Properties

Label 300.2.m.b.181.1
Level $300$
Weight $2$
Character 300.181
Analytic conductor $2.396$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 300.m (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.39551206064\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.26265625.1
Defining polynomial: \(x^{8} - 3 x^{7} + 2 x^{6} + x^{4} + 8 x^{2} - 24 x + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 181.1
Root \(1.33631 - 0.462894i\) of defining polynomial
Character \(\chi\) \(=\) 300.181
Dual form 300.2.m.b.121.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.809017 - 0.587785i) q^{3} +(-1.57146 + 1.59076i) q^{5} +4.32440 q^{7} +(0.309017 - 0.951057i) q^{9} +O(q^{10})\) \(q+(0.809017 - 0.587785i) q^{3} +(-1.57146 + 1.59076i) q^{5} +4.32440 q^{7} +(0.309017 - 0.951057i) q^{9} +(0.180557 + 0.555698i) q^{11} +(0.298591 - 0.918969i) q^{13} +(-0.336312 + 2.21063i) q^{15} +(1.88048 + 1.36625i) q^{17} +(4.35169 + 3.16169i) q^{19} +(3.49851 - 2.54182i) q^{21} +(-0.419687 - 1.29166i) q^{23} +(-0.0610333 - 4.99963i) q^{25} +(-0.309017 - 0.951057i) q^{27} +(0.571459 - 0.415189i) q^{29} +(-6.86707 - 4.98922i) q^{31} +(0.472705 + 0.343440i) q^{33} +(-6.79561 + 6.87908i) q^{35} +(-1.89090 + 5.81960i) q^{37} +(-0.298591 - 0.918969i) q^{39} +(3.41820 - 10.5201i) q^{41} -7.03076 q^{43} +(1.02729 + 1.98612i) q^{45} +(-7.33723 + 5.33081i) q^{47} +11.7004 q^{49} +2.32440 q^{51} +(-7.20487 + 5.23465i) q^{53} +(-1.16772 - 0.586034i) q^{55} +5.37899 q^{57} +(-2.25351 + 6.93558i) q^{59} +(-1.48752 - 4.57810i) q^{61} +(1.33631 - 4.11275i) q^{63} +(0.992636 + 1.91911i) q^{65} +(0.304195 + 0.221011i) q^{67} +(-1.09875 - 0.798291i) q^{69} +(-8.54359 + 6.20729i) q^{71} +(0.0659364 + 0.202931i) q^{73} +(-2.98808 - 4.00891i) q^{75} +(0.780801 + 2.40306i) q^{77} +(5.68410 - 4.12974i) q^{79} +(-0.809017 - 0.587785i) q^{81} +(-13.0343 - 9.46998i) q^{83} +(-5.12846 + 0.844386i) q^{85} +(0.218278 - 0.671790i) q^{87} +(-4.33233 - 13.3335i) q^{89} +(1.29123 - 3.97399i) q^{91} -8.48817 q^{93} +(-11.8680 + 1.95403i) q^{95} +(-12.7436 + 9.25880i) q^{97} +0.584296 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 2q^{3} - 5q^{5} + 8q^{7} - 2q^{9} + O(q^{10}) \) \( 8q + 2q^{3} - 5q^{5} + 8q^{7} - 2q^{9} + 8q^{11} + 5q^{15} + 3q^{17} + 5q^{19} + 7q^{21} - 7q^{23} + 5q^{25} + 2q^{27} - 3q^{29} - 3q^{31} + 7q^{33} - 10q^{35} - q^{37} + 10q^{41} - 12q^{43} + 5q^{45} - 33q^{47} - 8q^{49} - 8q^{51} - 19q^{53} - 15q^{55} + 10q^{57} - 38q^{59} + 46q^{61} + 3q^{63} + 25q^{65} - 8q^{67} + 2q^{69} - 25q^{71} - 26q^{73} - 5q^{75} + 23q^{77} - 16q^{79} - 2q^{81} + 8q^{83} - 30q^{85} + 3q^{87} - 30q^{89} + 25q^{91} - 22q^{93} - 25q^{95} - 14q^{97} - 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.809017 0.587785i 0.467086 0.339358i
\(4\) 0 0
\(5\) −1.57146 + 1.59076i −0.702778 + 0.711409i
\(6\) 0 0
\(7\) 4.32440 1.63447 0.817234 0.576306i \(-0.195506\pi\)
0.817234 + 0.576306i \(0.195506\pi\)
\(8\) 0 0
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) 0 0
\(11\) 0.180557 + 0.555698i 0.0544401 + 0.167549i 0.974580 0.224041i \(-0.0719250\pi\)
−0.920140 + 0.391590i \(0.871925\pi\)
\(12\) 0 0
\(13\) 0.298591 0.918969i 0.0828143 0.254876i −0.901073 0.433668i \(-0.857219\pi\)
0.983887 + 0.178792i \(0.0572189\pi\)
\(14\) 0 0
\(15\) −0.336312 + 2.21063i −0.0868354 + 0.570783i
\(16\) 0 0
\(17\) 1.88048 + 1.36625i 0.456082 + 0.331363i 0.791993 0.610531i \(-0.209044\pi\)
−0.335910 + 0.941894i \(0.609044\pi\)
\(18\) 0 0
\(19\) 4.35169 + 3.16169i 0.998346 + 0.725341i 0.961733 0.273988i \(-0.0883430\pi\)
0.0366134 + 0.999330i \(0.488343\pi\)
\(20\) 0 0
\(21\) 3.49851 2.54182i 0.763437 0.554670i
\(22\) 0 0
\(23\) −0.419687 1.29166i −0.0875107 0.269330i 0.897719 0.440569i \(-0.145223\pi\)
−0.985230 + 0.171238i \(0.945223\pi\)
\(24\) 0 0
\(25\) −0.0610333 4.99963i −0.0122067 0.999925i
\(26\) 0 0
\(27\) −0.309017 0.951057i −0.0594703 0.183031i
\(28\) 0 0
\(29\) 0.571459 0.415189i 0.106117 0.0770987i −0.533461 0.845825i \(-0.679109\pi\)
0.639578 + 0.768726i \(0.279109\pi\)
\(30\) 0 0
\(31\) −6.86707 4.98922i −1.23336 0.896090i −0.236225 0.971698i \(-0.575910\pi\)
−0.997138 + 0.0756084i \(0.975910\pi\)
\(32\) 0 0
\(33\) 0.472705 + 0.343440i 0.0822874 + 0.0597853i
\(34\) 0 0
\(35\) −6.79561 + 6.87908i −1.14867 + 1.16278i
\(36\) 0 0
\(37\) −1.89090 + 5.81960i −0.310862 + 0.956736i 0.666562 + 0.745450i \(0.267765\pi\)
