 + 2.00501i 0.147568 + 0.298890i
$$46$$ −8.17104 2.82831i −1.20475 0.417012i
$$47$$ 0.00589566 0.0372238i 0.000859971 0.00542964i −0.987255 0.159149i $$-0.949125\pi$$
0.988115 + 0.153719i $$0.0491251\pi$$
$$48$$ −3.69206 + 1.53906i −0.532902 + 0.222145i
$$49$$ 3.79756i 0.542508i
$$50$$ 7.02617 0.795586i 0.993650 0.112513i
$$51$$ 6.19122i 0.866944i
$$52$$ −2.15364 2.32453i −0.298656 0.322354i
$$53$$ −1.13623 + 7.17385i −0.156073 + 0.985404i 0.777985 + 0.628283i $$0.216242\pi$$
−0.934058 + 0.357122i $$0.883758\pi$$
$$54$$ −0.462586 + 1.33642i −0.0629499 + 0.181864i
$$55$$ 5.10671 + 2.68376i 0.688589 + 0.361878i
$$56$$ 4.71653 + 1.83682i 0.630273 + 0.245455i
$$57$$ −3.65754 3.65754i −0.484453 0.484453i
$$58$$ −3.65622 + 3.51935i −0.480085 + 0.462114i
$$59$$ 2.91440 8.96960i 0.379422 1.16774i −0.561024 0.827800i $$-0.689592\pi$$
0.940446 0.339942i $$-0.110408\pi$$
$$60$$ 3.47997 + 2.80888i 0.449262 + 0.362625i
$$61$$ −0.911425 2.80508i −0.116696 0.359153i 0.875601 0.483035i $$-0.160466\pi$$
−0.992297 + 0.123882i $$0.960466\pi$$
$$62$$ 7.35935 + 3.92832i 0.934639 + 0.498898i
$$63$$ 1.59449 0.812433i 0.200887 0.102357i
$$64$$ −5.41050 + 5.89292i −0.676313 + 0.736615i
$$65$$ −1.13727 + 3.35539i −0.141061 + 0.416184i
$$66$$ 1.06111 + 3.49091i 0.130613 + 0.429702i
$$67$$ −6.72692 + 1.06544i −0.821825 + 0.130164i −0.553166 0.833071i $$-0.686580\pi$$
−0.268659 + 0.963235i $$0.586580\pi$$
$$68$$ 5.19671 + 11.2392i 0.630194 + 1.36295i
$$69$$ −3.59380 + 4.94644i −0.432642 + 0.595481i
$$70$$ −0.707670 5.61459i −0.0845827 0.671072i
$$71$$ 1.78138 + 2.45186i 0.211411 + 0.290982i 0.901533 0.432711i $$-0.142443\pi$$
−0.690122 + 0.723693i $$0.742443\pi$$
$$72$$ 0.281995 + 2.81433i 0.0332335 + 0.331672i
$$73$$ 6.68488 + 3.40612i 0.782406 + 0.398656i 0.799095 0.601205i $$-0.205312\pi$$
−0.0166887 + 0.999861i $$0.505312\pi$$
$$74$$ −7.72504 11.0706i −0.898017 1.28693i
$$75$$ 0.906640 4.91711i 0.104690 0.567779i
$$76$$ −9.70971 3.56967i −1.11378 0.409469i
$$77$$ 2.09605 4.11372i 0.238867 0.468802i
$$78$$ −2.01553 + 0.979005i −0.228214 + 0.110851i
$$79$$ −3.75981 + 2.73166i −0.423012 + 0.307336i −0.778848 0.627212i $$-0.784196\pi$$
0.355837 + 0.934548i $$0.384196\pi$$
$$80$$ 8.67501 + 2.17810i 0.969896 + 0.243519i
$$81$$ 0.809017 + 0.587785i 0.0898908 + 0.0653095i
$$82$$ 10.1165 + 1.80070i 1.11718 + 0.198854i
$$83$$ −1.32439 8.36187i −0.145371 0.917835i −0.947284 0.320395i $$-0.896185\pi$$
0.801913 0.597440i $$-0.203815\pi$$
$$84$$ 2.21261 2.81320i 0.241416 0.306946i
$$85$$ 8.27808 11.0964i 0.897884 1.20357i
$$86$$ 2.36735 3.13103i 0.255278 0.337628i
$$87$$ 1.62912 + 3.19732i 0.174660 + 0.342789i
$$88$$ 4.85643 + 5.44654i 0.517697 + 0.580603i
$$89$$ −2.83952 + 0.922614i −0.300988 + 0.0977969i −0.455618 0.890176i $$-0.650582\pi$$
0.154630 + 0.987973i $$0.450582\pi$$
$$90$$ 2.61596 1.77672i 0.275747 0.187283i
$$91$$ 2.69661 + 0.876183i 0.282682 + 0.0918489i
$$92$$ −2.37209 + 11.9960i −0.247307 + 1.25067i
$$93$$ 4.17109 4.17109i 0.432521 0.432521i
$$94$$ −0.0532888 0.00101640i −0.00549632 0.000104834i
$$95$$ 1.66494 + 11.4457i 0.170819 + 1.17430i
$$96$$ 2.87418 + 4.87228i 0.293345 + 0.497275i
$$97$$ −12.1121 1.91837i −1.22980 0.194781i −0.492479 0.870324i $$-0.663909\pi$$
−0.737320 + 0.675543i $$0.763909\pi$$
$$98$$ 5.31949 0.738832i 0.537350 0.0746333i
$$99$$ 2.57996 0.259296
$$100$$ −2.48140 9.68724i −0.248140 0.968724i
$$101$$ −18.4944 −1.84026 −0.920129 0.391616i $$-0.871916\pi$$
−0.920129 + 0.391616i $$0.871916\pi$$
$$102$$ 8.67246 1.20453i 0.858702 0.119266i
$$103$$ −19.8981 3.15155i −1.96062 0.310532i −0.999396 0.0347649i $$-0.988932\pi$$
−0.961225 0.275767i $$-0.911068\pi$$
$$104$$ −2.83712 + 3.46900i −0.278203 + 0.340163i
$$105$$ −3.94404 0.675836i −0.384899 0.0659549i
$$106$$ 10.2700 + 0.195883i 0.997506 + 0.0190258i
$$107$$ −9.72003 + 9.72003i −0.939671 + 0.939671i −0.998281 0.0586099i $$-0.981333\pi$$
0.0586099 + 0.998281i $$0.481333\pi$$
$$108$$ 1.96201 + 0.387968i 0.188794 + 0.0373323i
$$109$$ 9.37929 + 3.04752i 0.898373 + 0.291899i 0.721565 0.692346i $$-0.243423\pi$$
0.176808 + 0.984245i $$0.443423\pi$$
$$110$$ 2.76579 7.67545i 0.263708 0.731825i
$$111$$ −9.07833 + 2.94973i −0.861677 + 0.279976i
$$112$$ 1.65533 6.96412i 0.156414 0.658047i
$$113$$ −2.97994 5.84847i −0.280330 0.550178i 0.707313 0.706900i $$-0.249907\pi$$
−0.987643 + 0.156723i $$0.949907\pi$$
$$114$$ −4.41177 + 5.83496i −0.413201 + 0.546494i
$$115$$ 13.0548 4.06023i 1.21737 0.378618i
$$116$$ 5.64113 + 4.43680i 0.523766 + 0.411947i
$$117$$ 0.247859 + 1.56492i 0.0229145 + 0.144677i
$$118$$ −13.1313 2.33732i −1.20884 0.215168i
$$119$$ −8.96344 6.51232i −0.821677 0.596983i
$$120$$ 3.25754 5.42111i 0.297372 0.494877i
$$121$$ −3.51420 + 2.55321i −0.319473 + 0.232110i
$$122$$ −3.75194 + 1.82243i −0.339684 + 0.164995i
$$123$$ 3.29865 6.47397i 0.297429 0.583738i
$$124$$ 4.07087 11.0730i 0.365575 0.994386i
$$125$$ −8.19946 + 7.60058i −0.733382 + 0.679817i
$$126$$ −1.44824 2.07545i −0.129020 0.184895i
$$127$$ −15.0362 7.66131i −1.33424 0.679831i −0.366182 0.930543i $$-0.619335\pi$$
−0.968062 + 0.250712i $$0.919335\pi$$
$$128$$ 9.30724 + 6.43236i 0.822652 + 0.568545i
$$129$$ −1.63145 2.24550i −0.143641 0.197705i
$$130$$ 4.92138 + 0.940250i 0.431633 + 0.0824653i
$$131$$ −2.64378 + 3.63885i −0.230988 + 0.317928i −0.908740 0.417363i $$-0.862954\pi$$
0.677752 + 0.735291i $$0.262954\pi$$
$$132$$ 4.68351 2.16554i 0.407648 0.188486i
