Properties

Label 300.2.w
Level 300300
Weight 22
Character orbit 300.w
Rep. character χ300(67,)\chi_{300}(67,\cdot)
Character field Q(ζ20)\Q(\zeta_{20})
Dimension 240240
Newform subspaces 11
Sturm bound 120120
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 300=22352 300 = 2^{2} \cdot 3 \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 300.w (of order 2020 and degree 88)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 100 100
Character field: Q(ζ20)\Q(\zeta_{20})
Newform subspaces: 1 1
Sturm bound: 120120
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(300,[χ])M_{2}(300, [\chi]).

Total New Old
Modular forms 512 240 272
Cusp forms 448 240 208
Eisenstein series 64 0 64

Trace form

240q+12q8+8q10+8q12+4q13+20q1720q2012q22+20q25+4q288q3020q328q334q3776q3892q4020q42140q44++256q98+O(q100) 240 q + 12 q^{8} + 8 q^{10} + 8 q^{12} + 4 q^{13} + 20 q^{17} - 20 q^{20} - 12 q^{22} + 20 q^{25} + 4 q^{28} - 8 q^{30} - 20 q^{32} - 8 q^{33} - 4 q^{37} - 76 q^{38} - 92 q^{40} - 20 q^{42} - 140 q^{44}+ \cdots + 256 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(300,[χ])S_{2}^{\mathrm{new}}(300, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
300.2.w.a 300.w 100.l 240240 2.3962.396 None 300.2.w.a 00 00 00 00 SU(2)[C20]\mathrm{SU}(2)[C_{20}]

Decomposition of S2old(300,[χ])S_{2}^{\mathrm{old}}(300, [\chi]) into lower level spaces

S2old(300,[χ]) S_{2}^{\mathrm{old}}(300, [\chi]) \simeq S2new(100,[χ])S_{2}^{\mathrm{new}}(100, [\chi])2^{\oplus 2}