Properties

Label 300.2.j.c.43.2
Level $300$
Weight $2$
Character 300.43
Analytic conductor $2.396$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 300.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.39551206064\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
Defining polynomial: \(x^{8} - x^{4} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.2
Root \(0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 300.43
Dual form 300.2.j.c.7.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.22474 + 0.707107i) q^{2} +(0.707107 - 0.707107i) q^{3} +(1.00000 - 1.73205i) q^{4} +(-0.366025 + 1.36603i) q^{6} +(-3.15660 - 3.15660i) q^{7} +2.82843i q^{8} -1.00000i q^{9} +O(q^{10})\) \(q+(-1.22474 + 0.707107i) q^{2} +(0.707107 - 0.707107i) q^{3} +(1.00000 - 1.73205i) q^{4} +(-0.366025 + 1.36603i) q^{6} +(-3.15660 - 3.15660i) q^{7} +2.82843i q^{8} -1.00000i q^{9} -2.00000i q^{11} +(-0.517638 - 1.93185i) q^{12} +(-1.60368 - 1.60368i) q^{13} +(6.09808 + 1.63397i) q^{14} +(-2.00000 - 3.46410i) q^{16} +(-4.24264 + 4.24264i) q^{17} +(0.707107 + 1.22474i) q^{18} -3.19615 q^{19} -4.46410 q^{21} +(1.41421 + 2.44949i) q^{22} +(5.27792 - 5.27792i) q^{23} +(2.00000 + 2.00000i) q^{24} +(3.09808 + 0.830127i) q^{26} +(-0.707107 - 0.707107i) q^{27} +(-8.62398 + 2.31079i) q^{28} -0.535898i q^{29} -3.73205i q^{31} +(4.89898 + 2.82843i) q^{32} +(-1.41421 - 1.41421i) q^{33} +(2.19615 - 8.19615i) q^{34} +(-1.73205 - 1.00000i) q^{36} +(7.72741 - 7.72741i) q^{37} +(3.91447 - 2.26002i) q^{38} -2.26795 q^{39} +1.46410 q^{41} +(5.46739 - 3.15660i) q^{42} +(3.15660 - 3.15660i) q^{43} +(-3.46410 - 2.00000i) q^{44} +(-2.73205 + 10.1962i) q^{46} +(0.656339 + 0.656339i) q^{47} +(-3.86370 - 1.03528i) q^{48} +12.9282i q^{49} +6.00000i q^{51} +(-4.38134 + 1.17398i) q^{52} +(3.86370 + 3.86370i) q^{53} +(1.36603 + 0.366025i) q^{54} +(8.92820 - 8.92820i) q^{56} +(-2.26002 + 2.26002i) q^{57} +(0.378937 + 0.656339i) q^{58} -11.4641 q^{59} +3.00000 q^{61} +(2.63896 + 4.57081i) q^{62} +(-3.15660 + 3.15660i) q^{63} -8.00000 q^{64} +(2.73205 + 0.732051i) q^{66} +(3.91447 + 3.91447i) q^{67} +(3.10583 + 11.5911i) q^{68} -7.46410i q^{69} +2.53590i q^{71} +2.82843 q^{72} +(2.82843 + 2.82843i) q^{73} +(-4.00000 + 14.9282i) q^{74} +(-3.19615 + 5.53590i) q^{76} +(-6.31319 + 6.31319i) q^{77} +(2.77766 - 1.60368i) q^{78} +7.46410 q^{79} -1.00000 q^{81} +(-1.79315 + 1.03528i) q^{82} +(-9.14162 + 9.14162i) q^{83} +(-4.46410 + 7.73205i) q^{84} +(-1.63397 + 6.09808i) q^{86} +(-0.378937 - 0.378937i) q^{87} +5.65685 q^{88} -6.92820i q^{89} +10.1244i q^{91} +(-3.86370 - 14.4195i) q^{92} +(-2.63896 - 2.63896i) q^{93} +(-1.26795 - 0.339746i) q^{94} +(5.46410 - 1.46410i) q^{96} +(6.88160 - 6.88160i) q^{97} +(-9.14162 - 15.8338i) q^{98} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 8q^{4} + 4q^{6} + O(q^{10}) \) \( 8q + 8q^{4} + 4q^{6} + 28q^{14} - 16q^{16} + 16q^{19} - 8q^{21} + 16q^{24} + 4q^{26} - 24q^{34} - 32q^{39} - 16q^{41} - 8q^{46} + 4q^{54} + 16q^{56} - 64q^{59} + 24q^{61} - 64q^{64} + 8q^{66} - 32q^{74} + 16q^{76} + 32q^{79} - 8q^{81} - 8q^{84} - 20q^{86} - 24q^{94} + 16q^{96} - 16q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 + 0.707107i −0.866025 + 0.500000i
\(3\) 0.707107 0.707107i 0.408248 0.408248i
\(4\) 1.00000 1.73205i 0.500000 0.866025i
\(5\) 0 0
\(6\) −0.366025 + 1.36603i −0.149429 + 0.557678i
\(7\) −3.15660 3.15660i −1.19308 1.19308i −0.976197 0.216884i \(-0.930411\pi\)
−0.216884 0.976197i \(-0.569589\pi\)
\(8\) 2.82843i 1.00000i
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 2.00000i 0.603023i −0.953463 0.301511i \(-0.902509\pi\)
0.953463 0.301511i \(-0.0974911\pi\)
\(12\) −0.517638 1.93185i −0.149429 0.557678i
\(13\) −1.60368 1.60368i −0.444781 0.444781i 0.448834 0.893615i \(-0.351840\pi\)
−0.893615 + 0.448834i \(0.851840\pi\)
\(14\) 6.09808 + 1.63397i 1.62978 + 0.436698i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) −4.24264 + 4.24264i −1.02899 + 1.02899i −0.0294245 + 0.999567i \(0.509367\pi\)
−0.999567 + 0.0294245i \(0.990633\pi\)
\(18\) 0.707107 + 1.22474i 0.166667 + 0.288675i
\(19\) −3.19615 −0.733248 −0.366624 0.930369i \(-0.619486\pi\)
−0.366624 + 0.930369i \(0.619486\pi\)