−0.977424 + 0.211286i \(0.932235\pi\)
\(38\) 0 0
\(39\) −0.298591 0.918969i −0.0478129 0.147153i
\(40\) 0 0
\(41\) 3.41820 10.5201i 0.533833 1.64297i −0.212325 0.977199i \(-0.568104\pi\)
0.746158 0.665769i \(-0.231896\pi\)
\(42\) 0 0
\(43\) −7.03076 −1.07218 −0.536090 0.844161i \(-0.680099\pi\)
−0.536090 + 0.844161i \(0.680099\pi\)
\(44\) 0 0
\(45\) 1.02729 + 1.98612i 0.153140 + 0.296073i
\(46\) 0 0
\(47\) −7.33723 + 5.33081i −1.07025 + 0.777579i −0.975956 0.217966i \(-0.930058\pi\)
−0.0942890 + 0.995545i \(0.530058\pi\)
\(48\) 0 0
\(49\) 11.7004 1.67149
\(50\) 0 0
\(51\) 2.32440 0.325481
\(52\) 0 0
\(53\) −7.20487 + 5.23465i −0.989665 + 0.719034i −0.959848 0.280521i \(-0.909493\pi\)
−0.0298175 + 0.999555i \(0.509493\pi\)
\(54\) 0 0
\(55\) −1.16772 0.586034i −0.157455 0.0790208i
\(56\) 0 0
\(57\) 5.37899 0.712464
\(58\) 0 0
\(59\) −2.25351 + 6.93558i −0.293382 + 0.902936i 0.690379 + 0.723448i \(0.257444\pi\)
−0.983760 + 0.179487i \(0.942556\pi\)
\(60\) 0 0
\(61\) −1.48752 4.57810i −0.190457 0.586166i 0.809543 0.587061i \(-0.199715\pi\)
−1.00000 0.000895115i \(0.999715\pi\)
\(62\) 0 0
\(63\) 1.33631 4.11275i 0.168359 0.518157i
\(64\) 0 0
\(65\) 0.992636 + 1.91911i 0.123121 + 0.238036i
\(66\) 0 0
\(67\) 0.304195 + 0.221011i 0.0371634 + 0.0270008i 0.606212 0.795303i \(-0.292688\pi\)
−0.569049 + 0.822304i \(0.692688\pi\)
\(68\) 0 0
\(69\) −1.09875 0.798291i −0.132274 0.0961030i
\(70\) 0 0
\(71\) −8.54359 + 6.20729i −1.01394 + 0.736669i −0.965031 0.262134i \(-0.915574\pi\)
−0.0489067 + 0.998803i \(0.515574\pi\)
\(72\) 0 0
\(73\) 0.0659364 + 0.202931i 0.00771727 + 0.0237513i 0.954841 0.297117i \(-0.0960252\pi\)
−0.947124 + 0.320869i \(0.896025\pi\)
\(74\) 0 0
\(75\) −2.98808 4.00891i −0.345034 0.462909i
\(76\) 0 0
\(77\) 0.780801 + 2.40306i 0.0889806 + 0.273854i
\(78\) 0 0
\(79\) 5.68410 4.12974i 0.639511 0.464632i −0.220171 0.975461i \(-0.570661\pi\)
0.859682 + 0.510829i \(0.170661\pi\)
\(80\) 0 0
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 0 0
\(83\) −13.0343 9.46998i −1.43070 1.03946i −0.989886 0.141867i \(-0.954690\pi\)
−0.440815 0.897598i \(-0.645310\pi\)
\(84\) 0 0
\(85\) −5.12846 + 0.844386i −0.556260 + 0.0915866i
\(86\) 0 0
\(87\) 0.218278 0.671790i 0.0234018 0.0720235i
\(88\) 0 0
\(89\) −4.33233 13.3335i −0.459226 1.41335i −0.866101 0.499869i \(-0.833382\pi\)
0.406875 0.913484i \(-0.366618\pi\)
\(90\) 0 0
\(91\) 1.29123 3.97399i 0.135357 0.416587i
\(92\) 0 0
\(93\) −8.48817 −0.880182
\(94\) 0 0
\(95\) −11.8680 + 1.95403i −1.21763 + 0.200479i
\(96\) 0 0
\(97\) −12.7436 + 9.25880i −1.29392 + 0.940089i −0.999877 0.0157030i \(-0.995001\pi\)
−0.294044 + 0.955792i \(0.595001\pi\)
\(98\) 0 0
\(99\) 0.584296 0.0587239
\(100\) 0 0
\(101\) 7.14178 0.710634 0.355317 0.934746i \(-0.384373\pi\)
0.355317 + 0.934746i \(0.384373\pi\)
\(102\) 0 0
\(103\) −1.07238 + 0.779130i −0.105665 + 0.0767699i −0.639363 0.768905i \(-0.720802\pi\)
0.533698 + 0.845675i \(0.320802\pi\)
\(104\) 0 0
\(105\) −1.45435 + 9.55965i −0.141930 + 0.932926i
\(106\) 0 0
\(107\) 17.6796 1.70915 0.854573 0.519331i \(-0.173819\pi\)
0.854573 + 0.519331i \(0.173819\pi\)
\(108\) 0 0
\(109\) 1.09385 3.36653i 0.104772 0.322455i −0.884905 0.465772i \(-0.845777\pi\)
0.989677 + 0.143317i \(0.0457768\pi\)
\(110\) 0 0
\(111\) 1.89090 + 5.81960i 0.179476 + 0.552372i
\(112\) 0 0
\(113\) 5.40414 16.6322i 0.508379 1.56463i −0.286636 0.958039i \(-0.592537\pi\)
0.795015 0.606590i \(-0.207463\pi\)
\(114\) 0 0
\(115\) 2.71425 + 1.36217i 0.253105 + 0.127023i
\(116\) 0 0
\(117\) −0.781722 0.567954i −0.0722702 0.0525074i
\(118\) 0 0
\(119\) 8.13192 + 5.90819i 0.745452 + 0.541603i
\(120\) 0 0
\(121\) 8.62299 6.26497i 0.783908 0.569542i
\(122\) 0 0
\(123\) −3.41820 10.5201i −0.308208 0.948568i
\(124\) 0 0
\(125\) 8.04912 + 7.75962i 0.719935 + 0.694042i
\(126\) 0 0
\(127\) 5.40966 + 16.6492i 0.480030 + 1.47738i 0.839052 + 0.544051i \(0.183110\pi\)
−0.359022 + 0.933329i \(0.616890\pi\)
\(128\) 0 0
\(129\) −5.68800 + 4.13258i −0.500801 + 0.363853i
\(130\) 0 0
\(131\) 15.2629 + 11.0892i 1.33353 + 0.968865i 0.999656 + 0.0262465i \(0.00835549\pi\)
0.333872 + 0.942618i \(0.391645\pi\)
\(132\) 0 0
\(133\) 18.8184 + 13.6724i 1.63177 + 1.18555i
\(134\) 0 0
\(135\) 1.99851 + 1.00297i 0.172004 + 0.0863223i
\(136\) 0 0
\(137\) 4.09472 12.6023i 0.349836 1.07668i −0.609108 0.793087i \(-0.708472\pi\)
0.958944 0.283596i \(-0.0915275\pi\)
\(138\) 0 0