$$133$$ 9.14250 1.44803i 0.792756 0.125560i
$$134$$ 2.80119 + 9.21557i 0.241986 + 0.796104i
$$135$$ −0.664073 2.13518i −0.0571543 0.183767i
$$136$$ 14.7324 9.46601i 1.26330 0.811704i
$$137$$ 15.3805 7.83674i 1.31404 0.669538i 0.350367 0.936613i $$-0.386057\pi$$
0.963676 + 0.267074i $$0.0860569\pi$$
$$138$$ 7.62800 + 4.07172i 0.649338 + 0.346608i
$$139$$ 4.36271 + 13.4270i 0.370040 + 1.13887i 0.946764 + 0.321928i $$0.104331\pi$$
−0.576724 + 0.816939i $$0.695669\pi$$
$$140$$ −7.72705 + 2.08363i −0.653055 + 0.176098i
$$141$$ −0.0116462 + 0.0358432i −0.000980783 + 0.00301854i
$$142$$ 3.08791 2.97232i 0.259131 0.249431i
$$143$$ 2.89048 + 2.89048i 0.241714 + 0.241714i
$$144$$ 3.88736 0.942552i 0.323947 0.0785460i
$$145$$ 1.35521 7.90872i 0.112544 0.656783i
$$146$$ 3.47060 10.0266i 0.287229 0.829811i
$$147$$ 0.594069 3.75080i 0.0489980 0.309361i
$$148$$ −14.0044 + 12.9748i −1.15115 + 1.06652i
$$149$$ 17.2353i 1.41197i −0.708227 0.705985i $$-0.750505\pi$$
0.708227 0.705985i $$-0.249495\pi$$
$$150$$ −7.06412 0.313344i −0.576783 0.0255844i
$$151$$ 9.16179i 0.745576i 0.927917 + 0.372788i $$0.121598\pi$$
−0.927917 + 0.372788i $$0.878402\pi$$
$$152$$ −3.11120 + 14.2955i −0.252352 + 1.15952i
$$153$$ 0.968521 6.11500i 0.0783002 0.494368i
$$154$$ −6.17017 2.13573i −0.497206 0.172102i
$$155$$ −13.0528 + 1.89871i −1.04842 + 0.152508i
$$156$$ 1.76349 + 2.63281i 0.141192 + 0.210794i
$$157$$ −3.35617 3.35617i −0.267851 0.267851i 0.560383 0.828234i $$-0.310654\pi$$
−0.828234 + 0.560383i $$0.810654\pi$$
$$158$$ 4.55791 + 4.73516i 0.362608 + 0.376709i
$$159$$ 2.24447 6.90778i 0.177998 0.547823i
$$160$$ 1.36325 12.5754i 0.107774 0.994175i
$$161$$ −3.38110 10.4060i −0.266468 0.820104i
$$162$$ 0.665952 1.24760i 0.0523222 0.0980208i
$$163$$ 4.84163 2.46694i 0.379226 0.193225i −0.253978 0.967210i $$-0.581739\pi$$
0.633204 + 0.773985i $$0.281739\pi$$
$$164$$ 0.554140 14.5212i 0.0432711 1.13392i
$$165$$ −4.62400 3.44959i −0.359978 0.268550i
$$166$$ −11.4554 + 3.48200i −0.889109 + 0.270256i
$$167$$ −16.3746 + 2.59348i −1.26710 + 0.200690i −0.753563 0.657375i $$-0.771667\pi$$
−0.513541 + 0.858065i $$0.671667\pi$$
$$168$$ −4.37112 2.55203i −0.337239 0.196894i
$$169$$ 6.16563 8.48626i 0.474279 0.652789i
$$170$$ −17.1540 9.43681i −1.31565 0.723771i
$$171$$ 3.04035 + 4.18468i 0.232501 + 0.320010i
$$172$$ −4.84643 2.70696i −0.369537 0.206403i
$$173$$ 17.8380 + 9.08892i 1.35620 + 0.691018i 0.972601 0.232483i $$-0.0746849\pi$$
0.383598 + 0.923500i $$0.374685\pi$$
$$174$$ 4.16175 2.90407i 0.315501 0.220157i
$$175$$ 6.16517 + 6.48473i 0.466043 + 0.490200i
$$176$$ 6.68449 7.86238i 0.503863 0.592649i
$$177$$ −4.28167 + 8.40325i −0.321830 + 0.631627i
$$178$$ 1.84481 + 3.79800i 0.138274 + 0.284672i
$$179$$ 16.1069 11.7023i 1.20389 0.874674i 0.209224 0.977868i $$-0.432906\pi$$
0.994661 + 0.103194i $$0.0329062\pi$$
$$180$$ −2.99772 3.31868i −0.223437 0.247360i
$$181$$ −8.23772 5.98505i −0.612305 0.444866i 0.237920 0.971285i $$-0.423534\pi$$
−0.850225 + 0.526419i $$0.823534\pi$$
$$182$$ 0.702690 3.94779i 0.0520868 0.292630i
$$183$$ 0.461393 + 2.91312i 0.0341071 + 0.215344i
$$184$$ 17.2651 + 0.988871i 1.27280 + 0.0729006i
$$185$$ 20.2148 + 6.85161i 1.48622 + 0.503741i
$$186$$ −6.65422 5.03122i −0.487911 0.368907i
$$187$$ −7.25165 14.2322i −0.530293 1.04076i
$$188$$ 0.00894385 + 0.0748430i 0.000652297 + 0.00545849i
$$189$$ −1.70195 + 0.552997i −0.123799 + 0.0402246i
$$190$$ 15.7088 4.55901i 1.13964 0.330745i
$$191$$ −12.1738 3.95551i −0.880866 0.286211i −0.166549 0.986033i $$-0.553262\pi$$
−0.714317 + 0.699823i $$0.753262\pi$$
$$192$$ 6.26574 4.97398i 0.452191 0.358966i
$$193$$ 3.19755 3.19755i 0.230165 0.230165i −0.582597 0.812761i $$-0.697963\pi$$
0.812761 + 0.582597i $$0.197963\pi$$
$$194$$ −0.330723 + 17.3395i −0.0237445 + 1.24490i
$$195$$ 1.64817 3.13617i 0.118028 0.224586i
$$196$$ −2.06986 7.30763i −0.147847 0.521973i
$$197$$ −11.4480 1.81319i −0.815639 0.129184i −0.265343 0.964154i $$-0.585485\pi$$
−0.550296 + 0.834970i $$0.685485\pi$$
$$198$$ −0.501944 3.61393i −0.0356716 0.256831i
$$199$$ 8.34981 0.591902 0.295951 0.955203i $$-0.404363\pi$$
0.295951 + 0.955203i $$0.404363\pi$$
$$200$$ −13.0868 + 5.36057i −0.925376 + 0.379049i
$$201$$ 6.81078 0.480395
$$202$$ 3.59816 + 25.9063i 0.253166 + 1.82276i
$$203$$ −6.34258 1.00457i −0.445162 0.0705067i
$$204$$ −3.37453 11.9138i −0.236265 0.834129i
$$205$$ −14.5682 + 7.19261i −1.01749 + 0.502354i
$$206$$ −0.543321 + 28.4858i −0.0378550 + 1.98470i
$$207$$ 4.32335 4.32335i 0.300493 0.300493i
$$208$$ 5.41123 + 3.29924i 0.375201 + 0.228761i
$$209$$ 12.6918 + 4.12383i 0.877912 + 0.285251i
$$210$$ −0.179358 + 5.65617i −0.0123769 + 0.390313i
$$211$$ 14.6855 4.77161i 1.01099 0.328491i 0.243743 0.969840i $$-0.421625\pi$$
0.767250 + 0.641348i $$0.221625\pi$$
$$212$$ −1.72368 14.4239i −0.118383 0.990639i
$$213$$ −1.37589 2.70034i −0.0942745 0.185024i
$$214$$ 15.5066 + 11.7244i 1.06001 + 0.801465i
$$215$$ −0.0783752 + 6.20590i −0.00534515 + 0.423239i
$$216$$ 0.161735 2.82380i 0.0110047 0.192135i
$$217$$ 1.65134 + 10.4262i 0.112100 + 0.707775i
$$218$$ 2.44408 13.7311i 0.165534 0.929988i
$$219$$ −6.06975 4.40993i −0.410155 0.297995i
$$220$$ −11.2896 2.38094i −0.761146 0.160523i
$$221$$ 7.93607 5.76589i 0.533838 0.387856i
$$222$$ 5.89811 + 12.1427i 0.395855 + 0.814967i
$$223$$ −3.75855 + 7.37657i −0.251691 + 0.493972i −0.981936 0.189214i $$-0.939406\pi$$
0.730245 + 0.683186i $$0.239406\pi$$