\(20\) 0 0
\(21\) −4.46410 −0.974147
\(22\) 1.41421 + 2.44949i 0.301511 + 0.522233i
\(23\) 5.27792 5.27792i 1.10052 1.10052i 0.106174 0.994348i \(-0.466140\pi\)
0.994348 0.106174i \(-0.0338601\pi\)
\(24\) 2.00000 + 2.00000i 0.408248 + 0.408248i
\(25\) 0 0
\(26\) 3.09808 + 0.830127i 0.607583 + 0.162801i
\(27\) −0.707107 0.707107i −0.136083 0.136083i
\(28\) −8.62398 + 2.31079i −1.62978 + 0.436698i
\(29\) 0.535898i 0.0995138i −0.998761 0.0497569i \(-0.984155\pi\)
0.998761 0.0497569i \(-0.0158447\pi\)
\(30\) 0 0
\(31\) 3.73205i 0.670296i −0.942165 0.335148i \(-0.891214\pi\)
0.942165 0.335148i \(-0.108786\pi\)
\(32\) 4.89898 + 2.82843i 0.866025 + 0.500000i
\(33\) −1.41421 1.41421i −0.246183 0.246183i
\(34\) 2.19615 8.19615i 0.376637 1.40563i
\(35\) 0 0
\(36\) −1.73205 1.00000i −0.288675 0.166667i
\(37\) 7.72741 7.72741i 1.27038 1.27038i 0.324488 0.945890i \(-0.394808\pi\)
0.945890 0.324488i \(-0.105192\pi\)
\(38\) 3.91447 2.26002i 0.635011 0.366624i
\(39\) −2.26795 −0.363163
\(40\) 0 0
\(41\) 1.46410 0.228654 0.114327 0.993443i \(-0.463529\pi\)
0.114327 + 0.993443i \(0.463529\pi\)
\(42\) 5.46739 3.15660i 0.843636 0.487073i
\(43\) 3.15660 3.15660i 0.481376 0.481376i −0.424195 0.905571i \(-0.639443\pi\)
0.905571 + 0.424195i \(0.139443\pi\)
\(44\) −3.46410 2.00000i −0.522233 0.301511i
\(45\) 0 0
\(46\) −2.73205 + 10.1962i −0.402819 + 1.50334i
\(47\) 0.656339 + 0.656339i 0.0957369 + 0.0957369i 0.753353 0.657616i \(-0.228435\pi\)
−0.657616 + 0.753353i \(0.728435\pi\)
\(48\) −3.86370 1.03528i −0.557678 0.149429i
\(49\) 12.9282i 1.84689i
\(50\) 0 0
\(51\) 6.00000i 0.840168i
\(52\) −4.38134 + 1.17398i −0.607583 + 0.162801i
\(53\) 3.86370 + 3.86370i 0.530720 + 0.530720i 0.920787 0.390066i \(-0.127548\pi\)
−0.390066 + 0.920787i \(0.627548\pi\)
\(54\) 1.36603 + 0.366025i 0.185893 + 0.0498097i
\(55\) 0 0
\(56\) 8.92820 8.92820i 1.19308 1.19308i
\(57\) −2.26002 + 2.26002i −0.299347 + 0.299347i
\(58\) 0.378937 + 0.656339i 0.0497569 + 0.0861815i
\(59\) −11.4641 −1.49250 −0.746249 0.665666i \(-0.768147\pi\)
−0.746249 + 0.665666i \(0.768147\pi\)
\(60\) 0 0
\(61\) 3.00000 0.384111 0.192055 0.981384i \(-0.438485\pi\)
0.192055 + 0.981384i \(0.438485\pi\)
\(62\) 2.63896 + 4.57081i 0.335148 + 0.580493i
\(63\) −3.15660 + 3.15660i −0.397694 + 0.397694i
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 2.73205 + 0.732051i 0.336292 + 0.0901092i
\(67\) 3.91447 + 3.91447i 0.478229 + 0.478229i 0.904565 0.426336i \(-0.140196\pi\)
−0.426336 + 0.904565i \(0.640196\pi\)
\(68\) 3.10583 + 11.5911i 0.376637 + 1.40563i
\(69\) 7.46410i 0.898572i
\(70\) 0 0
\(71\) 2.53590i 0.300956i 0.988613 + 0.150478i \(0.0480812\pi\)
−0.988613 + 0.150478i \(0.951919\pi\)
\(72\) 2.82843 0.333333
\(73\) 2.82843 + 2.82843i 0.331042 + 0.331042i 0.852982 0.521940i \(-0.174791\pi\)
−0.521940 + 0.852982i \(0.674791\pi\)
\(74\) −4.00000 + 14.9282i −0.464991 + 1.73537i
\(75\) 0 0
\(76\) −3.19615 + 5.53590i −0.366624 + 0.635011i
\(77\) −6.31319 + 6.31319i −0.719455 + 0.719455i
\(78\) 2.77766 1.60368i 0.314508 0.181581i
\(79\) 7.46410 0.839777 0.419889 0.907576i \(-0.362069\pi\)
0.419889 + 0.907576i \(0.362069\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) −1.79315 + 1.03528i −0.198020 + 0.114327i
\(83\) −9.14162 + 9.14162i −1.00342 + 1.00342i −0.00342905 + 0.999994i \(0.501092\pi\)
−0.999994 + 0.00342905i \(0.998908\pi\)
\(84\) −4.46410 + 7.73205i −0.487073 + 0.843636i
\(85\) 0 0
\(86\) −1.63397 + 6.09808i −0.176196 + 0.657572i
\(87\) −0.378937 0.378937i −0.0406264 0.0406264i
\(88\) 5.65685 0.603023
\(89\) 6.92820i 0.734388i −0.930144 0.367194i \(-0.880318\pi\)
0.930144 0.367194i \(-0.119682\pi\)
\(90\) 0 0
\(91\) 10.1244i 1.06132i
\(92\) −3.86370 14.4195i −0.402819 1.50334i
\(93\) −2.63896 2.63896i −0.273647 0.273647i
\(94\) −1.26795 0.339746i −0.130779 0.0350421i
\(95\) 0 0
\(96\) 5.46410 1.46410i 0.557678 0.149429i
\(97\) 6.88160 6.88160i 0.698721 0.698721i −0.265414 0.964135i \(-0.585509\pi\)
0.964135 + 0.265414i \(0.0855086\pi\)
\(98\) −9.14162 15.8338i −0.923443 1.59945i
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) 5.46410 0.543698 0.271849 0.962340i \(-0.412365\pi\)
0.271849 + 0.962340i \(0.412365\pi\)