\(139\) −5.22318 16.0753i −0.443024 1.36349i −0.884636 0.466283i \(-0.845593\pi\)
0.441611 0.897206i \(-0.354407\pi\)
\(140\) 0 0
\(141\) −2.80257 + 8.62543i −0.236019 + 0.726393i
\(142\) 0 0
\(143\) 0.564582 0.0472128
\(144\) 0 0
\(145\) −0.237558 + 1.56151i −0.0197281 + 0.129676i
\(146\) 0 0
\(147\) 9.46582 6.87732i 0.780728 0.567232i
\(148\) 0 0
\(149\) 12.1625 0.996388 0.498194 0.867066i \(-0.333997\pi\)
0.498194 + 0.867066i \(0.333997\pi\)
\(150\) 0 0
\(151\) −9.84446 −0.801131 −0.400565 0.916268i \(-0.631186\pi\)
−0.400565 + 0.916268i \(0.631186\pi\)
\(152\) 0 0
\(153\) 1.88048 1.36625i 0.152027 0.110454i
\(154\) 0 0
\(155\) 18.7280 3.08351i 1.50427 0.247673i
\(156\) 0 0
\(157\) −18.4804 −1.47489 −0.737447 0.675405i \(-0.763969\pi\)
−0.737447 + 0.675405i \(0.763969\pi\)
\(158\) 0 0
\(159\) −2.75202 + 8.46984i −0.218249 + 0.671702i
\(160\) 0 0
\(161\) −1.81489 5.58566i −0.143033 0.440212i
\(162\) 0 0
\(163\) −4.49212 + 13.8253i −0.351850 + 1.08288i 0.605964 + 0.795492i \(0.292788\pi\)
−0.957814 + 0.287390i \(0.907212\pi\)
\(164\) 0 0
\(165\) −1.28917 + 0.212258i −0.100362 + 0.0165242i
\(166\) 0 0
\(167\) 3.63490 + 2.64091i 0.281277 + 0.204360i 0.719474 0.694519i \(-0.244383\pi\)
−0.438197 + 0.898879i \(0.644383\pi\)
\(168\) 0 0
\(169\) 9.76187 + 7.09242i 0.750913 + 0.545570i
\(170\) 0 0
\(171\) 4.35169 3.16169i 0.332782 0.241780i
\(172\) 0 0
\(173\) 0.617465 + 1.90036i 0.0469450 + 0.144482i 0.971781 0.235883i \(-0.0757983\pi\)
−0.924836 + 0.380365i \(0.875798\pi\)
\(174\) 0 0
\(175\) −0.263932 21.6204i −0.0199514 1.63435i
\(176\) 0 0
\(177\) 2.25351 + 6.93558i 0.169384 + 0.521310i
\(178\) 0 0
\(179\) −11.3095 + 8.21683i −0.845312 + 0.614155i −0.923849 0.382756i \(-0.874975\pi\)
0.0785376 + 0.996911i \(0.474975\pi\)
\(180\) 0 0
\(181\) −10.9524 7.95740i −0.814087 0.591469i 0.100926 0.994894i \(-0.467820\pi\)
−0.915013 + 0.403425i \(0.867820\pi\)
\(182\) 0 0
\(183\) −3.89437 2.82942i −0.287880 0.209157i
\(184\) 0 0
\(185\) −6.28611 12.1532i −0.462164 0.893523i
\(186\) 0 0
\(187\) −0.419687 + 1.29166i −0.0306905 + 0.0944557i
\(188\) 0 0
\(189\) −1.33631 4.11275i −0.0972024 0.299158i
\(190\) 0 0
\(191\) 0.786594 2.42089i 0.0569160 0.175169i −0.918557 0.395288i \(-0.870645\pi\)
0.975473 + 0.220119i \(0.0706446\pi\)
\(192\) 0 0
\(193\) 5.60541 0.403486 0.201743 0.979438i \(-0.435339\pi\)
0.201743 + 0.979438i \(0.435339\pi\)
\(194\) 0 0
\(195\) 1.93108 + 0.969136i 0.138288 + 0.0694013i
\(196\) 0 0
\(197\) 6.35580 4.61776i 0.452832 0.329002i −0.337881 0.941189i \(-0.609710\pi\)
0.790713 + 0.612187i \(0.209710\pi\)
\(198\) 0 0
\(199\) 16.9970 1.20489 0.602443 0.798162i \(-0.294194\pi\)
0.602443 + 0.798162i \(0.294194\pi\)
\(200\) 0 0
\(201\) 0.376006 0.0265214
\(202\) 0 0
\(203\) 2.47122 1.79544i 0.173445 0.126015i
\(204\) 0 0
\(205\) 11.3634 + 21.9695i 0.793657 + 1.53441i
\(206\) 0 0
\(207\) −1.35813 −0.0943969
\(208\) 0 0
\(209\) −0.971215 + 2.98909i −0.0671804 + 0.206760i
\(210\) 0 0
\(211\) −4.00341 12.3212i −0.275606 0.848229i −0.989058 0.147525i \(-0.952869\pi\)
0.713452 0.700704i \(-0.247131\pi\)
\(212\) 0 0
\(213\) −3.26336 + 10.0436i −0.223602 + 0.688176i
\(214\) 0 0
\(215\) 11.0485 11.1842i 0.753505 0.762759i
\(216\) 0 0
\(217\) −29.6959 21.5754i −2.01589 1.46463i
\(218\) 0 0
\(219\) 0.172624 + 0.125419i 0.0116648 + 0.00847500i
\(220\) 0 0
\(221\) 1.81703 1.32015i 0.122227 0.0888030i
\(222\) 0 0
\(223\) 5.86518 + 18.0512i 0.392761 + 1.20880i 0.930691 + 0.365806i \(0.119207\pi\)
−0.537930 + 0.842990i \(0.680793\pi\)
\(224\) 0 0
\(225\) −4.77379 1.48692i −0.318253 0.0991283i
\(226\) 0 0
\(227\) −0.119005 0.366260i −0.00789865 0.0243095i 0.947030 0.321147i \(-0.104068\pi\)
−0.954928 + 0.296837i \(0.904068\pi\)
\(228\) 0 0
\(229\) −8.30740 + 6.03568i −0.548968 + 0.398849i −0.827405 0.561606i \(-0.810184\pi\)
0.278437 + 0.960455i \(0.410184\pi\)
\(230\) 0 0
\(231\) 2.04416 + 1.48517i 0.134496 + 0.0977172i
\(232\) 0 0
\(233\) 17.5055 + 12.7185i 1.14682 + 0.833217i 0.988055 0.154099i \(-0.0492474\pi\)
0.158769 + 0.987316i \(0.449247\pi\)
\(234\) 0 0
\(235\) 3.05012 20.0489i 0.198968 1.30785i
\(236\) 0 0
\(237\) 2.17113 6.68206i 0.141030 0.434047i
\(238\) 0 0
\(239\) −2.38438 7.33836i −0.154233 0.474679i 0.843850 0.536579i \(-0.180284\pi\)
−0.998082 + 0.0619006i \(0.980284\pi\)
\(240\) 0 0
\(241\) −7.82629 + 24.0868i −0.504136 + 1.55157i 0.298083 + 0.954540i \(0.403653\pi\)