$$224$$ −10.0772 0.963835i −0.673309 0.0643990i
$$225$$ −1.66468 + 4.71475i −0.110979 + 0.314316i
$$226$$ −7.61258 + 5.31205i −0.506381 + 0.353353i
$$227$$ 24.4631 + 12.4646i 1.62367 + 0.827303i 0.998919 + 0.0464825i $$0.0148012\pi$$
0.624755 + 0.780821i $$0.285199\pi$$
$$228$$ 9.03175 + 5.04465i 0.598142 + 0.334090i
$$229$$ 10.4537 + 14.3883i 0.690803 + 0.950808i 1.00000 0.000189558i $$-6.03382e-5\pi$$
−0.309197 + 0.950998i $$0.600060\pi$$
$$230$$ −8.22731 17.4968i −0.542492 1.15370i
$$231$$ −2.71377 + 3.73518i −0.178553 + 0.245757i
$$232$$ 5.11742 8.76511i 0.335975 0.575457i
$$233$$ −5.32769 + 0.843823i −0.349029 + 0.0552807i −0.328488 0.944508i $$-0.606539\pi$$
−0.0205411 + 0.999789i $$0.506539\pi$$
$$234$$ 2.14386 0.651654i 0.140149 0.0426000i
$$235$$ 0.0687979 0.0486692i 0.00448788 0.00317483i
$$236$$ −0.719278 + 18.8487i −0.0468210 + 1.22694i
$$237$$ 4.14085 2.10987i 0.268977 0.137051i
$$238$$ −7.37837 + 13.8227i −0.478268 + 0.895992i
$$239$$ 3.11661 + 9.59193i 0.201596 + 0.620450i 0.999836 + 0.0181100i $$0.00576491\pi$$
−0.798240 + 0.602340i $$0.794235\pi$$
$$240$$ −8.22748 3.50836i −0.531082 0.226463i
$$241$$ −1.59822 + 4.91881i −0.102950 + 0.316848i −0.989244 0.146275i $$-0.953271\pi$$
0.886294 + 0.463124i $$0.153271\pi$$
$$242$$ 4.26016 + 4.42583i 0.273854 + 0.284503i
$$243$$ −0.707107 0.707107i −0.0453609 0.0453609i
$$244$$ 3.28276 + 4.90103i 0.210157 + 0.313756i
$$245$$ −6.07981 + 5.92816i −0.388425 + 0.378736i
$$246$$ −9.71028 3.36110i −0.619105 0.214296i
$$247$$ −1.28206 + 8.09461i −0.0815756 + 0.515048i
$$248$$ −16.3027 3.54804i −1.03522 0.225300i
$$249$$ 8.46610i 0.536518i
$$250$$ 12.2419 + 10.0068i 0.774245 + 0.632886i
$$251$$ 13.6267i 0.860111i −0.902803 0.430055i $$-0.858494\pi$$
0.902803 0.430055i $$-0.141506\pi$$
$$252$$ −2.62545 + 2.43244i −0.165388 + 0.153229i
$$253$$ 2.46764 15.5800i 0.155139 0.979508i
$$254$$ −7.80635 + 22.5527i −0.489814 + 1.41508i
$$255$$ −9.91202 + 9.66478i −0.620715 + 0.605232i
$$256$$ 7.19947 14.2887i 0.449967 0.893045i
$$257$$ 10.7300 + 10.7300i 0.669319 + 0.669319i 0.957558 0.288239i $$-0.0930698\pi$$
−0.288239 + 0.957558i $$0.593070\pi$$
$$258$$ −2.82801 + 2.72215i −0.176064 + 0.169474i
$$259$$ 5.27865 16.2460i 0.327999 1.00948i
$$260$$ 0.359594 7.07663i 0.0223011 0.438874i
$$261$$ −1.10889 3.41281i −0.0686384 0.211247i
$$262$$ 5.61154 + 2.99536i 0.346682 + 0.185054i
$$263$$ −16.1259 + 8.21657i −0.994367 + 0.506655i −0.873923 0.486065i $$-0.838432\pi$$
−0.120444 + 0.992720i $$0.538432\pi$$
$$264$$ −3.94461 6.13920i −0.242774 0.377841i
$$265$$ −13.2589 + 9.37963i −0.814487 + 0.576186i
$$266$$ −3.80707 12.5248i −0.233426 0.767945i
$$267$$ 2.94888 0.467057i 0.180469 0.0285835i
$$268$$ 12.3639 5.71674i 0.755244 0.349206i
$$269$$ −9.43653 + 12.9883i −0.575355 + 0.791908i −0.993177 0.116621i $$-0.962794\pi$$
0.417821 + 0.908529i $$0.362794\pi$$
$$270$$ −2.86170 + 1.34562i −0.174157 + 0.0818919i
$$271$$ 1.76045 + 2.42305i 0.106940 + 0.147190i 0.859132 0.511753i $$-0.171004\pi$$
−0.752193 + 0.658943i $$0.771004\pi$$
$$272$$ −16.1259 18.7950i −0.977779 1.13962i
$$273$$ −2.52635 1.28724i −0.152902 0.0779072i
$$274$$ −13.9698 20.0198i −0.843946 1.20944i
$$275$$ 3.67516 + 12.3652i 0.221621 + 0.745650i
$$276$$ 4.21947 11.4772i 0.253982 0.690847i
$$277$$ −7.87265 + 15.4509i −0.473022 + 0.928357i 0.524036 + 0.851696i $$0.324426\pi$$
−0.997057 + 0.0766608i $$0.975574\pi$$
$$278$$ 17.9594 8.72344i 1.07713 0.523197i
$$279$$ −4.77223 + 3.46723i −0.285706 + 0.207578i
$$280$$ 4.42201 + 10.4184i 0.264266 + 0.622620i
$$281$$ −8.05625 5.85321i −0.480595 0.349173i 0.320961 0.947092i $$-0.395994\pi$$
−0.801556 + 0.597920i $$0.795994\pi$$
$$282$$ 0.0524738 + 0.00934010i 0.00312477 + 0.000556195i
$$283$$ −1.77033 11.1775i −0.105235 0.664431i −0.982758 0.184896i $$-0.940805\pi$$
0.877523 0.479535i $$-0.159195\pi$$
$$284$$ −4.76429 3.74716i −0.282709 0.222353i
$$285$$ 0.146059 11.5652i 0.00865180 0.685066i
$$286$$ 3.48653 4.61125i 0.206163 0.272669i
$$287$$ 5.90306 + 11.5854i 0.348446 + 0.683865i
$$288$$ −2.07660 5.26191i −0.122365 0.310061i
$$289$$ −20.2872 + 6.59171i −1.19337 + 0.387748i
$$290$$ −11.3419 0.359655i −0.666021 0.0211197i
$$291$$ 11.6629 + 3.78951i 0.683691 + 0.222145i
$$292$$ −14.7202 2.91078i −0.861435 0.170340i
$$293$$ −19.4066 + 19.4066i −1.13375 + 1.13375i −0.144199 + 0.989549i $$0.546060\pi$$
−0.989549 + 0.144199i $$0.953940\pi$$
$$294$$ −5.36958 0.102416i −0.313160 0.00597303i
$$295$$ 18.9097 9.33606i 1.10096 0.543566i
$$296$$ 20.8993 + 17.0925i 1.21475 + 0.993483i
$$297$$ −2.54820 0.403595i −0.147862 0.0234190i
$$298$$ −24.1426 + 3.35320i −1.39854 + 0.194246i
$$299$$ 9.68738 0.560236
$$300$$ 0.935435 + 9.95615i 0.0540074 + 0.574819i
$$301$$ 4.96701 0.286294
$$302$$ 12.8335 1.78247i 0.738487 0.102570i
$$303$$ 18.2667 + 2.89315i 1.04939 + 0.166207i
$$304$$ 20.6300 + 1.57681i 1.18321 + 0.0904361i
$$305$$ 3.06809 5.83803i 0.175679 0.334284i
$$306$$ −8.75412 0.166971i −0.500440 0.00954509i
$$307$$ 3.83564 3.83564i 0.218912 0.218912i −0.589128 0.808040i $$-0.700529\pi$$
0.808040 + 0.589128i $$0.200529\pi$$
$$308$$ −1.79123 + 9.05848i −0.102065 + 0.516155i
$$309$$ 19.1601 + 6.22550i 1.08998 + 0.354157i
$$310$$ 5.19913 + 17.9145i 0.295290 + 1.01747i
$$311$$ −7.89005 + 2.56363i −0.447404 + 0.145370i −0.524049 0.851688i $$-0.675579\pi$$
0.0766452 + 0.997058i $$0.475579\pi$$
$$312$$ 3.34487 2.98246i 0.189366 0.168849i