\(102\) −4.24264 7.34847i −0.420084 0.727607i
\(103\) −4.89898 + 4.89898i −0.482711 + 0.482711i −0.905996 0.423286i \(-0.860877\pi\)
0.423286 + 0.905996i \(0.360877\pi\)
\(104\) 4.53590 4.53590i 0.444781 0.444781i
\(105\) 0 0
\(106\) −7.46410 2.00000i −0.724978 0.194257i
\(107\) 9.52056 + 9.52056i 0.920387 + 0.920387i 0.997057 0.0766695i \(-0.0244286\pi\)
−0.0766695 + 0.997057i \(0.524429\pi\)
\(108\) −1.93185 + 0.517638i −0.185893 + 0.0498097i
\(109\) 7.00000i 0.670478i 0.942133 + 0.335239i \(0.108817\pi\)
−0.942133 + 0.335239i \(0.891183\pi\)
\(110\) 0 0
\(111\) 10.9282i 1.03726i
\(112\) −4.62158 + 17.2480i −0.436698 + 1.62978i
\(113\) −9.79796 9.79796i −0.921714 0.921714i 0.0754362 0.997151i \(-0.475965\pi\)
−0.997151 + 0.0754362i \(0.975965\pi\)
\(114\) 1.16987 4.36603i 0.109569 0.408916i
\(115\) 0 0
\(116\) −0.928203 0.535898i −0.0861815 0.0497569i
\(117\) −1.60368 + 1.60368i −0.148260 + 0.148260i
\(118\) 14.0406 8.10634i 1.29254 0.746249i
\(119\) 26.7846 2.45534
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) −3.67423 + 2.12132i −0.332650 + 0.192055i
\(123\) 1.03528 1.03528i 0.0933477 0.0933477i
\(124\) −6.46410 3.73205i −0.580493 0.335148i
\(125\) 0 0
\(126\) 1.63397 6.09808i 0.145566 0.543260i
\(127\) −7.72741 7.72741i −0.685696 0.685696i 0.275581 0.961278i \(-0.411130\pi\)
−0.961278 + 0.275581i \(0.911130\pi\)
\(128\) 9.79796 5.65685i 0.866025 0.500000i
\(129\) 4.46410i 0.393042i
\(130\) 0 0
\(131\) 2.53590i 0.221562i −0.993845 0.110781i \(-0.964665\pi\)
0.993845 0.110781i \(-0.0353353\pi\)
\(132\) −3.86370 + 1.03528i −0.336292 + 0.0901092i
\(133\) 10.0890 + 10.0890i 0.874824 + 0.874824i
\(134\) −7.56218 2.02628i −0.653273 0.175044i
\(135\) 0 0
\(136\) −12.0000 12.0000i −1.02899 1.02899i
\(137\) 10.9348 10.9348i 0.934221 0.934221i −0.0637456 0.997966i \(-0.520305\pi\)
0.997966 + 0.0637456i \(0.0203046\pi\)
\(138\) 5.27792 + 9.14162i 0.449286 + 0.778186i
\(139\) 12.5359 1.06328 0.531641 0.846970i \(-0.321576\pi\)
0.531641 + 0.846970i \(0.321576\pi\)
\(140\) 0 0
\(141\) 0.928203 0.0781688
\(142\) −1.79315 3.10583i −0.150478 0.260635i
\(143\) −3.20736 + 3.20736i −0.268213 + 0.268213i
\(144\) −3.46410 + 2.00000i −0.288675 + 0.166667i
\(145\) 0 0
\(146\) −5.46410 1.46410i −0.452212 0.121170i
\(147\) 9.14162 + 9.14162i 0.753988 + 0.753988i
\(148\) −5.65685 21.1117i −0.464991 1.73537i
\(149\) 11.8564i 0.971315i −0.874149 0.485657i \(-0.838580\pi\)
0.874149 0.485657i \(-0.161420\pi\)
\(150\) 0 0
\(151\) 7.73205i 0.629225i −0.949220 0.314613i \(-0.898125\pi\)
0.949220 0.314613i \(-0.101875\pi\)
\(152\) 9.04008i 0.733248i
\(153\) 4.24264 + 4.24264i 0.342997 + 0.342997i
\(154\) 3.26795 12.1962i 0.263339 0.982794i
\(155\) 0 0
\(156\) −2.26795 + 3.92820i −0.181581 + 0.314508i
\(157\) −4.43211 + 4.43211i −0.353721 + 0.353721i −0.861492 0.507771i \(-0.830470\pi\)
0.507771 + 0.861492i \(0.330470\pi\)
\(158\) −9.14162 + 5.27792i −0.727268 + 0.419889i
\(159\) 5.46410 0.433331
\(160\) 0 0
\(161\) −33.3205 −2.62602
\(162\) 1.22474 0.707107i 0.0962250 0.0555556i
\(163\) −5.32868 + 5.32868i −0.417375 + 0.417375i −0.884298 0.466923i \(-0.845362\pi\)
0.466923 + 0.884298i \(0.345362\pi\)
\(164\) 1.46410 2.53590i 0.114327 0.198020i
\(165\) 0 0
\(166\) 4.73205 17.6603i 0.367278 1.37070i
\(167\) −11.5911 11.5911i −0.896947 0.896947i 0.0982179 0.995165i \(-0.468686\pi\)
−0.995165 + 0.0982179i \(0.968686\pi\)
\(168\) 12.6264i 0.974147i
\(169\) 7.85641i 0.604339i
\(170\) 0 0
\(171\) 3.19615i 0.244416i
\(172\) −2.31079 8.62398i −0.176196 0.657572i
\(173\) 3.48477 + 3.48477i 0.264942 + 0.264942i 0.827058 0.562116i \(-0.190013\pi\)
−0.562116 + 0.827058i \(0.690013\pi\)
\(174\) 0.732051 + 0.196152i 0.0554966 + 0.0148703i
\(175\) 0 0
\(176\) −6.92820 + 4.00000i −0.522233 + 0.301511i
\(177\) −8.10634 + 8.10634i −0.609310 + 0.609310i
\(178\) 4.89898 + 8.48528i 0.367194 + 0.635999i
\(179\) −9.32051 −0.696647 −0.348324 0.937374i \(-0.613249\pi\)
−0.348324 + 0.937374i \(0.613249\pi\)
\(180\) 0 0
\(181\) −0.0717968 −0.00533661 −0.00266831 0.999996i \(-0.500849\pi\)
−0.00266831 + 0.999996i \(0.500849\pi\)
\(182\) −7.15900 12.3998i −0.530660 0.919131i
\(183\) 2.12132 2.12132i 0.156813 0.156813i