−0.802219 + 0.597030i \(0.796347\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −18.3867 + 18.6125i −1.17468 + 1.18911i
\(246\) 0 0
\(247\) 4.20487 3.05502i 0.267550 0.194386i
\(248\) 0 0
\(249\) −16.1113 −1.02101
\(250\) 0 0
\(251\) −2.39913 −0.151432 −0.0757160 0.997129i \(-0.524124\pi\)
−0.0757160 + 0.997129i \(0.524124\pi\)
\(252\) 0 0
\(253\) 0.641997 0.466438i 0.0403620 0.0293247i
\(254\) 0 0
\(255\) −3.65269 + 3.69756i −0.228741 + 0.231550i
\(256\) 0 0
\(257\) −14.3086 −0.892548 −0.446274 0.894896i \(-0.647249\pi\)
−0.446274 + 0.894896i \(0.647249\pi\)
\(258\) 0 0
\(259\) −8.17701 + 25.1662i −0.508095 + 1.56375i
\(260\) 0 0
\(261\) −0.218278 0.671790i −0.0135111 0.0415828i
\(262\) 0 0
\(263\) 4.04210 12.4403i 0.249247 0.767103i −0.745662 0.666324i \(-0.767867\pi\)
0.994909 0.100779i \(-0.0321334\pi\)
\(264\) 0 0
\(265\) 2.99510 19.6873i 0.183987 1.20938i
\(266\) 0 0
\(267\) −11.3422 8.24058i −0.694131 0.504315i
\(268\) 0 0
\(269\) −24.8165 18.0302i −1.51309 1.09932i −0.964783 0.263046i \(-0.915273\pi\)
−0.548306 0.836278i \(-0.684727\pi\)
\(270\) 0 0
\(271\) −11.5174 + 8.36785i −0.699629 + 0.508310i −0.879811 0.475323i \(-0.842331\pi\)
0.180182 + 0.983633i \(0.442331\pi\)
\(272\) 0 0
\(273\) −1.29123 3.97399i −0.0781486 0.240517i
\(274\) 0 0
\(275\) 2.76726 0.936635i 0.166872 0.0564812i
\(276\) 0 0
\(277\) 6.22072 + 19.1454i 0.373767 + 1.15034i 0.944307 + 0.329066i \(0.106734\pi\)
−0.570540 + 0.821270i \(0.693266\pi\)
\(278\) 0 0
\(279\) −6.86707 + 4.98922i −0.411121 + 0.298697i
\(280\) 0 0
\(281\) 7.94172 + 5.77000i 0.473763 + 0.344209i 0.798906 0.601456i \(-0.205412\pi\)
−0.325143 + 0.945665i \(0.605412\pi\)
\(282\) 0 0
\(283\) −5.29540 3.84733i −0.314779 0.228700i 0.419166 0.907910i \(-0.362323\pi\)
−0.733944 + 0.679210i \(0.762323\pi\)
\(284\) 0 0
\(285\) −8.45286 + 8.55667i −0.500704 + 0.506854i
\(286\) 0 0
\(287\) 14.7816 45.4932i 0.872532 2.68538i
\(288\) 0 0
\(289\) −3.58373 11.0296i −0.210807 0.648799i
\(290\) 0 0
\(291\) −4.86764 + 14.9811i −0.285346 + 0.878205i
\(292\) 0 0
\(293\) 0.869428 0.0507925 0.0253963 0.999677i \(-0.491915\pi\)
0.0253963 + 0.999677i \(0.491915\pi\)
\(294\) 0 0
\(295\) −7.49155 14.4838i −0.436175 0.843277i
\(296\) 0 0
\(297\) 0.472705 0.343440i 0.0274291 0.0199284i
\(298\) 0 0
\(299\) −1.31231 −0.0758930
\(300\) 0 0
\(301\) −30.4038 −1.75244
\(302\) 0 0
\(303\) 5.77782 4.19783i 0.331927 0.241159i
\(304\) 0 0
\(305\) 9.62023 + 4.82802i 0.550853 + 0.276452i
\(306\) 0 0
\(307\) 21.7261 1.23997 0.619986 0.784613i \(-0.287138\pi\)
0.619986 + 0.784613i \(0.287138\pi\)
\(308\) 0 0
\(309\) −0.409613 + 1.26066i −0.0233021 + 0.0717163i
\(310\) 0 0
\(311\) 5.86610 + 18.0540i 0.332636 + 1.02375i 0.967875 + 0.251432i \(0.0809016\pi\)
−0.635239 + 0.772316i \(0.719098\pi\)
\(312\) 0 0
\(313\) −1.87947 + 5.78443i −0.106234 + 0.326955i −0.990018 0.140940i \(-0.954988\pi\)
0.883784 + 0.467895i \(0.154988\pi\)
\(314\) 0 0
\(315\) 4.44243 + 8.58876i 0.250303 + 0.483922i
\(316\) 0 0
\(317\) −1.60038 1.16274i −0.0898860 0.0653060i 0.541935 0.840421i \(-0.317692\pi\)
−0.631821 + 0.775115i \(0.717692\pi\)
\(318\) 0 0
\(319\) 0.333901 + 0.242593i 0.0186949 + 0.0135826i
\(320\) 0 0
\(321\) 14.3031 10.3918i 0.798319 0.580013i
\(322\) 0 0
\(323\) 3.86361 + 11.8910i 0.214977 + 0.661631i
\(324\) 0 0
\(325\) −4.61273 1.43676i −0.255868 0.0796970i
\(326\) 0 0
\(327\) −1.09385 3.36653i −0.0604901 0.186169i
\(328\) 0 0
\(329\) −31.7291 + 23.0525i −1.74928 + 1.27093i
\(330\) 0 0
\(331\) 10.6230 + 7.71805i 0.583892 + 0.424223i 0.840125 0.542393i \(-0.182481\pi\)
−0.256233 + 0.966615i \(0.582481\pi\)
\(332\) 0 0
\(333\) 4.95044 + 3.59671i 0.271283 + 0.197098i
\(334\) 0 0
\(335\) −0.829605 + 0.136592i −0.0453262 + 0.00746283i
\(336\) 0 0
\(337\) 3.55245 10.9333i 0.193514 0.595576i −0.806476 0.591266i \(-0.798628\pi\)
0.999991 0.00430942i \(-0.00137173\pi\)
\(338\) 0 0
\(339\) −5.40414 16.6322i −0.293513 0.903339i
\(340\) 0 0
\(341\) 1.53260 4.71686i 0.0829949 0.255432i
\(342\) 0 0
\(343\) 20.3264 1.09752
\(344\) 0 0
\(345\) 2.99654 0.493371i 0.161328 0.0265622i
\(346\) 0 0
\(347\) −24.0905 + 17.5028i −1.29325 + 0.939599i −0.999866 0.0163966i \(-0.994781\pi\)
−0.293381 + 0.955995i \(0.594781\pi\)
\(348\) 0 0
\(349\) 10.0870 0.539946 0.269973 0.962868i \(-0.412985\pi\)
0.269973 + 0.962868i \(0.412985\pi\)
\(350\) 0 0
\(351\) −0.966262 −0.0515752
\(352\) 0 0