$$313$$ −8.49876 16.6797i −0.480378 0.942795i −0.996282 0.0861488i $$-0.972544\pi$$
0.515904 0.856646i $$-0.327456\pi$$
$$314$$ −4.04825 + 5.35417i −0.228456 + 0.302153i
$$315$$ 3.78976 + 1.28450i 0.213529 + 0.0723734i
$$316$$ 5.74609 7.30582i 0.323243 0.410984i
$$317$$ −0.165705 1.04622i −0.00930692 0.0587616i 0.982598 0.185746i $$-0.0594702\pi$$
−0.991905 + 0.126984i $$0.959470\pi$$
$$318$$ −10.1129 1.80005i −0.567101 0.100942i
$$319$$ −7.48991 5.44174i −0.419354 0.304679i
$$320$$ −17.8805 + 0.537016i −0.999549 + 0.0300201i
$$321$$ 11.1209 8.07981i 0.620709 0.450971i
$$322$$ −13.9185 + 6.76066i −0.775648 + 0.376757i
$$323$$ 14.5388 28.5339i 0.808959 1.58767i
$$324$$ −1.87716 0.690118i −0.104287 0.0383399i
$$325$$ −7.14724 + 3.41716i −0.396458 + 0.189550i
$$326$$ −4.39756 6.30205i −0.243559 0.349038i
$$327$$ −8.78708 4.47724i −0.485927 0.247592i
$$328$$ −20.4487 + 2.04895i −1.12909 + 0.113134i
$$329$$ −0.0396424 0.0545630i −0.00218555 0.00300816i
$$330$$ −3.93244 + 7.14829i −0.216474 + 0.393500i
$$331$$ 18.5262 25.4991i 1.01829 1.40156i 0.104899 0.994483i $$-0.466548\pi$$
0.913394 0.407077i $$-0.133452\pi$$
$$332$$ 7.10617 + 15.3689i 0.390002 + 0.843476i
$$333$$ 9.42800 1.49325i 0.516651 0.0818295i
$$334$$ 6.81862 + 22.4324i 0.373098 + 1.22745i
$$335$$ −12.2068 9.10647i −0.666928 0.497539i
$$336$$ −2.72438 + 6.61943i −0.148627 + 0.361119i
$$337$$ −18.0272 + 9.18532i −0.982004 + 0.500356i −0.869840 0.493333i $$-0.835778\pi$$
−0.112164 + 0.993690i $$0.535778\pi$$
$$338$$ −13.0868 6.98557i −0.711830 0.379965i
$$339$$ 2.02835 + 6.24263i 0.110165 + 0.339053i
$$340$$ −9.88139 + 25.8647i −0.535894 + 1.40271i
$$341$$ −4.70284 + 14.4738i −0.254673 + 0.783803i
$$342$$ 5.27025 5.07297i 0.284982 0.274315i
$$343$$ 13.6632 + 13.6632i 0.737741 + 0.737741i
$$344$$ −2.84892 + 7.31537i −0.153603 + 0.394418i
$$345$$ −13.5292 + 1.96802i −0.728389 + 0.105955i
$$346$$ 9.26099 26.7552i 0.497874 1.43837i
$$347$$ 0.0503563 0.317937i 0.00270327 0.0170678i −0.986300 0.164963i $$-0.947250\pi$$
0.989003 + 0.147895i $$0.0472497\pi$$
$$348$$ −4.87761 5.26464i −0.261467 0.282214i
$$349$$ 1.90739i 0.102100i 0.998696 + 0.0510501i $$0.0162568\pi$$
−0.998696 + 0.0510501i $$0.983743\pi$$
$$350$$ 7.88414 9.89760i 0.421425 0.529049i
$$351$$ 1.58442i 0.0845703i
$$352$$ −12.3139 7.83376i −0.656331 0.417541i
$$353$$ 1.39657 8.81760i 0.0743319 0.469313i −0.922242 0.386612i $$-0.873645\pi$$
0.996574 0.0827014i $$-0.0263548\pi$$
$$354$$ 12.6040 + 4.36273i 0.669896 + 0.231877i
$$355$$ −1.14456 + 6.67941i −0.0607469 + 0.354506i
$$356$$ 4.96120 3.32307i 0.262943 0.176122i
$$357$$ 7.83433 + 7.83433i 0.414637 + 0.414637i
$$358$$ −19.5259 20.2853i −1.03198 1.07211i
$$359$$ 6.39407 19.6789i 0.337466 1.03861i −0.628028 0.778191i $$-0.716138\pi$$
0.965494 0.260424i $$-0.0838623\pi$$
$$360$$ −4.06548 + 4.84477i −0.214270 + 0.255342i
$$361$$ 2.39650 + 7.37568i 0.126132 + 0.388193i
$$362$$ −6.78098 + 12.7035i −0.356400 + 0.667684i
$$363$$ 3.87034 1.97204i 0.203140 0.103505i
$$364$$ −5.66665 0.216243i −0.297013 0.0113342i
$$365$$ 4.98228 + 16.0195i 0.260785 + 0.838497i
$$366$$ 3.99084 1.21306i 0.208604 0.0634079i
$$367$$ 15.3559 2.43213i 0.801569 0.126956i 0.257808 0.966196i $$-0.417000\pi$$
0.543761 + 0.839240i $$0.317000\pi$$
$$368$$ −1.97382 24.3768i −0.102893 1.27073i
$$369$$ −4.27079 + 5.87824i −0.222328 + 0.306009i
$$370$$ 5.66462 29.6493i 0.294490 1.54139i
$$371$$ 7.63997 + 10.5155i 0.396648 + 0.545939i
$$372$$ −5.75295 + 10.2999i −0.298277 + 0.534023i
$$373$$ −6.75054 3.43957i −0.349530 0.178094i 0.270407 0.962746i $$-0.412842\pi$$
−0.619937 + 0.784652i $$0.712842\pi$$
$$374$$ −18.5251 + 12.9268i −0.957910 + 0.668429i
$$375$$ 9.28750 6.22433i 0.479605 0.321423i
$$376$$ 0.103098 0.0270893i 0.00531685 0.00139702i
$$377$$ 2.58121 5.06591i 0.132939 0.260908i
$$378$$ 1.10574 + 2.27645i 0.0568733 + 0.117088i
$$379$$ −28.3717 + 20.6132i −1.45735 + 1.05883i −0.473312 + 0.880895i $$0.656942\pi$$
−0.984042 + 0.177935i $$0.943058\pi$$
$$380$$ −9.44234 21.1175i −0.484382 1.08330i
$$381$$ 13.6525 + 9.91916i 0.699441 + 0.508174i
$$382$$ −3.17228 + 17.8222i −0.162308 + 0.911864i
$$383$$ 1.80034 + 11.3669i 0.0919932 + 0.580822i 0.990025 + 0.140892i $$0.0449970\pi$$
−0.898032 + 0.439931i $$0.855003\pi$$
$$384$$ −8.18641 7.80914i −0.417761 0.398508i
$$385$$ 9.85801 3.06598i 0.502411 0.156257i
$$386$$ −5.10113 3.85693i −0.259640 0.196313i
$$387$$ 1.26009 + 2.47306i 0.0640539 + 0.125713i
$$388$$ 24.3529 2.91021i 1.23633 0.147744i
$$389$$ −9.99966 + 3.24909i −0.507003 + 0.164735i −0.551339 0.834282i $$-0.685883\pi$$
0.0443360 + 0.999017i $$0.485883\pi$$
$$390$$ −4.71370 1.69855i −0.238687 0.0860092i
$$391$$ −36.0013 11.6975i −1.82066 0.591569i
$$392$$ −9.83358 + 4.32113i −0.496671 + 0.218250i
$$393$$ 3.18047 3.18047i 0.160434 0.160434i
$$394$$ −0.312590 + 16.3888i −0.0157481 + 0.825656i
$$395$$ −10.2426 1.75513i −0.515360 0.0883101i
$$396$$ −4.96462 + 1.40621i −0.249481 + 0.0706648i
$$397$$ −6.35706 1.00686i −0.319052 0.0505328i −0.00514536 0.999987i $$-0.501638\pi$$
−0.313906 + 0.949454i $$0.601638\pi$$
$$398$$ −1.62449 11.6961i −0.0814285 0.586274i
$$399$$ −9.25647 −0.463403
$$400$$ 10.0550 + 17.2886i 0.502750 + 0.864432i
$$401$$ 21.4858 1.07295 0.536476 0.843916i $$-0.319755\pi$$
0.536476 + 0.843916i $$0.319755\pi$$
$$402$$ −1.32507 9.54031i −0.0660884 0.475827i
$$403$$ −9.23115 1.46207i −0.459836 0.0728309i
$$404$$ 35.5886 10.0804i 1.77060 0.501517i
$$405$$ 0.321880 + 2.21278i 0.0159944 + 0.109954i