\(184\) 14.9282 + 14.9282i 1.10052 + 1.10052i
\(185\) 0 0
\(186\) 5.09808 + 1.36603i 0.373809 + 0.100162i
\(187\) 8.48528 + 8.48528i 0.620505 + 0.620505i
\(188\) 1.79315 0.480473i 0.130779 0.0350421i
\(189\) 4.46410i 0.324716i
\(190\) 0 0
\(191\) 3.07180i 0.222267i 0.993805 + 0.111134i \(0.0354482\pi\)
−0.993805 + 0.111134i \(0.964552\pi\)
\(192\) −5.65685 + 5.65685i −0.408248 + 0.408248i
\(193\) −7.26054 7.26054i −0.522625 0.522625i 0.395738 0.918363i \(-0.370489\pi\)
−0.918363 + 0.395738i \(0.870489\pi\)
\(194\) −3.56218 + 13.2942i −0.255749 + 0.954470i
\(195\) 0 0
\(196\) 22.3923 + 12.9282i 1.59945 + 0.923443i
\(197\) −4.52004 + 4.52004i −0.322040 + 0.322040i −0.849549 0.527509i \(-0.823126\pi\)
0.527509 + 0.849549i \(0.323126\pi\)
\(198\) 2.44949 1.41421i 0.174078 0.100504i
\(199\) 10.1244 0.717697 0.358848 0.933396i \(-0.383170\pi\)
0.358848 + 0.933396i \(0.383170\pi\)
\(200\) 0 0
\(201\) 5.53590 0.390472
\(202\) −6.69213 + 3.86370i −0.470857 + 0.271849i
\(203\) −1.69161 + 1.69161i −0.118728 + 0.118728i
\(204\) 10.3923 + 6.00000i 0.727607 + 0.420084i
\(205\) 0 0
\(206\) 2.53590 9.46410i 0.176684 0.659395i
\(207\) −5.27792 5.27792i −0.366841 0.366841i
\(208\) −2.34795 + 8.76268i −0.162801 + 0.607583i
\(209\) 6.39230i 0.442165i
\(210\) 0 0
\(211\) 3.19615i 0.220032i −0.993930 0.110016i \(-0.964910\pi\)
0.993930 0.110016i \(-0.0350902\pi\)
\(212\) 10.5558 2.82843i 0.724978 0.194257i
\(213\) 1.79315 + 1.79315i 0.122865 + 0.122865i
\(214\) −18.3923 4.92820i −1.25727 0.336885i
\(215\) 0 0
\(216\) 2.00000 2.00000i 0.136083 0.136083i
\(217\) −11.7806 + 11.7806i −0.799718 + 0.799718i
\(218\) −4.94975 8.57321i −0.335239 0.580651i
\(219\) 4.00000 0.270295
\(220\) 0 0
\(221\) 13.6077 0.915353
\(222\) 7.72741 + 13.3843i 0.518630 + 0.898293i
\(223\) 6.64136 6.64136i 0.444739 0.444739i −0.448862 0.893601i \(-0.648171\pi\)
0.893601 + 0.448862i \(0.148171\pi\)
\(224\) −6.53590 24.3923i −0.436698 1.62978i
\(225\) 0 0
\(226\) 18.9282 + 5.07180i 1.25909 + 0.337371i
\(227\) −5.93426 5.93426i −0.393870 0.393870i 0.482194 0.876064i \(-0.339840\pi\)
−0.876064 + 0.482194i \(0.839840\pi\)
\(228\) 1.65445 + 6.17449i 0.109569 + 0.408916i
\(229\) 2.85641i 0.188757i 0.995536 + 0.0943783i \(0.0300863\pi\)
−0.995536 + 0.0943783i \(0.969914\pi\)
\(230\) 0 0
\(231\) 8.92820i 0.587433i
\(232\) 1.51575 0.0995138
\(233\) 5.93426 + 5.93426i 0.388766 + 0.388766i 0.874247 0.485481i \(-0.161356\pi\)
−0.485481 + 0.874247i \(0.661356\pi\)
\(234\) 0.830127 3.09808i 0.0542671 0.202528i
\(235\) 0 0
\(236\) −11.4641 + 19.8564i −0.746249 + 1.29254i
\(237\) 5.27792 5.27792i 0.342838 0.342838i
\(238\) −32.8043 + 18.9396i −2.12639 + 1.22767i
\(239\) −10.5359 −0.681511 −0.340755 0.940152i \(-0.610683\pi\)
−0.340755 + 0.940152i \(0.610683\pi\)
\(240\) 0 0
\(241\) 12.8564 0.828154 0.414077 0.910242i \(-0.364104\pi\)
0.414077 + 0.910242i \(0.364104\pi\)
\(242\) −8.57321 + 4.94975i −0.551107 + 0.318182i
\(243\) −0.707107 + 0.707107i −0.0453609 + 0.0453609i
\(244\) 3.00000 5.19615i 0.192055 0.332650i
\(245\) 0 0
\(246\) −0.535898 + 2.00000i −0.0341676 + 0.127515i
\(247\) 5.12561 + 5.12561i 0.326135 + 0.326135i
\(248\) 10.5558 0.670296
\(249\) 12.9282i 0.819292i
\(250\) 0 0
\(251\) 29.8564i 1.88452i 0.334883 + 0.942260i \(0.391303\pi\)
−0.334883 + 0.942260i \(0.608697\pi\)
\(252\) 2.31079 + 8.62398i 0.145566 + 0.543260i
\(253\) −10.5558 10.5558i −0.663640 0.663640i
\(254\) 14.9282 + 4.00000i 0.936679 + 0.250982i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 20.3538 20.3538i 1.26963 1.26963i 0.323358 0.946277i \(-0.395188\pi\)
0.946277 0.323358i \(-0.104812\pi\)
\(258\) 3.15660 + 5.46739i 0.196521 + 0.340385i
\(259\) −48.7846 −3.03133
\(260\) 0 0
\(261\) −0.535898 −0.0331713
\(262\) 1.79315 + 3.10583i 0.110781 + 0.191879i
\(263\) 10.2784 10.2784i 0.633795 0.633795i −0.315223 0.949018i \(-0.602079\pi\)
0.949018 + 0.315223i \(0.102079\pi\)
\(264\) 4.00000 4.00000i 0.246183 0.246183i
\(265\) 0 0
\(266\) −19.4904 5.22243i −1.19503 0.320208i
\(267\) −4.89898 4.89898i −0.299813 0.299813i
\(268\) 10.6945 2.86559i 0.653273 0.175044i
\(269\) 22.3923i 1.36528i 0.730753 + 0.682641i \(0.239169\pi\)
−0.730753 + 0.682641i \(0.760831\pi\)