\(353\) 11.5382 8.38300i 0.614117 0.446182i −0.236745 0.971572i \(-0.576081\pi\)
0.850862 + 0.525390i \(0.176081\pi\)
\(354\) 0 0
\(355\) 3.55161 23.3453i 0.188500 1.23904i
\(356\) 0 0
\(357\) 10.0516 0.531988
\(358\) 0 0
\(359\) −2.04232 + 6.28562i −0.107790 + 0.331742i −0.990375 0.138410i \(-0.955801\pi\)
0.882585 + 0.470152i \(0.155801\pi\)
\(360\) 0 0
\(361\) 3.06962 + 9.44731i 0.161559 + 0.497227i
\(362\) 0 0
\(363\) 3.29369 10.1369i 0.172874 0.532051i
\(364\) 0 0
\(365\) −0.426432 0.214009i −0.0223204 0.0112018i
\(366\) 0 0
\(367\) −7.72012 5.60900i −0.402987 0.292787i 0.367770 0.929917i \(-0.380122\pi\)
−0.770757 + 0.637130i \(0.780122\pi\)
\(368\) 0 0
\(369\) −8.94895 6.50180i −0.465864 0.338470i
\(370\) 0 0
\(371\) −31.1567 + 22.6367i −1.61758 + 1.17524i
\(372\) 0 0
\(373\) −0.402767 1.23959i −0.0208545 0.0641835i 0.940088 0.340933i \(-0.110743\pi\)
−0.960942 + 0.276749i \(0.910743\pi\)
\(374\) 0 0
\(375\) 11.0729 + 1.54651i 0.571800 + 0.0798615i
\(376\) 0 0
\(377\) −0.210914 0.649125i −0.0108626 0.0334317i
\(378\) 0 0
\(379\) −19.6474 + 14.2747i −1.00922 + 0.733240i −0.964045 0.265739i \(-0.914384\pi\)
−0.0451733 + 0.998979i \(0.514384\pi\)
\(380\) 0 0
\(381\) 14.1627 + 10.2898i 0.725576 + 0.527162i
\(382\) 0 0
\(383\) −9.81489 7.13094i −0.501518 0.364374i 0.308079 0.951361i \(-0.400314\pi\)
−0.809596 + 0.586987i \(0.800314\pi\)
\(384\) 0 0
\(385\) −5.04969 2.53424i −0.257356 0.129157i
\(386\) 0 0
\(387\) −2.17262 + 6.68665i −0.110441 + 0.339901i
\(388\) 0 0
\(389\) −9.04178 27.8278i −0.458437 1.41092i −0.867053 0.498217i \(-0.833988\pi\)
0.408616 0.912706i \(-0.366012\pi\)
\(390\) 0 0
\(391\) 0.975518 3.00234i 0.0493341 0.151835i
\(392\) 0 0
\(393\) 18.8660 0.951664
\(394\) 0 0
\(395\) −2.36291 + 15.5318i −0.118891 + 0.781488i
\(396\) 0 0
\(397\) −5.09179 + 3.69940i −0.255550 + 0.185668i −0.708183 0.706029i \(-0.750485\pi\)
0.452633 + 0.891697i \(0.350485\pi\)
\(398\) 0 0
\(399\) 23.2609 1.16450
\(400\) 0 0
\(401\) 30.3064 1.51343 0.756714 0.653747i \(-0.226804\pi\)
0.756714 + 0.653747i \(0.226804\pi\)
\(402\) 0 0
\(403\) −6.63539 + 4.82089i −0.330532 + 0.240146i
\(404\) 0 0
\(405\) 2.20636 0.363271i 0.109635 0.0180511i
\(406\) 0 0
\(407\) −3.57536 −0.177224
\(408\) 0 0
\(409\) 5.70942 17.5718i 0.282313 0.868870i −0.704878 0.709328i \(-0.748998\pi\)
0.987191 0.159541i \(-0.0510015\pi\)
\(410\) 0 0
\(411\) −4.09472 12.6023i −0.201978 0.621623i
\(412\) 0 0
\(413\) −9.74505 + 29.9922i −0.479523 + 1.47582i
\(414\) 0 0
\(415\) 35.5473 5.85277i 1.74495 0.287301i
\(416\) 0 0
\(417\) −13.6745 9.93508i −0.669641 0.486523i
\(418\) 0 0
\(419\) 18.1586 + 13.1930i 0.887108 + 0.644522i 0.935122 0.354325i \(-0.115289\pi\)
−0.0480143 + 0.998847i \(0.515289\pi\)
\(420\) 0 0
\(421\) 5.05679 3.67397i 0.246453 0.179058i −0.457700 0.889106i \(-0.651327\pi\)
0.704153 + 0.710048i \(0.251327\pi\)
\(422\) 0 0
\(423\) 2.80257 + 8.62543i 0.136266 + 0.419383i
\(424\) 0 0
\(425\) 6.71595 9.48507i 0.325771 0.460093i
\(426\) 0 0
\(427\) −6.43260 19.7975i −0.311296 0.958069i
\(428\) 0 0
\(429\) 0.456757 0.331853i 0.0220524 0.0160220i
\(430\) 0 0
\(431\) −27.9850 20.3323i −1.34799 0.979373i −0.999109 0.0422061i \(-0.986561\pi\)
−0.348882 0.937167i \(-0.613439\pi\)
\(432\) 0 0
\(433\) 3.18056 + 2.31081i 0.152848 + 0.111050i 0.661581 0.749874i \(-0.269886\pi\)
−0.508733 + 0.860924i \(0.669886\pi\)
\(434\) 0 0
\(435\) 0.725642 + 1.40292i 0.0347919 + 0.0672648i
\(436\) 0 0
\(437\) 2.25749 6.94784i 0.107990 0.332360i
\(438\) 0 0
\(439\) 1.54170 + 4.74487i 0.0735815 + 0.226460i 0.981083 0.193589i \(-0.0620128\pi\)
−0.907501 + 0.420049i \(0.862013\pi\)
\(440\) 0 0
\(441\) 3.61562 11.1277i 0.172173 0.529893i
\(442\) 0 0
\(443\) 9.92754 0.471672 0.235836 0.971793i \(-0.424217\pi\)
0.235836 + 0.971793i \(0.424217\pi\)
\(444\) 0 0
\(445\) 28.0185 + 14.0614i 1.32821 + 0.666575i
\(446\) 0 0
\(447\) 9.83964 7.14892i 0.465399 0.338132i
\(448\) 0 0
\(449\) 9.87365 0.465966 0.232983 0.972481i \(-0.425151\pi\)
0.232983 + 0.972481i \(0.425151\pi\)
\(450\) 0 0
\(451\) 6.46320 0.304340
\(452\) 0 0
\(453\) −7.96433 + 5.78643i −0.374197 + 0.271870i
\(454\) 0 0
\(455\) 4.29255 + 8.29899i 0.201238 + 0.389063i
\(456\) 0 0
\(457\) 12.6424 0.591387 0.295693 0.955283i \(-0.404449\pi\)
0.295693 + 0.955283i \(0.404449\pi\)
\(458\) 0 0
\(459\) 0.718278 2.21063i 0.0335263 0.103183i
\(460\) 0 0
\(461\) 12.2911 + 37.8280i 0.572452 + 1.76183i 0.644697 + 0.764438i \(0.276984\pi\)