$$406$$ −0.173185 + 9.07992i −0.00859503 + 0.450629i
$$407$$ 17.4140 17.4140i 0.863179 0.863179i
$$408$$ −16.0319 + 7.04481i −0.793695 + 0.348770i
$$409$$ 25.1912 + 8.18512i 1.24563 + 0.404728i 0.856351 0.516394i $$-0.172726\pi$$
0.389274 + 0.921122i $$0.372726\pi$$
$$410$$ 12.9095 + 19.0073i 0.637554 + 0.938705i
$$411$$ −16.4171 + 5.33422i −0.809794 + 0.263118i
$$412$$ 40.0077 4.78097i 1.97104 0.235542i
$$413$$ −7.66221 15.0379i −0.377033 0.739968i
$$414$$ −6.89713 5.21487i −0.338975 0.256297i
$$415$$ 11.3198 15.1736i 0.555665 0.744842i
$$416$$ 3.56869 8.22176i 0.174969 0.403105i
$$417$$ −2.20855 13.9442i −0.108153 0.682851i
$$418$$ 3.30727 18.5806i 0.161764 0.908807i
$$419$$ 24.4346 + 17.7528i 1.19371 + 0.867280i 0.993651 0.112504i $$-0.0358871\pi$$
0.200058 + 0.979784i $$0.435887\pi$$
$$420$$ 7.95787 0.849195i 0.388304 0.0414365i
$$421$$ 30.7065 22.3096i 1.49655 1.08730i 0.524814 0.851217i $$-0.324135\pi$$
0.971732 0.236087i $$-0.0758650\pi$$
$$422$$ −9.54105 19.6426i −0.464451 0.956189i
$$423$$ 0.0171099 0.0335800i 0.000831911 0.00163272i
$$424$$ −19.8692 + 5.22071i −0.964934 + 0.253540i
$$425$$ 30.6875 4.06891i 1.48856 0.197371i
$$426$$ −3.51486 + 2.45267i −0.170296 + 0.118832i
$$427$$ −4.70284 2.39622i −0.227586 0.115961i
$$428$$ 13.4063 24.0021i 0.648019 1.16019i
$$429$$ −2.40272 3.30707i −0.116005 0.159667i
$$430$$ 8.70827 1.09760i 0.419950 0.0529310i
$$431$$ 2.67391 3.68032i 0.128798 0.177275i −0.739748 0.672884i $$-0.765055\pi$$
0.868545 + 0.495609i $$0.165055\pi$$
$$432$$ −3.98695 + 0.322830i −0.191822 + 0.0155321i
$$433$$ −12.1409 + 1.92293i −0.583456 + 0.0924104i −0.441183 0.897417i $$-0.645441\pi$$
−0.142273 + 0.989827i $$0.545441\pi$$
$$434$$ 14.2834 4.34161i 0.685623 0.208404i
$$435$$ −2.57572 + 7.59935i −0.123496 + 0.364361i
$$436$$ −19.7096 0.752132i −0.943919 0.0360206i
$$437$$ 28.1787 14.3577i 1.34797 0.686824i
$$438$$ −4.99639 + 9.36027i −0.238737 + 0.447251i
$$439$$ −4.19717 12.9175i −0.200320 0.616521i −0.999873 0.0159259i $$-0.994930\pi$$
0.799553 0.600595i $$-0.205070\pi$$
$$440$$ −1.13869 + 16.2773i −0.0542849 + 0.775992i
$$441$$ −1.17351 + 3.61169i −0.0558814 + 0.171985i
$$442$$ −9.62067 9.99481i −0.457609 0.475405i
$$443$$ 10.9593 + 10.9593i 0.520692 + 0.520692i 0.917780 0.397088i $$-0.129979\pi$$
−0.397088 + 0.917780i $$0.629979\pi$$
$$444$$ 15.8616 10.6243i 0.752760 0.504207i
$$445$$ −5.90970 3.10576i −0.280147 0.147227i
$$446$$ 11.0641 + 3.82971i 0.523900 + 0.181342i
$$447$$ −2.69619 + 17.0231i −0.127526 + 0.805164i
$$448$$ 0.610449 + 14.3033i 0.0288410 + 0.675766i
$$449$$ 30.6804i 1.44790i −0.689853 0.723950i $$-0.742325\pi$$
0.689853 0.723950i $$-0.257675\pi$$
$$450$$ 6.92813 + 1.41456i 0.326595 + 0.0666829i
$$451$$ 18.7458i 0.882703i
$$452$$ 8.92201 + 9.62997i 0.419656 + 0.452956i
$$453$$ 1.43322 9.04900i 0.0673386 0.425159i
$$454$$ 12.7006 36.6922i 0.596067 1.72205i
$$455$$ 2.80679 + 5.68498i 0.131584 + 0.266516i
$$456$$ 5.30921 13.6328i 0.248627 0.638416i
$$457$$ −4.67954 4.67954i −0.218900 0.218900i 0.589135 0.808035i $$-0.299469\pi$$
−0.808035 + 0.589135i $$0.799469\pi$$
$$458$$ 18.1209 17.4426i 0.846734 0.815038i
$$459$$ −1.91319 + 5.88820i −0.0893002 + 0.274838i
$$460$$ −22.9083 + 14.9286i −1.06810 + 0.696051i
$$461$$ −2.33115 7.17453i −0.108572 0.334151i 0.881980 0.471287i $$-0.156210\pi$$
−0.990552 + 0.137136i $$0.956210\pi$$
$$462$$ 5.76010 + 3.07466i 0.267984 + 0.143046i
$$463$$ −15.1118 + 7.69983i −0.702303 + 0.357841i −0.768398 0.639972i $$-0.778946\pi$$
0.0660950 + 0.997813i $$0.478946\pi$$
$$464$$ −13.2735 5.46302i −0.616206 0.253614i
$$465$$ 13.1891 + 0.166567i 0.611629 + 0.00772435i
$$466$$ 2.21853 + 7.29869i 0.102771 + 0.338105i
$$467$$ 6.42804 1.01810i 0.297454 0.0471121i −0.00592362 0.999982i $$-0.501886\pi$$
0.303378 + 0.952870i $$0.401886\pi$$
$$468$$ −1.32991 2.87627i −0.0614753 0.132956i
$$469$$ −7.16401 + 9.86041i −0.330803 + 0.455311i
$$470$$ −0.0815591 0.0869010i −0.00376204 0.00400844i
$$471$$ 2.78983 + 3.83987i 0.128549 + 0.176932i
$$472$$ 26.5425 2.65955i 1.22172 0.122416i
$$473$$ 6.38042 + 3.25098i 0.293372 + 0.149480i
$$474$$ −3.76105 5.38988i −0.172751 0.247565i
$$475$$ −15.7253 + 20.5328i −0.721526 + 0.942110i
$$476$$ 20.7979 + 7.64610i 0.953269 + 0.350459i
$$477$$ −3.29746 + 6.47162i −0.150980 + 0.296315i
$$478$$ 12.8297 6.23179i 0.586817 0.285036i
$$479$$ −5.30790 + 3.85642i −0.242524 + 0.176204i −0.702407 0.711775i $$-0.747891\pi$$
0.459883 + 0.887980i $$0.347891\pi$$
$$480$$ −3.31370 + 12.2074i −0.151249 + 0.557187i
$$481$$ 12.2357 + 8.88975i 0.557900 + 0.405338i
$$482$$ 7.20104 + 1.28175i 0.327999 + 0.0583823i
$$483$$ 1.71162 + 10.8068i 0.0778815 + 0.491725i
$$484$$ 5.37073 6.82856i 0.244124 0.310389i
$$485$$ −15.8363 22.3859i −0.719089 1.01649i
$$486$$ −0.852921 + 1.12806i −0.0386893 + 0.0511700i
$$487$$ −12.8302 25.1807i −0.581391 1.14104i −0.975091 0.221806i $$-0.928805\pi$$
0.393700 0.919239i $$-0.371195\pi$$
$$488$$ 6.22652 5.55190i 0.281861 0.251323i
$$489$$ −5.16794 + 1.67917i −0.233702 + 0.0759345i
$$490$$ 9.48683 + 7.36305i 0.428571 + 0.332629i
$$491$$ 9.75331 + 3.16904i 0.440161 + 0.143017i 0.520710 0.853734i $$-0.325667\pi$$
−0.0805490 + 0.996751i $$0.525667\pi$$
$$492$$ −2.81894 + 14.2558i −0.127088 + 0.642700i
$$493$$ −15.7097 + 15.7097i −0.707527 + 0.707527i
$$494$$ 11.5881 + 0.221024i 0.521373 + 0.00994436i
$$495$$ 4.02744 + 4.13047i 0.181020 + 0.185651i