\(270\) 0 0
\(271\) 24.2487i 1.47300i −0.676435 0.736502i \(-0.736476\pi\)
0.676435 0.736502i \(-0.263524\pi\)
\(272\) 23.1822 + 6.21166i 1.40563 + 0.376637i
\(273\) 7.15900 + 7.15900i 0.433282 + 0.433282i
\(274\) −5.66025 + 21.1244i −0.341948 + 1.27617i
\(275\) 0 0
\(276\) −12.9282 7.46410i −0.778186 0.449286i
\(277\) 6.50266 6.50266i 0.390707 0.390707i −0.484232 0.874939i \(-0.660901\pi\)
0.874939 + 0.484232i \(0.160901\pi\)
\(278\) −15.3533 + 8.86422i −0.920828 + 0.531641i
\(279\) −3.73205 −0.223432
\(280\) 0 0
\(281\) 6.39230 0.381333 0.190666 0.981655i \(-0.438935\pi\)
0.190666 + 0.981655i \(0.438935\pi\)
\(282\) −1.13681 + 0.656339i −0.0676962 + 0.0390844i
\(283\) 0.429705 0.429705i 0.0255433 0.0255433i −0.694220 0.719763i \(-0.744250\pi\)
0.719763 + 0.694220i \(0.244250\pi\)
\(284\) 4.39230 + 2.53590i 0.260635 + 0.150478i
\(285\) 0 0
\(286\) 1.66025 6.19615i 0.0981729 0.366386i
\(287\) −4.62158 4.62158i −0.272803 0.272803i
\(288\) 2.82843 4.89898i 0.166667 0.288675i
\(289\) 19.0000i 1.11765i
\(290\) 0 0
\(291\) 9.73205i 0.570503i
\(292\) 7.72741 2.07055i 0.452212 0.121170i
\(293\) −13.7632 13.7632i −0.804055 0.804055i 0.179672 0.983727i \(-0.442496\pi\)
−0.983727 + 0.179672i \(0.942496\pi\)
\(294\) −17.6603 4.73205i −1.02997 0.275979i
\(295\) 0 0
\(296\) 21.8564 + 21.8564i 1.27038 + 1.27038i
\(297\) −1.41421 + 1.41421i −0.0820610 + 0.0820610i
\(298\) 8.38375 + 14.5211i 0.485657 + 0.841183i
\(299\) −16.9282 −0.978983
\(300\) 0 0
\(301\) −19.9282 −1.14864
\(302\) 5.46739 + 9.46979i 0.314613 + 0.544925i
\(303\) 3.86370 3.86370i 0.221964 0.221964i
\(304\) 6.39230 + 11.0718i 0.366624 + 0.635011i
\(305\) 0 0
\(306\) −8.19615 2.19615i −0.468543 0.125546i
\(307\) 5.22715 + 5.22715i 0.298329 + 0.298329i 0.840359 0.542030i \(-0.182344\pi\)
−0.542030 + 0.840359i \(0.682344\pi\)
\(308\) 4.62158 + 17.2480i 0.263339 + 0.982794i
\(309\) 6.92820i 0.394132i
\(310\) 0 0
\(311\) 20.5359i 1.16448i −0.813016 0.582242i \(-0.802176\pi\)
0.813016 0.582242i \(-0.197824\pi\)
\(312\) 6.41473i 0.363163i
\(313\) 11.4016 + 11.4016i 0.644459 + 0.644459i 0.951648 0.307190i \(-0.0993885\pi\)
−0.307190 + 0.951648i \(0.599389\pi\)
\(314\) 2.29423 8.56218i 0.129471 0.483192i
\(315\) 0 0
\(316\) 7.46410 12.9282i 0.419889 0.727268i
\(317\) −4.89898 + 4.89898i −0.275154 + 0.275154i −0.831171 0.556017i \(-0.812329\pi\)
0.556017 + 0.831171i \(0.312329\pi\)
\(318\) −6.69213 + 3.86370i −0.375276 + 0.216666i
\(319\) −1.07180 −0.0600091
\(320\) 0 0
\(321\) 13.4641 0.751493
\(322\) 40.8091 23.5612i 2.27420 1.31301i
\(323\) 13.5601 13.5601i 0.754506 0.754506i
\(324\) −1.00000 + 1.73205i −0.0555556 + 0.0962250i
\(325\) 0 0
\(326\) 2.75833 10.2942i 0.152770 0.570145i
\(327\) 4.94975 + 4.94975i 0.273722 + 0.273722i
\(328\) 4.14110i 0.228654i
\(329\) 4.14359i 0.228444i
\(330\) 0 0
\(331\) 18.3923i 1.01093i 0.862846 + 0.505466i \(0.168679\pi\)
−0.862846 + 0.505466i \(0.831321\pi\)
\(332\) 6.69213 + 24.9754i 0.367278 + 1.37070i
\(333\) −7.72741 7.72741i −0.423459 0.423459i
\(334\) 22.3923 + 6.00000i 1.22525 + 0.328305i
\(335\) 0 0
\(336\) 8.92820 + 15.4641i 0.487073 + 0.843636i
\(337\) −20.2659 + 20.2659i −1.10395 + 1.10395i −0.110023 + 0.993929i \(0.535092\pi\)
−0.993929 + 0.110023i \(0.964908\pi\)
\(338\) 5.55532 + 9.62209i 0.302169 + 0.523373i
\(339\) −13.8564 −0.752577
\(340\) 0 0
\(341\) −7.46410 −0.404204
\(342\) −2.26002 3.91447i −0.122208 0.211670i
\(343\) 18.7129 18.7129i 1.01040 1.01040i
\(344\) 8.92820 + 8.92820i 0.481376 + 0.481376i
\(345\) 0 0
\(346\) −6.73205 1.80385i −0.361917 0.0969754i
\(347\) 17.6269 + 17.6269i 0.946262 + 0.946262i 0.998628 0.0523663i \(-0.0166763\pi\)
−0.0523663 + 0.998628i \(0.516676\pi\)
\(348\) −1.03528 + 0.277401i −0.0554966 + 0.0148703i
\(349\) 23.8564i 1.27700i −0.769620 0.638502i \(-0.779554\pi\)
0.769620 0.638502i \(-0.220446\pi\)
\(350\) 0 0
\(351\) 2.26795i 0.121054i
\(352\) 5.65685 9.79796i 0.301511 0.522233i
\(353\) −8.38375 8.38375i −0.446222 0.446222i 0.447875 0.894096i \(-0.352181\pi\)
−0.894096 + 0.447875i \(0.852181\pi\)
\(354\) 4.19615 15.6603i 0.223023 0.832333i
\(355\) 0 0
\(356\) −12.0000 6.92820i −0.635999 0.367194i
\(357\) 18.9396 18.9396i 1.00239 1.00239i