−0.0722451 + 0.997387i \(0.523016\pi\)
\(462\) 0 0
\(463\) 1.36545 4.20242i 0.0634578 0.195303i −0.914301 0.405035i \(-0.867259\pi\)
0.977759 + 0.209732i \(0.0672592\pi\)
\(464\) 0 0
\(465\) 13.3388 13.5026i 0.618572 0.626170i
\(466\) 0 0
\(467\) 9.12137 + 6.62706i 0.422086 + 0.306664i 0.778477 0.627673i \(-0.215993\pi\)
−0.356390 + 0.934337i \(0.615993\pi\)
\(468\) 0 0
\(469\) 1.31546 + 0.955738i 0.0607423 + 0.0441319i
\(470\) 0 0
\(471\) −14.9509 + 10.8625i −0.688902 + 0.500517i
\(472\) 0 0
\(473\) −1.26945 3.90698i −0.0583696 0.179643i
\(474\) 0 0
\(475\) 15.5417 21.9498i 0.713101 1.00713i
\(476\) 0 0
\(477\) 2.75202 + 8.46984i 0.126006 + 0.387807i
\(478\) 0 0
\(479\) 4.49728 3.26747i 0.205486 0.149294i −0.480283 0.877114i \(-0.659466\pi\)
0.685769 + 0.727819i \(0.259466\pi\)
\(480\) 0 0
\(481\) 4.78343 + 3.47536i 0.218105 + 0.158463i
\(482\) 0 0
\(483\) −4.75145 3.45213i −0.216198 0.157077i
\(484\) 0 0
\(485\) 5.29759 34.8219i 0.240551 1.58118i
\(486\) 0 0
\(487\) −5.14021 + 15.8199i −0.232925 + 0.716870i 0.764465 + 0.644665i \(0.223003\pi\)
−0.997390 + 0.0722042i \(0.976997\pi\)
\(488\) 0 0
\(489\) 4.49212 + 13.8253i 0.203141 + 0.625202i
\(490\) 0 0
\(491\) 0.327326 1.00741i 0.0147720 0.0454636i −0.943399 0.331661i \(-0.892391\pi\)
0.958171 + 0.286197i \(0.0923912\pi\)
\(492\) 0 0
\(493\) 1.64187 0.0739459
\(494\) 0 0
\(495\) −0.918197 + 0.929474i −0.0412699 + 0.0417767i
\(496\) 0 0
\(497\) −36.9459 + 26.8428i −1.65725 + 1.20406i
\(498\) 0 0
\(499\) 24.9700 1.11781 0.558906 0.829231i \(-0.311221\pi\)
0.558906 + 0.829231i \(0.311221\pi\)
\(500\) 0 0
\(501\) 4.49299 0.200732
\(502\) 0 0
\(503\) −10.1502 + 7.37458i −0.452576 + 0.328816i −0.790612 0.612317i \(-0.790238\pi\)
0.338036 + 0.941133i \(0.390238\pi\)
\(504\) 0 0
\(505\) −11.2230 + 11.3609i −0.499418 + 0.505551i
\(506\) 0 0
\(507\) 12.0663 0.535885
\(508\) 0 0
\(509\) −4.76735 + 14.6724i −0.211309 + 0.650342i 0.788086 + 0.615565i \(0.211072\pi\)
−0.999395 + 0.0347770i \(0.988928\pi\)
\(510\) 0 0
\(511\) 0.285135 + 0.877556i 0.0126136 + 0.0388208i
\(512\) 0 0
\(513\) 1.66220 5.11572i 0.0733878 0.225865i
\(514\) 0 0
\(515\) 0.445793 2.93027i 0.0196440 0.129123i
\(516\) 0 0
\(517\) −4.28711 3.11477i −0.188547 0.136987i
\(518\) 0 0
\(519\) 1.61654 + 1.17449i 0.0709584 + 0.0515543i
\(520\) 0 0
\(521\) 15.6466 11.3679i 0.685490 0.498037i −0.189685 0.981845i \(-0.560747\pi\)
0.875174 + 0.483808i \(0.160747\pi\)
\(522\) 0 0
\(523\) 2.14779 + 6.61022i 0.0939163 + 0.289045i 0.986970 0.160906i \(-0.0514416\pi\)
−0.893053 + 0.449951i \(0.851442\pi\)
\(524\) 0 0
\(525\) −12.9217 17.3361i −0.563947 0.756610i
\(526\) 0 0
\(527\) −6.09686 18.7642i −0.265583 0.817382i
\(528\) 0 0
\(529\) 17.1151 12.4349i 0.744136 0.540647i
\(530\) 0 0
\(531\) 5.89976 + 4.28642i 0.256028 + 0.186015i
\(532\) 0 0
\(533\) −8.64703 6.28244i −0.374545 0.272123i
\(534\) 0 0
\(535\) −27.7827 + 28.1239i −1.20115 + 1.21590i
\(536\) 0 0
\(537\) −4.31984 + 13.2951i −0.186415 + 0.573727i
\(538\) 0 0
\(539\) 2.11259 + 6.50189i 0.0909958 + 0.280056i
\(540\) 0 0
\(541\) 1.75145 5.39040i 0.0753006 0.231751i −0.906321 0.422590i \(-0.861121\pi\)
0.981621 + 0.190839i \(0.0611209\pi\)
\(542\) 0 0
\(543\) −13.5379 −0.580968
\(544\) 0 0
\(545\) 3.63639 + 7.03041i 0.155766 + 0.301150i
\(546\) 0 0
\(547\) −10.0315 + 7.28835i −0.428918 + 0.311627i −0.781216 0.624261i \(-0.785400\pi\)
0.352298 + 0.935888i \(0.385400\pi\)
\(548\) 0 0
\(549\) −4.81370 −0.205444
\(550\) 0 0
\(551\) 3.79951 0.161865
\(552\) 0 0
\(553\) 24.5803 17.8586i 1.04526 0.759427i
\(554\) 0 0
\(555\) −12.2291 6.13729i −0.519094 0.260513i
\(556\) 0 0
\(557\) 24.8970 1.05492 0.527461 0.849579i \(-0.323144\pi\)
0.527461 + 0.849579i \(0.323144\pi\)
\(558\) 0 0
\(559\) −2.09932 + 6.46105i −0.0887919 + 0.273273i
\(560\) 0 0
\(561\) 0.419687 + 1.29166i 0.0177192 + 0.0545340i
\(562\) 0 0
\(563\) −7.73423 + 23.8035i −0.325959 + 1.00320i 0.645047 + 0.764143i \(0.276838\pi\)
−0.971006 + 0.239055i \(0.923162\pi\)
\(564\) 0 0
\(565\) 17.9655 + 34.7336i 0.755814 + 1.46125i
\(566\) 0 0
\(567\) −3.49851 2.54182i −0.146924 0.106746i
\(568\) 0 0
\(569\) −1.69282 1.22991i −0.0709669 0.0515605i 0.551736 0.834019i \(-0.313966\pi\)
−0.622703 + 0.782458i \(0.713966\pi\)
\(570\) 0 0
\(571\) 9.32956 6.77832i 0.390430 0.283664i −0.375202 0.926943i \(-0.622427\pi\)
0.765632 + 0.643279i \(0.222427\pi\)
\(572\) 0 0