$$496$$ −1.79820 + 23.5266i −0.0807416 + 1.05638i
$$497$$ 5.35671 + 0.848420i 0.240281 + 0.0380568i
$$498$$ 11.8590 1.64712i 0.531416 0.0738092i
$$499$$ −12.4397 −0.556877 −0.278438 0.960454i $$-0.589817\pi$$
−0.278438 + 0.960454i $$0.589817\pi$$
$$500$$ 11.6355 19.0949i 0.520355 0.853950i
$$501$$ 16.5787 0.740682
$$502$$ −19.0879 + 2.65114i −0.851933 + 0.118326i
$$503$$ −37.7591 5.98046i −1.68360 0.266655i −0.759972 0.649956i $$-0.774787\pi$$
−0.923624 + 0.383300i $$0.874787\pi$$
$$504$$ 3.91808 + 3.20441i 0.174525 + 0.142736i
$$505$$ −28.8705 29.6091i −1.28472 1.31759i
$$506$$ −22.3041 0.425415i −0.991538 0.0189120i
$$507$$ −7.41727 + 7.41727i −0.329412 + 0.329412i
$$508$$ 33.1098 + 6.54715i 1.46901 + 0.290483i
$$509$$ 8.26830 + 2.68653i 0.366486 + 0.119078i 0.486470 0.873697i $$-0.338284\pi$$
−0.119984 + 0.992776i $$0.538284\pi$$
$$510$$ 15.4665 + 12.0041i 0.684870 + 0.531551i
$$511$$ 12.7691 4.14893i 0.564871 0.183538i
$$512$$ −21.4159 7.30484i −0.946457 0.322831i
$$513$$ −2.34829 4.60877i −0.103679 0.203482i
$$514$$ 12.9427 17.1178i 0.570876 0.755034i
$$515$$ −26.0163 36.7762i −1.14642 1.62055i
$$516$$ 4.36330 + 3.43178i 0.192084 + 0.151076i
$$517$$ −0.0152106 0.0960359i −0.000668961 0.00422366i
$$518$$ −23.7839 4.23342i −1.04500 0.186006i
$$519$$ −16.1966 11.7675i −0.710950 0.516536i
$$520$$ −9.98267 + 0.873083i −0.437769 + 0.0382872i
$$521$$ −16.2717 + 11.8221i −0.712877 + 0.517935i −0.884100 0.467297i $$-0.845228\pi$$
0.171224 + 0.985232i $$0.445228\pi$$
$$522$$ −4.56481 + 2.21727i −0.199796 + 0.0970473i
$$523$$ 12.0208 23.5921i 0.525632 1.03161i −0.463708 0.885988i $$-0.653481\pi$$
0.989340 0.145623i $$-0.0465186\pi$$
$$524$$ 3.10406 8.44322i 0.135601 0.368844i
$$525$$ −5.07483 7.36934i −0.221484 0.321624i
$$526$$ 14.6469 + 20.9901i 0.638634 + 0.915212i
$$527$$ 32.5403 + 16.5801i 1.41748 + 0.722241i
$$528$$ −7.83214 + 6.71989i −0.340850 + 0.292446i
$$529$$ −8.45390 11.6358i −0.367561 0.505904i
$$530$$ 15.7183 + 16.7478i 0.682758 + 0.727476i
$$531$$ 5.54352 7.62999i 0.240568 0.331114i
$$532$$ −16.8036 + 7.76957i −0.728530 + 0.336854i
$$533$$ −11.3705 + 1.80092i −0.492513 + 0.0780063i
$$534$$ −1.22796 4.03983i −0.0531389 0.174821i
$$535$$ −30.7350 0.388157i −1.32879 0.0167815i
$$536$$ −10.4133 16.2067i −0.449785 0.700023i
$$537$$ −17.7392 + 9.03859i −0.765505 + 0.390044i
$$538$$ 20.0295 + 10.6914i 0.863531 + 0.460941i
$$539$$ 3.02761 + 9.31803i 0.130408 + 0.401356i
$$540$$ 2.44166 + 3.74677i 0.105072 + 0.161235i
$$541$$ 5.50745 16.9502i 0.236784 0.728746i −0.760096 0.649811i $$-0.774848\pi$$
0.996880 0.0789350i $$-0.0251520\pi$$
$$542$$ 3.05162 2.93739i 0.131078 0.126172i
$$543$$ 7.20003 + 7.20003i 0.308983 + 0.308983i
$$544$$ −23.1901 + 26.2453i −0.994268 + 1.12526i
$$545$$ 9.76249 + 19.7734i 0.418179 + 0.846998i
$$546$$ −1.31161 + 3.78926i −0.0561317 + 0.162166i
$$547$$ −3.96056 + 25.0060i −0.169341 + 1.06918i 0.745837 + 0.666129i $$0.232050\pi$$
−0.915178 + 0.403050i $$0.867950\pi$$
$$548$$ −25.3252 + 23.4634i −1.08184 + 1.00231i
$$549$$ 2.94943i 0.125879i
$$550$$ 16.6058 7.55375i 0.708072 0.322093i
$$551$$ 18.5614i 0.790740i
$$552$$ −16.8978 3.67755i −0.719219 0.156527i
$$553$$ −1.30101 + 8.21427i −0.0553247 + 0.349306i
$$554$$ 23.1748 + 8.02169i 0.984604 + 0.340809i
$$555$$ −18.8941 9.92956i −0.802011 0.421486i
$$556$$ −15.7136 23.4597i −0.666404 0.994914i
$$557$$ 10.1259 + 10.1259i 0.429048 + 0.429048i 0.888304 0.459256i $$-0.151884\pi$$
−0.459256 + 0.888304i $$0.651884\pi$$
$$558$$ 5.78524 + 6.01022i 0.244909 + 0.254433i
$$559$$ −1.35897 + 4.18247i −0.0574781 + 0.176899i
$$560$$ 13.7335 8.22116i 0.580345 0.347407i
$$561$$ 4.93597 + 15.1913i 0.208397 + 0.641379i
$$562$$ −6.63160 + 12.4237i −0.279737 + 0.524062i
$$563$$ −38.7259 + 19.7318i −1.63210 + 0.831597i −0.633789 + 0.773506i $$0.718501\pi$$
−0.998311 + 0.0580911i $$0.981499\pi$$
$$564$$ 0.00287429 0.0753207i 0.000121029 0.00317157i
$$565$$ 4.71145 13.9006i 0.198212 0.584801i
$$566$$ −15.3126 + 4.65445i −0.643636 + 0.195641i
$$567$$ 1.76751 0.279945i 0.0742282 0.0117566i
$$568$$ −4.32198 + 7.40269i −0.181346 + 0.310610i
$$569$$ 19.2119 26.4429i 0.805405 1.10855i −0.186611 0.982434i $$-0.559750\pi$$
0.992016 0.126111i $$-0.0402497\pi$$
$$570$$ −16.2286 + 2.04548i −0.679743 + 0.0856756i
$$571$$ −22.6330 31.1516i −0.947160 1.30365i −0.952777 0.303670i $$-0.901788\pi$$
0.00561699 0.999984i $$-0.498212\pi$$
$$572$$ −7.13761 3.98668i −0.298438 0.166692i
$$573$$ 11.4051 + 5.81121i 0.476457 + 0.242767i
$$574$$ 15.0800 10.5228i 0.629426 0.439213i
$$575$$ 26.8795 + 14.5623i 1.12095 + 0.607288i
$$576$$ −6.96670 + 3.93256i −0.290279 + 0.163857i
$$577$$ 0.778351 1.52760i 0.0324032 0.0635948i −0.874237 0.485499i $$-0.838638\pi$$
0.906641 + 0.421904i $$0.138638\pi$$
$$578$$ 13.1804 + 27.1352i 0.548233 + 1.12868i
$$579$$ −3.65839 + 2.65798i −0.152038 + 0.110462i
$$580$$ 1.70283 + 15.9574i 0.0707063 + 0.662594i
$$581$$ −12.2569 8.90519i −0.508503 0.369449i
$$582$$ 3.03914 17.0743i 0.125977 0.707751i
$$583$$ 2.93142 + 18.5083i 0.121407 + 0.766534i
$$584$$ −1.21344 + 21.1859i −0.0502124 + 0.876678i
$$585$$ −2.11848 + 2.83973i −0.0875885 + 0.117408i
$$586$$ 30.9598 + 23.4085i 1.27894 + 0.966997i
$$587$$ 10.0460 + 19.7163i 0.414642 + 0.813780i 0.999995 + 0.00300205i $$0.000955585\pi$$
−0.585354 + 0.810778i $$0.699044\pi$$
$$588$$ 0.901215 + 7.54146i 0.0371655 + 0.311004i
$$589$$ −29.0185 + 9.42868i −1.19569 + 0.388502i
$$590$$ −16.7566 24.6716i −0.689859 1.01572i