\(358\) 11.4152 6.59059i 0.603314 0.348324i
\(359\) 3.60770 0.190407 0.0952034 0.995458i \(-0.469650\pi\)
0.0952034 + 0.995458i \(0.469650\pi\)
\(360\) 0 0
\(361\) −8.78461 −0.462348
\(362\) 0.0879327 0.0507680i 0.00462164 0.00266831i
\(363\) 4.94975 4.94975i 0.259794 0.259794i
\(364\) 17.5359 + 10.1244i 0.919131 + 0.530660i
\(365\) 0 0
\(366\) −1.09808 + 4.09808i −0.0573974 + 0.214210i
\(367\) −22.1977 22.1977i −1.15871 1.15871i −0.984753 0.173958i \(-0.944344\pi\)
−0.173958 0.984753i \(-0.555656\pi\)
\(368\) −28.8391 7.72741i −1.50334 0.402819i
\(369\) 1.46410i 0.0762181i
\(370\) 0 0
\(371\) 24.3923i 1.26639i
\(372\) −7.20977 + 1.93185i −0.373809 + 0.100162i
\(373\) −25.9227 25.9227i −1.34223 1.34223i −0.893839 0.448388i \(-0.851998\pi\)
−0.448388 0.893839i \(-0.648002\pi\)
\(374\) −16.3923 4.39230i −0.847626 0.227121i
\(375\) 0 0
\(376\) −1.85641 + 1.85641i −0.0957369 + 0.0957369i
\(377\) −0.859411 + 0.859411i −0.0442619 + 0.0442619i
\(378\) −3.15660 5.46739i −0.162358 0.281212i
\(379\) −12.2679 −0.630162 −0.315081 0.949065i \(-0.602032\pi\)
−0.315081 + 0.949065i \(0.602032\pi\)
\(380\) 0 0
\(381\) −10.9282 −0.559869
\(382\) −2.17209 3.76217i −0.111134 0.192489i
\(383\) −17.5254 + 17.5254i −0.895504 + 0.895504i −0.995035 0.0995302i \(-0.968266\pi\)
0.0995302 + 0.995035i \(0.468266\pi\)
\(384\) 2.92820 10.9282i 0.149429 0.557678i
\(385\) 0 0
\(386\) 14.0263 + 3.75833i 0.713919 + 0.191294i
\(387\) −3.15660 3.15660i −0.160459 0.160459i
\(388\) −5.03768 18.8009i −0.255749 0.954470i
\(389\) 21.4641i 1.08827i 0.838997 + 0.544137i \(0.183143\pi\)
−0.838997 + 0.544137i \(0.816857\pi\)
\(390\) 0 0
\(391\) 44.7846i 2.26486i
\(392\) −36.5665 −1.84689
\(393\) −1.79315 1.79315i −0.0904525 0.0904525i
\(394\) 2.33975 8.73205i 0.117875 0.439914i
\(395\) 0 0
\(396\) −2.00000 + 3.46410i −0.100504 + 0.174078i
\(397\) −8.19428 + 8.19428i −0.411259 + 0.411259i −0.882177 0.470918i \(-0.843923\pi\)
0.470918 + 0.882177i \(0.343923\pi\)
\(398\) −12.3998 + 7.15900i −0.621543 + 0.358848i
\(399\) 14.2679 0.714291
\(400\) 0 0
\(401\) 29.1769 1.45703 0.728513 0.685032i \(-0.240212\pi\)
0.728513 + 0.685032i \(0.240212\pi\)
\(402\) −6.78006 + 3.91447i −0.338159 + 0.195236i
\(403\) −5.98502 + 5.98502i −0.298135 + 0.298135i
\(404\) 5.46410 9.46410i 0.271849 0.470857i
\(405\) 0 0
\(406\) 0.875644 3.26795i 0.0434575 0.162186i
\(407\) −15.4548 15.4548i −0.766067 0.766067i
\(408\) −16.9706 −0.840168
\(409\) 13.7846i 0.681605i 0.940135 + 0.340803i \(0.110699\pi\)
−0.940135 + 0.340803i \(0.889301\pi\)
\(410\) 0 0
\(411\) 15.4641i 0.762788i
\(412\) 3.58630 + 13.3843i 0.176684 + 0.659395i
\(413\) 36.1875 + 36.1875i 1.78067 + 1.78067i
\(414\) 10.1962 + 2.73205i 0.501114 + 0.134273i
\(415\) 0 0
\(416\) −3.32051 12.3923i −0.162801 0.607583i
\(417\) 8.86422 8.86422i 0.434083 0.434083i
\(418\) −4.52004 7.82894i −0.221082 0.382926i
\(419\) 33.4641 1.63483 0.817414 0.576050i \(-0.195407\pi\)
0.817414 + 0.576050i \(0.195407\pi\)
\(420\) 0 0
\(421\) −34.7846 −1.69530 −0.847649 0.530557i \(-0.821983\pi\)
−0.847649 + 0.530557i \(0.821983\pi\)
\(422\) 2.26002 + 3.91447i 0.110016 + 0.190553i
\(423\) 0.656339 0.656339i 0.0319123 0.0319123i
\(424\) −10.9282 + 10.9282i −0.530720 + 0.530720i
\(425\) 0 0
\(426\) −3.46410 0.928203i −0.167836 0.0449716i
\(427\) −9.46979 9.46979i −0.458275 0.458275i
\(428\) 26.0106 6.96953i 1.25727 0.336885i
\(429\) 4.53590i 0.218995i
\(430\) 0 0
\(431\) 29.7128i 1.43122i −0.698502 0.715608i \(-0.746150\pi\)
0.698502 0.715608i \(-0.253850\pi\)
\(432\) −1.03528 + 3.86370i −0.0498097 + 0.185893i
\(433\) 25.1648 + 25.1648i 1.20935 + 1.20935i 0.971239 + 0.238106i \(0.0765265\pi\)
0.238106 + 0.971239i \(0.423474\pi\)
\(434\) 6.09808 22.7583i 0.292717 1.09243i
\(435\) 0 0
\(436\) 12.1244 + 7.00000i 0.580651 + 0.335239i
\(437\) −16.8690 + 16.8690i −0.806955 + 0.806955i
\(438\) −4.89898 + 2.82843i −0.234082 + 0.135147i
\(439\) 23.9808 1.14454 0.572270 0.820066i \(-0.306063\pi\)
0.572270 + 0.820066i \(0.306063\pi\)
\(440\) 0 0
\(441\) 12.9282 0.615629
\(442\) −16.6660 + 9.62209i −0.792719 + 0.457676i
\(443\) 20.3538 20.3538i 0.967038 0.967038i −0.0324359 0.999474i \(-0.510326\pi\)