\(573\) −0.786594 2.42089i −0.0328604 0.101134i
\(574\) 0 0
\(575\) −6.43222 + 2.17711i −0.268242 + 0.0907918i
\(576\) 0 0
\(577\) −1.80625 5.55908i −0.0751954 0.231427i 0.906393 0.422435i \(-0.138825\pi\)
−0.981589 + 0.191007i \(0.938825\pi\)
\(578\) 0 0
\(579\) 4.53487 3.29478i 0.188463 0.136926i
\(580\) 0 0
\(581\) −56.3655 40.9519i −2.33843 1.69897i
\(582\) 0 0
\(583\) −4.20978 3.05858i −0.174351 0.126673i
\(584\) 0 0
\(585\) 2.13192 0.351015i 0.0881442 0.0145127i
\(586\) 0 0
\(587\) −2.84381 + 8.75234i −0.117377 + 0.361248i −0.992435 0.122769i \(-0.960823\pi\)
0.875059 + 0.484017i \(0.160823\pi\)
\(588\) 0 0
\(589\) −14.1090 43.4231i −0.581352 1.78922i
\(590\) 0 0
\(591\) 2.42770 7.47170i 0.0998623 0.307345i
\(592\) 0 0
\(593\) −14.9033 −0.612004 −0.306002 0.952031i \(-0.598991\pi\)
−0.306002 + 0.952031i \(0.598991\pi\)
\(594\) 0 0
\(595\) −22.1775 + 3.65146i −0.909189 + 0.149695i
\(596\) 0 0
\(597\) 13.7509 9.99060i 0.562786 0.408888i
\(598\) 0 0
\(599\) −7.52244 −0.307359 −0.153679 0.988121i \(-0.549112\pi\)
−0.153679 + 0.988121i \(0.549112\pi\)
\(600\) 0 0
\(601\) 18.6618 0.761232 0.380616 0.924733i \(-0.375712\pi\)
0.380616 + 0.924733i \(0.375712\pi\)
\(602\) 0 0
\(603\) 0.304195 0.221011i 0.0123878 0.00900025i
\(604\) 0 0
\(605\) −3.58461 + 23.5622i −0.145735 + 0.957941i
\(606\) 0 0
\(607\) 0.810016 0.0328776 0.0164388 0.999865i \(-0.494767\pi\)
0.0164388 + 0.999865i \(0.494767\pi\)
\(608\) 0 0
\(609\) 0.943920 2.90509i 0.0382496 0.117720i
\(610\) 0 0
\(611\) 2.70802 + 8.33443i 0.109555 + 0.337175i
\(612\) 0 0
\(613\) 1.54232 4.74678i 0.0622938 0.191721i −0.915066 0.403304i \(-0.867862\pi\)
0.977360 + 0.211583i \(0.0678619\pi\)
\(614\) 0 0
\(615\) 22.1066 + 11.0944i 0.891422 + 0.447370i
\(616\) 0 0
\(617\) 34.4722 + 25.0455i 1.38780 + 1.00829i 0.996103 + 0.0881990i \(0.0281111\pi\)
0.391695 + 0.920095i \(0.371889\pi\)
\(618\) 0 0
\(619\) −29.9038 21.7264i −1.20193 0.873257i −0.207461 0.978243i \(-0.566520\pi\)
−0.994474 + 0.104987i \(0.966520\pi\)
\(620\) 0 0
\(621\) −1.09875 + 0.798291i −0.0440915 + 0.0320343i
\(622\) 0 0
\(623\) −18.7347 57.6595i −0.750590 2.31008i
\(624\) 0 0
\(625\) −24.9925 + 0.610287i −0.999702 + 0.0244115i
\(626\) 0 0
\(627\) 0.971215 + 2.98909i 0.0387866 + 0.119373i
\(628\) 0 0
\(629\) −11.5068 + 8.36018i −0.458806 + 0.333342i
\(630\) 0 0
\(631\) 26.8891 + 19.5361i 1.07044 + 0.777719i 0.975991 0.217811i \(-0.0698915\pi\)
0.0944476 + 0.995530i \(0.469892\pi\)
\(632\) 0 0
\(633\) −10.4811 7.61494i −0.416585 0.302667i
\(634\) 0 0
\(635\) −34.9860 17.5581i −1.38838 0.696772i
\(636\) 0 0
\(637\) 3.49364 10.7523i 0.138423 0.426022i
\(638\) 0 0
\(639\) 3.26336 + 10.0436i 0.129097 + 0.397319i
\(640\) 0 0
\(641\) −8.41649 + 25.9033i −0.332431 + 1.02312i 0.635542 + 0.772066i \(0.280777\pi\)
−0.967974 + 0.251052i \(0.919223\pi\)
\(642\) 0 0
\(643\) −12.8557 −0.506978 −0.253489 0.967338i \(-0.581578\pi\)
−0.253489 + 0.967338i \(0.581578\pi\)
\(644\) 0 0
\(645\) 2.36453 15.5424i 0.0931032 0.611982i
\(646\) 0 0
\(647\) −25.7597 + 18.7155i −1.01272 + 0.735784i −0.964778 0.263066i \(-0.915266\pi\)
−0.0479418 + 0.998850i \(0.515266\pi\)
\(648\) 0 0
\(649\) −4.26098 −0.167258
\(650\) 0 0
\(651\) −36.7062 −1.43863
\(652\) 0 0
\(653\) 11.7323 8.52402i 0.459121 0.333571i −0.334066 0.942550i \(-0.608421\pi\)
0.793186 + 0.608979i \(0.208421\pi\)
\(654\) 0 0
\(655\) −41.6253 + 6.85348i −1.62643 + 0.267788i
\(656\) 0 0
\(657\) 0.213375 0.00832454
\(658\) 0 0
\(659\) 10.2713 31.6118i 0.400113 1.23142i −0.524795 0.851229i \(-0.675858\pi\)
0.924908 0.380192i \(-0.124142\pi\)
\(660\) 0 0
\(661\) −9.84316 30.2941i −0.382854 1.17830i −0.938025 0.346568i \(-0.887347\pi\)
0.555170 0.831737i \(-0.312653\pi\)
\(662\) 0 0
\(663\) 0.694044 2.13605i 0.0269545 0.0829573i
\(664\) 0 0
\(665\) −51.3219 + 8.45000i −1.99018 + 0.327677i
\(666\) 0 0
\(667\) −0.776118 0.563883i −0.0300514 0.0218336i
\(668\) 0 0
\(669\) 15.3552 + 11.1562i 0.593668 + 0.431325i
\(670\) 0 0
\(671\) 2.27546 1.65322i 0.0878432 0.0638218i
\(672\) 0 0
\(673\) −8.09358 24.9095i −0.311985 0.960190i −0.976978 0.213341i \(-0.931566\pi\)
0.664993 0.746849i \(-0.268434\pi\)
\(674\) 0 0
\(675\) −4.73607 + 1.60302i −0.182291 + 0.0617001i
\(676\) 0 0
\(677\) −4.58711 14.1177i −0.176297 0.542586i 0.823393 0.567471i \(-0.192078\pi\)
−0.999690 + 0.0248849i \(0.992078\pi\)
\(678\) 0 0
\(679\) −55.1086 + 40.0387i −2.11487 + 1.53655i
\(680\) 0 0