$$591$$ 11.0234 + 3.58173i 0.453444 + 0.147333i
$$592$$ 19.8766 32.6005i 0.816923 1.33987i
$$593$$ −24.7989 + 24.7989i −1.01837 + 1.01837i −0.0185411 + 0.999828i $$0.505902\pi$$
−0.999828 + 0.0185411i $$0.994098\pi$$
$$594$$ −0.0695789 + 3.64796i −0.00285486 + 0.149677i
$$595$$ −3.56625 24.5163i −0.146202 1.00507i
$$596$$ 9.39411 + 33.1658i 0.384798 + 1.35852i
$$597$$ −8.24701 1.30620i −0.337528 0.0534591i
$$598$$ −1.88473 13.5698i −0.0770721 0.554909i
$$599$$ 5.41697 0.221331 0.110666 0.993858i $$-0.464702\pi$$
0.110666 + 0.993858i $$0.464702\pi$$
$$600$$ 13.7643 3.24734i 0.561923 0.132572i
$$601$$ −13.7486 −0.560819 −0.280409 0.959881i $$-0.590470\pi$$
−0.280409 + 0.959881i $$0.590470\pi$$
$$602$$ −0.966355 6.95763i −0.0393857 0.283572i
$$603$$ −6.72692 1.06544i −0.273942 0.0433881i
$$604$$ −4.99365 17.6300i −0.203189 0.717355i
$$605$$ −9.57347 1.64047i −0.389217 0.0666948i
$$606$$ 0.498774 26.1502i 0.0202613 1.06228i
$$607$$ 25.1868 25.1868i 1.02230 1.02230i 0.0225567 0.999746i $$-0.492819\pi$$
0.999746 0.0225567i $$-0.00718063\pi$$
$$608$$ −1.80492 29.2046i −0.0731993 1.18440i
$$609$$ 6.10734 + 1.98440i 0.247482 + 0.0804118i
$$610$$ −8.77463 3.16187i −0.355274 0.128020i
$$611$$ 0.0567908 0.0184525i 0.00229751 0.000746506i
$$612$$ 1.46927 + 12.2950i 0.0593916 + 0.496995i
$$613$$ 9.17652 + 18.0099i 0.370636 + 0.727415i 0.998712 0.0507375i $$-0.0161572\pi$$
−0.628076 + 0.778152i $$0.716157\pi$$
$$614$$ −6.11908 4.62660i −0.246946 0.186714i
$$615$$ 15.5140 4.82509i 0.625586 0.194566i
$$616$$ 13.0373 + 0.746722i 0.525288 + 0.0300863i
$$617$$ −2.43800 15.3930i −0.0981503 0.619697i −0.986904 0.161311i $$-0.948428\pi$$
0.888753 0.458386i $$-0.151572\pi$$
$$618$$ 4.99279 28.0501i 0.200839 1.12834i
$$619$$ 11.5048 + 8.35870i 0.462415 + 0.335964i 0.794478 0.607293i $$-0.207745\pi$$
−0.332063 + 0.943257i $$0.607745\pi$$
$$620$$ 24.0825 10.7681i 0.967176 0.432458i
$$621$$ −4.94644 + 3.59380i −0.198494 + 0.144214i
$$622$$ 5.12610 + 10.5534i 0.205538 + 0.423151i
$$623$$ −2.42563 + 4.76058i −0.0971810 + 0.190728i
$$624$$ −4.82850 4.10513i −0.193295 0.164337i
$$625$$ −24.9681 1.26231i −0.998724 0.0504924i
$$626$$ −21.7110 + 15.1499i −0.867745 + 0.605512i
$$627$$ −11.8905 6.05850i −0.474860 0.241953i
$$628$$ 8.28755 + 4.62898i 0.330709 + 0.184716i
$$629$$ −34.7372 47.8116i −1.38506 1.90637i
$$630$$ 1.06197 5.55848i 0.0423099 0.221455i
$$631$$ −12.7859 + 17.5983i −0.508999 + 0.700577i −0.983750 0.179543i $$-0.942538\pi$$
0.474751 + 0.880120i $$0.342538\pi$$
$$632$$ −11.3517 6.62756i −0.451545 0.263630i
$$633$$ −15.2512 + 2.41555i −0.606179 + 0.0960093i
$$634$$ −1.43327 + 0.435661i −0.0569225 + 0.0173023i
$$635$$ −11.2065 36.0322i −0.444718 1.42990i
$$636$$ −0.553940 + 14.5160i −0.0219651 + 0.575596i
$$637$$ −5.36114 + 2.73163i −0.212416 + 0.108231i
$$638$$ −6.16541 + 11.5503i −0.244091 + 0.457282i
$$639$$ 0.936526 + 2.88233i 0.0370484 + 0.114023i
$$640$$ 4.23096 + 24.9419i 0.167244 + 0.985916i
$$641$$ 3.91015 12.0342i 0.154442 0.475322i −0.843662 0.536874i $$-0.819605\pi$$
0.998104 + 0.0615520i $$0.0196050\pi$$
$$642$$ −13.4816 14.0058i −0.532075 0.552766i
$$643$$ 31.0681 + 31.0681i 1.22521 + 1.22521i 0.965756 + 0.259450i $$0.0835414\pi$$
0.259450 + 0.965756i $$0.416459\pi$$
$$644$$ 12.1780 + 18.1813i 0.479881 + 0.716443i
$$645$$ 1.04823 6.11724i 0.0412739 0.240866i
$$646$$ −42.7980 14.8140i −1.68386 0.582850i
$$647$$ 7.56645 47.7727i 0.297468 1.87814i −0.157336 0.987545i $$-0.550290\pi$$
0.454803 0.890592i $$-0.349710\pi$$
$$648$$ −0.601484 + 2.76373i −0.0236285 + 0.108570i
$$649$$ 24.3321i 0.955120i
$$650$$ 6.17717 + 9.34680i 0.242289 + 0.366612i
$$651$$ 10.5561i 0.413727i
$$652$$ −7.97214 + 7.38606i −0.312213 + 0.289260i
$$653$$ −0.865641 + 5.46544i −0.0338752 + 0.213879i −0.998820 0.0485752i $$-0.984532\pi$$
0.964944 + 0.262454i $$0.0845320\pi$$
$$654$$ −4.56201 + 13.1797i −0.178389 + 0.515368i
$$655$$ −9.95278 + 1.44777i −0.388887 + 0.0565692i
$$656$$ 6.84849 + 28.2452i 0.267388 + 1.10279i
$$657$$ 5.30515 + 5.30515i 0.206974 + 0.206974i
$$658$$ −0.0687175 + 0.0661452i −0.00267889 + 0.00257861i
$$659$$ −14.2601 + 43.8880i −0.555494 + 1.70963i 0.139141 + 0.990273i $$0.455566\pi$$
−0.694635 + 0.719362i $$0.744434\pi$$
$$660$$ 10.7782 + 4.11771i 0.419539 + 0.160282i
$$661$$ 10.7448 + 33.0690i 0.417923 + 1.28624i 0.909610 + 0.415463i $$0.136381\pi$$
−0.491687 + 0.870772i $$0.663619\pi$$
$$662$$ −39.3227 20.9899i −1.52832 0.815797i
$$663$$ −8.74035 + 4.45343i −0.339447 + 0.172957i
$$664$$ 20.1457 12.9442i 0.781803 0.502331i
$$665$$ 16.5901 + 12.3765i 0.643338 + 0.479941i
$$666$$ −3.92595 12.9159i −0.152128 0.500481i
$$667$$ −21.6701 + 3.43220i −0.839068 + 0.132895i
$$668$$ 30.0960 13.9156i 1.16445 0.538412i
$$669$$ 4.86623 6.69779i 0.188139 0.258951i
$$670$$ −10.3812 + 18.8706i −0.401059 + 0.729034i
$$671$$ −4.47271 6.15616i −0.172667 0.237656i
$$672$$ 9.80232 + 2.52838i 0.378133 + 0.0975346i
$$673$$ 22.2414 + 11.3325i 0.857342 + 0.436838i 0.826667 0.562692i $$-0.190234\pi$$
0.0306753 + 0.999529i $$0.490234\pi$$
$$674$$ 16.3738 + 23.4649i 0.630694 + 0.903833i
$$675$$ 2.38174 4.39629i 0.0916731 0.169213i
$$676$$ −7.23906 + 19.6907i −0.278425 + 0.757334i
$$677$$ −8.19739 + 16.0883i −0.315051 + 0.618323i −0.993176 0.116624i $$-0.962793\pi$$
0.678125 + 0.734947i $$0.262793\pi$$
$$678$$ 8.34985 4.05578i 0.320674 0.155761i
$$679$$ −17.7541 + 12.8991i −0.681340 + 0.495022i