0.999474 + 0.0324359i \(0.0103265\pi\)
\(444\) −18.9282 10.9282i −0.898293 0.518630i
\(445\) 0 0
\(446\) −3.43782 + 12.8301i −0.162786 + 0.607524i
\(447\) −8.38375 8.38375i −0.396538 0.396538i
\(448\) 25.2528 + 25.2528i 1.19308 + 1.19308i
\(449\) 6.14359i 0.289934i 0.989436 + 0.144967i \(0.0463076\pi\)
−0.989436 + 0.144967i \(0.953692\pi\)
\(450\) 0 0
\(451\) 2.92820i 0.137884i
\(452\) −26.7685 + 7.17260i −1.25909 + 0.337371i
\(453\) −5.46739 5.46739i −0.256880 0.256880i
\(454\) 11.4641 + 3.07180i 0.538037 + 0.144167i
\(455\) 0 0
\(456\) −6.39230 6.39230i −0.299347 0.299347i
\(457\) −13.9391 + 13.9391i −0.652042 + 0.652042i −0.953484 0.301442i \(-0.902532\pi\)
0.301442 + 0.953484i \(0.402532\pi\)
\(458\) −2.01978 3.49837i −0.0943783 0.163468i
\(459\) 6.00000 0.280056
\(460\) 0 0
\(461\) 36.3923 1.69496 0.847479 0.530828i \(-0.178119\pi\)
0.847479 + 0.530828i \(0.178119\pi\)
\(462\) −6.31319 10.9348i −0.293716 0.508732i
\(463\) −19.0411 + 19.0411i −0.884916 + 0.884916i −0.994029 0.109114i \(-0.965199\pi\)
0.109114 + 0.994029i \(0.465199\pi\)
\(464\) −1.85641 + 1.07180i −0.0861815 + 0.0497569i
\(465\) 0 0
\(466\) −11.4641 3.07180i −0.531064 0.142298i
\(467\) −2.44949 2.44949i −0.113349 0.113349i 0.648157 0.761506i \(-0.275540\pi\)
−0.761506 + 0.648157i \(0.775540\pi\)
\(468\) 1.17398 + 4.38134i 0.0542671 + 0.202528i
\(469\) 24.7128i 1.14113i
\(470\) 0 0
\(471\) 6.26795i 0.288812i
\(472\) 32.4254i 1.49250i
\(473\) −6.31319 6.31319i −0.290281 0.290281i
\(474\) −2.73205 + 10.1962i −0.125487 + 0.468325i
\(475\) 0 0
\(476\) 26.7846 46.3923i 1.22767 2.12639i
\(477\) 3.86370 3.86370i 0.176907 0.176907i
\(478\) 12.9038 7.45001i 0.590206 0.340755i
\(479\) −21.3205 −0.974159 −0.487079 0.873358i \(-0.661938\pi\)
−0.487079 + 0.873358i \(0.661938\pi\)
\(480\) 0 0
\(481\) −24.7846 −1.13008
\(482\) −15.7458 + 9.09085i −0.717202 + 0.414077i
\(483\) −23.5612 + 23.5612i −1.07207 + 1.07207i
\(484\) 7.00000 12.1244i 0.318182 0.551107i
\(485\) 0 0
\(486\) 0.366025 1.36603i 0.0166032 0.0619642i
\(487\) 20.1272 + 20.1272i 0.912049 + 0.912049i 0.996433 0.0843846i \(-0.0268924\pi\)
−0.0843846 + 0.996433i \(0.526892\pi\)
\(488\) 8.48528i 0.384111i
\(489\) 7.53590i 0.340785i
\(490\) 0 0
\(491\) 34.6410i 1.56333i 0.623700 + 0.781664i \(0.285629\pi\)
−0.623700 + 0.781664i \(0.714371\pi\)
\(492\) −0.757875 2.82843i −0.0341676 0.127515i
\(493\) 2.27362 + 2.27362i 0.102399 + 0.102399i
\(494\) −9.90192 2.65321i −0.445509 0.119374i
\(495\) 0 0
\(496\) −12.9282 + 7.46410i −0.580493 + 0.335148i
\(497\) 8.00481 8.00481i 0.359065 0.359065i
\(498\) −9.14162 15.8338i −0.409646 0.709527i
\(499\) 30.1244 1.34855 0.674276 0.738480i \(-0.264456\pi\)
0.674276 + 0.738480i \(0.264456\pi\)
\(500\) 0 0
\(501\) −16.3923 −0.732354
\(502\) −21.1117 36.5665i −0.942260 1.63204i
\(503\) 0.277401 0.277401i 0.0123687 0.0123687i −0.700895 0.713264i \(-0.747216\pi\)
0.713264 + 0.700895i \(0.247216\pi\)
\(504\) −8.92820 8.92820i −0.397694 0.397694i
\(505\) 0 0
\(506\) 20.3923 + 5.46410i 0.906549 + 0.242909i
\(507\) −5.55532 5.55532i −0.246720 0.246720i
\(508\) −21.1117 + 5.65685i −0.936679 + 0.250982i
\(509\) 24.9282i 1.10492i −0.833538 0.552462i \(-0.813689\pi\)
0.833538 0.552462i \(-0.186311\pi\)
\(510\) 0 0
\(511\) 17.8564i 0.789921i
\(512\) 22.6274i 1.00000i
\(513\) 2.26002 + 2.26002i 0.0997824 + 0.0997824i
\(514\) −10.5359 + 39.3205i −0.464719 + 1.73435i
\(515\) 0 0
\(516\) −7.73205 4.46410i −0.340385 0.196521i
\(517\) 1.31268 1.31268i 0.0577315 0.0577315i
\(518\) 59.7487 34.4959i 2.62521 1.51566i
\(519\) 4.92820 0.216324
\(520\) 0 0
\(521\) −38.3923 −1.68200 −0.840999 0.541037i \(-0.818032\pi\)
−0.840999 + 0.541037i \(0.818032\pi\)
\(522\) 0.656339 0.378937i 0.0287272 0.0165856i
\(523\) −0.984508 + 0.984508i −0.0430495 + 0.0430495i −0.728304 0.685254i \(-0.759691\pi\)
0.685254 + 0.728304i \(0.259691\pi\)
\(524\) −4.39230 2.53590i −0.191879 0.110781i
\(525\) 0 0
\(526\) −5.32051 + 19.8564i −0.231985 + 0.865780i
\(527\) 15.8338 + 15.8338i 0.689729 + 0.689729i
\(528\) −2.07055 + 7.72741i −0.0901092 + 0.336292i
\(529\) 32.7128i 1.42230i
\(530\) 0 0
\(531\) 11.4641i 0.497500i
\(532\) 27.5636 7.38563i 1.19503 0.320208i
\(533\) −2.34795 2.34795i −0.101701 0.101701i