\(681\) −0.311560 0.226361i −0.0119390 0.00867418i
\(682\) 0 0
\(683\) 4.55174 + 3.30703i 0.174168 + 0.126540i 0.671454 0.741046i \(-0.265670\pi\)
−0.497286 + 0.867586i \(0.665670\pi\)
\(684\) 0 0
\(685\) 13.6125 + 26.3176i 0.520106 + 1.00555i
\(686\) 0 0
\(687\) −3.17314 + 9.76593i −0.121063 + 0.372593i
\(688\) 0 0
\(689\) 2.65917 + 8.18408i 0.101306 + 0.311788i
\(690\) 0 0
\(691\) 10.6330 32.7249i 0.404497 1.24492i −0.516817 0.856096i \(-0.672883\pi\)
0.921314 0.388819i \(-0.127117\pi\)
\(692\) 0 0
\(693\) 2.52673 0.0959824
\(694\) 0 0
\(695\) 33.7800 + 16.9528i 1.28135 + 0.643058i
\(696\) 0 0
\(697\) 20.8009 15.1128i 0.787891 0.572436i
\(698\) 0 0
\(699\) 21.6380 0.818425
\(700\) 0 0
\(701\) 8.86294 0.334749 0.167374 0.985893i \(-0.446471\pi\)
0.167374 + 0.985893i \(0.446471\pi\)
\(702\) 0 0
\(703\) −26.6284 + 19.3466i −1.00431 + 0.729673i
\(704\) 0 0
\(705\) −9.31686 18.0127i −0.350893 0.678399i
\(706\) 0 0
\(707\) 30.8839 1.16151
\(708\) 0 0
\(709\) 0.474877 1.46152i 0.0178344 0.0548885i −0.941743 0.336333i \(-0.890813\pi\)
0.959578 + 0.281444i \(0.0908134\pi\)
\(710\) 0 0
\(711\) −2.17113 6.68206i −0.0814239 0.250597i
\(712\) 0 0
\(713\) −3.56237 + 10.9638i −0.133412 + 0.410599i
\(714\) 0 0
\(715\) −0.887218 + 0.898115i −0.0331801 + 0.0335876i
\(716\) 0 0
\(717\) −6.24238 4.53535i −0.233126 0.169376i
\(718\) 0 0
\(719\) 15.4808 + 11.2474i 0.577335 + 0.419459i 0.837762 0.546035i \(-0.183863\pi\)
−0.260427 + 0.965493i \(0.583863\pi\)
\(720\) 0 0
\(721\) −4.63740 + 3.36926i −0.172706 + 0.125478i
\(722\) 0 0
\(723\) 7.82629 + 24.0868i 0.291063 + 0.895799i
\(724\) 0 0
\(725\) −2.11067 2.83174i −0.0783883 0.105168i
\(726\) 0 0
\(727\) 14.4649 + 44.5184i 0.536474 + 1.65110i 0.740443 + 0.672119i \(0.234616\pi\)
−0.203970 + 0.978977i \(0.565384\pi\)
\(728\) 0 0
\(729\) −0.809017 + 0.587785i −0.0299636 + 0.0217698i
\(730\) 0 0
\(731\) −13.2212 9.60574i −0.489003 0.355281i
\(732\) 0 0
\(733\) −41.2634 29.9796i −1.52410 1.10732i −0.959409 0.282019i \(-0.908996\pi\)
−0.564690 0.825303i \(-0.691004\pi\)
\(734\) 0 0
\(735\) −3.93498 + 25.8653i −0.145144 + 0.954055i
\(736\) 0 0
\(737\) −0.0678906 + 0.208946i −0.00250078 + 0.00769662i
\(738\) 0 0
\(739\) 4.08075 + 12.5592i 0.150113 + 0.461999i 0.997633 0.0687637i \(-0.0219054\pi\)
−0.847520 + 0.530763i \(0.821905\pi\)
\(740\) 0 0
\(741\) 1.60612 4.94312i 0.0590022 0.181590i
\(742\) 0 0
\(743\) 10.6063 0.389107 0.194553 0.980892i \(-0.437674\pi\)
0.194553 + 0.980892i \(0.437674\pi\)
\(744\) 0 0
\(745\) −19.1128 + 19.3476i −0.700240 + 0.708840i
\(746\) 0 0
\(747\) −13.0343 + 9.46998i −0.476900 + 0.346488i
\(748\) 0 0
\(749\) 76.4534 2.79355
\(750\) 0 0
\(751\) 28.2581 1.03115 0.515577 0.856843i \(-0.327578\pi\)
0.515577 + 0.856843i \(0.327578\pi\)
\(752\) 0 0
\(753\) −1.94094 + 1.41018i −0.0707318 + 0.0513897i
\(754\) 0 0
\(755\) 15.4702 15.6602i 0.563017 0.569932i
\(756\) 0 0
\(757\) 27.7474 1.00849 0.504247 0.863559i \(-0.331770\pi\)
0.504247 + 0.863559i \(0.331770\pi\)
\(758\) 0 0
\(759\) 0.245221 0.754713i 0.00890096 0.0273943i
\(760\) 0 0
\(761\) −4.97988 15.3265i −0.180521 0.555585i 0.819322 0.573334i \(-0.194350\pi\)
−0.999842 + 0.0177487i \(0.994350\pi\)
\(762\) 0 0
\(763\) 4.73024 14.5582i 0.171246 0.527042i
\(764\) 0 0
\(765\) −0.781722 + 5.13838i −0.0282632 + 0.185779i
\(766\) 0 0
\(767\) 5.70071 + 4.14181i 0.205841 + 0.149552i
\(768\) 0 0
\(769\) 28.1081 + 20.4217i 1.01360 + 0.736426i 0.964962 0.262390i \(-0.0845108\pi\)
0.0486417 + 0.998816i \(0.484511\pi\)
\(770\) 0 0
\(771\) −11.5759 + 8.41040i −0.416897 + 0.302893i
\(772\) 0 0
\(773\) 7.25215 + 22.3198i 0.260842 + 0.802788i 0.992622 + 0.121248i \(0.0386896\pi\)
−0.731781 + 0.681540i \(0.761310\pi\)
\(774\) 0 0
\(775\) −24.5251 + 34.6373i −0.880968 + 1.24421i
\(776\) 0 0
\(777\) 8.17701 + 25.1662i 0.293349 + 0.902834i
\(778\) 0 0
\(779\) 48.1363 34.9731i 1.72466 1.25304i
\(780\) 0 0
\(781\) −4.99199 3.62689i −0.178627 0.129780i
\(782\) 0 0
\(783\) −0.571459 0.415189i −0.0204223 0.0148377i
\(784\) 0 0
\(785\) 29.0411 29.3978i 1.03652 1.04925i
\(786\) 0 0
\(787\) −7.91755 + 24.3677i −0.282230 + 0.868615i 0.704985 + 0.709222i \(0.250954\pi\)
−0.987215 + 0.159393i \(0.949046\pi\)
\(788\) 0 0
\(789\) −4.04210 12.4403i −0.143903 0.442887i
\(790\) 0 0
\(791\) 23.3696 71.9244i 0.830929 2.55734i
\(792\) 0 0
\(793\) −4.65129 −0.165172
\(794\) 0 0
\(795\) −9.14879 17.6878i −0.324474 0.627321i