$$680$$ 38.1529 + 8.80944i 1.46310 + 0.337826i
$$681$$ −22.2120 16.1380i −0.851167 0.618409i
$$682$$ 21.1895 + 3.77163i 0.811386 + 0.144423i
$$683$$ −3.32035 20.9639i −0.127050 0.802161i −0.966112 0.258125i $$-0.916895\pi$$
0.839062 0.544036i $$-0.183105\pi$$
$$684$$ −8.13140 6.39542i −0.310912 0.244535i
$$685$$ 36.5561 + 12.3903i 1.39674 + 0.473409i
$$686$$ 16.4807 21.7971i 0.629235 0.832219i
$$687$$ −8.07421 15.8465i −0.308050 0.604583i
$$688$$ 10.8014 + 2.56743i 0.411800 + 0.0978825i
$$689$$ −10.9449 + 3.55620i −0.416966 + 0.135480i
$$690$$ 5.38891 + 18.5684i 0.205152 + 0.706887i
$$691$$ 27.8609 + 9.05257i 1.05988 + 0.344376i 0.786539 0.617541i $$-0.211871\pi$$
0.273342 + 0.961917i $$0.411871\pi$$
$$692$$ −39.2795 7.76715i −1.49318 0.295263i
$$693$$ 3.26467 3.26467i 0.124015 0.124015i
$$694$$ −0.455153 0.00868131i −0.0172774 0.000329538i
$$695$$ −14.6860 + 27.9449i −0.557073 + 1.06001i
$$696$$ −6.42558 + 7.85665i −0.243561 + 0.297806i
$$697$$ 44.4310 + 7.03717i 1.68294 + 0.266552i
$$698$$ 2.67181 0.371092i 0.101130 0.0140460i
$$699$$ 5.39410 0.204024
$$700$$ −15.3981 9.11822i −0.581995 0.344636i
$$701$$ −26.3853 −0.996559 −0.498279 0.867016i $$-0.666035\pi$$
−0.498279 + 0.867016i $$0.666035\pi$$
$$702$$ −2.21941 + 0.308257i −0.0837662 + 0.0116344i
$$703$$ 48.7668 + 7.72390i 1.83927 + 0.291312i
$$704$$ −8.57755 + 18.7729i −0.323279 + 0.707532i
$$705$$ −0.0755644 + 0.0373076i −0.00284592 + 0.00140509i
$$706$$ −12.6231 0.240766i −0.475077 0.00906134i
$$707$$ −23.4026 + 23.4026i −0.880147 + 0.880147i
$$708$$ 3.65900 18.5041i 0.137514 0.695426i
$$709$$ −12.9991 4.22365i −0.488190 0.158623i 0.0545707 0.998510i $$-0.482621\pi$$
−0.542761 + 0.839887i $$0.682621\pi$$
$$710$$ 9.57898 + 0.303751i 0.359493 + 0.0113996i
$$711$$ −4.41992 + 1.43612i −0.165760 + 0.0538587i
$$712$$ −5.62007 6.30297i −0.210621 0.236214i
$$713$$ 16.3737 + 32.1351i 0.613198 + 1.20347i
$$714$$ 9.44987 12.4983i 0.353653 0.467737i
$$715$$ −0.115428 + 9.13978i −0.00431674 + 0.341808i
$$716$$ −24.6161 + 31.2979i −0.919945 + 1.16966i
$$717$$ −1.57773 9.96138i −0.0589213 0.372015i
$$718$$ −28.8096 5.12798i −1.07516 0.191375i
$$719$$ −28.1664 20.4641i −1.05043 0.763183i −0.0781367 0.996943i $$-0.524897\pi$$
−0.972294 + 0.233760i $$0.924897\pi$$
$$720$$ 7.57736 + 4.75222i 0.282392 + 0.177105i
$$721$$ −29.1669 + 21.1910i −1.08623 + 0.789194i
$$722$$ 9.86535 4.79191i 0.367150 0.178337i
$$723$$ 2.34801 4.60823i 0.0873235 0.171382i
$$724$$ 19.1140 + 7.02704i 0.710366 + 0.261158i
$$725$$ 14.7772 10.1762i 0.548813 0.377935i
$$726$$ −3.51536 5.03778i −0.130467 0.186970i
$$727$$ 31.4045 + 16.0014i 1.16473 + 0.593458i 0.925961 0.377619i $$-0.123257\pi$$
0.238766 + 0.971077i $$0.423257\pi$$
$$728$$ 0.799566 + 7.97973i 0.0296339 + 0.295748i
$$729$$ 0.587785 + 0.809017i 0.0217698 + 0.0299636i
$$730$$ 21.4702 10.0957i 0.794648 0.373658i
$$731$$ 10.1007 13.9024i 0.373586 0.514197i
$$732$$ −2.47566 5.35422i −0.0915029 0.197898i
$$733$$ −21.4328 + 3.39462i −0.791637 + 0.125383i −0.539142 0.842215i $$-0.681251\pi$$
−0.252495 + 0.967598i $$0.581251\pi$$
$$734$$ −6.39440 21.0368i −0.236022 0.776482i
$$735$$ 6.93233 4.90408i 0.255703 0.180890i
$$736$$ −33.7621 + 7.50748i −1.24449 + 0.276729i
$$737$$ −15.6564 + 7.97732i −0.576710 + 0.293848i
$$738$$ 9.06494 + 4.83874i 0.333685 + 0.178117i
$$739$$ 7.04674 + 21.6876i 0.259219 + 0.797793i 0.992969 + 0.118374i $$0.0377681\pi$$
−0.733751 + 0.679419i $$0.762232\pi$$
$$740$$ −42.6338 2.16641i −1.56725 0.0796388i
$$741$$ 2.53255 7.79439i 0.0930356 0.286334i
$$742$$ 13.2434 12.7477i 0.486181 0.467981i
$$743$$ 12.9863 + 12.9863i 0.476422 + 0.476422i 0.903985 0.427563i $$-0.140628\pi$$
−0.427563 + 0.903985i $$0.640628\pi$$
$$744$$ 15.5470 + 6.05466i 0.569980 + 0.221975i
$$745$$ 27.5933 26.9051i 1.01094 0.985725i
$$746$$ −3.50469 + 10.1251i −0.128316 + 0.370707i
$$747$$ 1.32439 8.36187i 0.0484569 0.305945i
$$748$$ 21.7116 + 23.4344i 0.793854 + 0.856846i
$$749$$ 24.5993i 0.898840i
$$750$$ −10.5258 11.7987i −0.384346 0.430826i
$$751$$ 17.3842i 0.634360i 0.948365 + 0.317180i $$0.102736\pi$$
−0.948365 + 0.317180i $$0.897264\pi$$
$$752$$ −0.0580039 0.139145i −0.00211518 0.00507411i
$$753$$ −2.13169 + 13.4589i −0.0776830 + 0.490471i
$$754$$ −7.59835 2.63008i −0.276716 0.0957819i
$$755$$ −14.6678 + 14.3020i −0.533817 + 0.520502i
$$756$$ 2.97365 1.99178i 0.108151 0.0724404i
$$757$$ −0.770220 0.770220i −0.0279941 0.0279941i 0.692971 0.720965i $$-0.256301\pi$$
−0.720965 + 0.692971i $$0.756301\pi$$
$$758$$ 34.3942 + 35.7317i 1.24925 + 1.29783i
$$759$$ −4.87451 + 15.0022i −0.176933 + 0.544545i
$$760$$ −27.7436 + 17.3350i −1.00637 + 0.628807i
$$761$$ 5.86337 + 18.0456i 0.212547 + 0.654152i 0.999319 + 0.0369083i $$0.0117509\pi$$
−0.786772 + 0.617244i $$0.788249\pi$$
$$762$$ 11.2383 21.0539i 0.407119 0.762701i
$$763$$ 15.7248 8.01219i 0.569276 0.290061i
$$764$$ 25.5820 + 0.976226i 0.925523 + 0.0353186i
$$765$$ 11.3019 7.99521i 0.408621 0.289067i
$$766$$ 15.5721 4.73335i 0.562644 0.171023i
$$767$$ 14.7590 2.33760i 0.532918 0.0844059i
$$768$$ −9.34608 + 12.9866i −0.337248 + 0.468612i
$$769$$ 23.8890 32.8804i 0.861459 1.18570i −0.119761 0.992803i $$-0.538213\pi$$
0.981220 0.192894i $$-0.0617872\pi$$
$$770$$ −6.21265 13.2123i −0.223888 0.476138i
$$771$$ −8.91936 12.2764i −0.321223 0.442125i
$$772$$ −4.41021 + 7.89587i −0.158727 + 0.284179i
$$773$$ 8.89205 + 4.53072i 0.319825 + 0.162959i 0.606531 0.795060i $$-0.292560\pi$$