\(534\) 9.46410 + 2.53590i 0.409552 + 0.109739i
\(535\) 0 0
\(536\) −11.0718 + 11.0718i −0.478229 + 0.478229i
\(537\) −6.59059 + 6.59059i −0.284405 + 0.284405i
\(538\) −15.8338 27.4249i −0.682641 1.18237i
\(539\) 25.8564 1.11371
\(540\) 0 0
\(541\) 7.78461 0.334687 0.167343 0.985899i \(-0.446481\pi\)
0.167343 + 0.985899i \(0.446481\pi\)
\(542\) 17.1464 + 29.6985i 0.736502 + 1.27566i
\(543\) −0.0507680 + 0.0507680i −0.00217866 + 0.00217866i
\(544\) −32.7846 + 8.78461i −1.40563 + 0.376637i
\(545\) 0 0
\(546\) −13.8301 3.70577i −0.591875 0.158592i
\(547\) 11.8685 + 11.8685i 0.507461 + 0.507461i 0.913746 0.406285i \(-0.133176\pi\)
−0.406285 + 0.913746i \(0.633176\pi\)
\(548\) −8.00481 29.8744i −0.341948 1.27617i
\(549\) 3.00000i 0.128037i
\(550\) 0 0
\(551\) 1.71281i 0.0729683i
\(552\) 21.1117 0.898572
\(553\) −23.5612 23.5612i −1.00192 1.00192i
\(554\) −3.36603 + 12.5622i −0.143009 + 0.533716i
\(555\) 0 0
\(556\) 12.5359 21.7128i 0.531641 0.920828i
\(557\) −8.66115 + 8.66115i −0.366985 + 0.366985i −0.866376 0.499392i \(-0.833557\pi\)
0.499392 + 0.866376i \(0.333557\pi\)
\(558\) 4.57081 2.63896i 0.193498 0.111716i
\(559\) −10.1244 −0.428215
\(560\) 0 0
\(561\) 12.0000 0.506640
\(562\) −7.82894 + 4.52004i −0.330244 + 0.190666i
\(563\) −27.7023 + 27.7023i −1.16751 + 1.16751i −0.184720 + 0.982791i \(0.559138\pi\)
−0.982791 + 0.184720i \(0.940862\pi\)
\(564\) 0.928203 1.60770i 0.0390844 0.0676962i
\(565\) 0 0
\(566\) −0.222432 + 0.830127i −0.00934951 + 0.0348928i
\(567\) 3.15660 + 3.15660i 0.132565 + 0.132565i
\(568\) −7.17260 −0.300956
\(569\) 17.3205i 0.726113i −0.931767 0.363057i \(-0.881733\pi\)
0.931767 0.363057i \(-0.118267\pi\)
\(570\) 0 0
\(571\) 27.1962i 1.13812i −0.822295 0.569062i \(-0.807307\pi\)
0.822295 0.569062i \(-0.192693\pi\)
\(572\) 2.34795 + 8.76268i 0.0981729 + 0.366386i
\(573\) 2.17209 + 2.17209i 0.0907403 + 0.0907403i
\(574\) 8.92820 + 2.39230i 0.372656 + 0.0998529i
\(575\) 0 0
\(576\) 8.00000i 0.333333i
\(577\) 23.0943 23.0943i 0.961428 0.961428i −0.0378555 0.999283i \(-0.512053\pi\)
0.999283 + 0.0378555i \(0.0120527\pi\)
\(578\) 13.4350 + 23.2702i 0.558824 + 0.967911i
\(579\) −10.2679 −0.426721
\(580\) 0 0
\(581\) 57.7128 2.39433
\(582\) 6.88160 + 11.9193i 0.285251 + 0.494070i
\(583\) 7.72741 7.72741i 0.320036 0.320036i
\(584\) −8.00000 + 8.00000i −0.331042 + 0.331042i
\(585\) 0 0
\(586\) 26.5885 + 7.12436i 1.09836 + 0.294304i
\(587\) 10.8332 + 10.8332i 0.447135 + 0.447135i 0.894401 0.447266i \(-0.147602\pi\)
−0.447266 + 0.894401i \(0.647602\pi\)
\(588\) 24.9754 6.69213i 1.02997 0.275979i
\(589\) 11.9282i 0.491493i
\(590\) 0 0
\(591\) 6.39230i 0.262944i
\(592\) −42.2233 11.3137i −1.73537 0.464991i
\(593\) 8.20788 + 8.20788i 0.337057 + 0.337057i 0.855259 0.518201i \(-0.173398\pi\)
−0.518201 + 0.855259i \(0.673398\pi\)
\(594\) 0.732051 2.73205i 0.0300364 0.112097i
\(595\) 0 0
\(596\) −20.5359 11.8564i −0.841183 0.485657i
\(597\) 7.15900 7.15900i 0.292998 0.292998i
\(598\) 20.7327 11.9700i 0.847824 0.489492i
\(599\) 22.6410 0.925087 0.462543 0.886597i \(-0.346937\pi\)
0.462543 + 0.886597i \(0.346937\pi\)
\(600\) 0 0
\(601\) 21.7846 0.888613 0.444306 0.895875i \(-0.353450\pi\)
0.444306 + 0.895875i \(0.353450\pi\)
\(602\) 24.4070 14.0914i 0.994754 0.574321i
\(603\) 3.91447 3.91447i 0.159410 0.159410i
\(604\) −13.3923 7.73205i −0.544925 0.314613i
\(605\) 0 0
\(606\) −2.00000 + 7.46410i −0.0812444 + 0.303208i
\(607\) 25.2528 + 25.2528i 1.02498 + 1.02498i 0.999680 + 0.0252985i \(0.00805361\pi\)
0.0252985 + 0.999680i \(0.491946\pi\)
\(608\) −15.6579 9.04008i −0.635011 0.366624i
\(609\) 2.39230i 0.0969411i
\(610\) 0 0
\(611\) 2.10512i 0.0851639i
\(612\) 11.5911 3.10583i 0.468543 0.125546i
\(613\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(614\) −10.0981 2.70577i −0.407525 0.109196i
\(615\) 0 0
\(616\) −17.8564 17.8564i −0.719455 0.719455i
\(617\) 24.2175 24.2175i 0.974960 0.974960i −0.0247344 0.999694i \(-0.507874\pi\)
0.999694 + 0.0247344i \(0.00787400\pi\)
\(618\) −4.89898 8.48528i −0.197066 0.341328i
\(619\) 15.9808 0.642321 0.321161 0.947025i \(-0.395927\pi\)
0.321161 + 0.947025i \(0.395927\pi\)
\(620\) 0 0
\(621\) −7.46410 −0.299524
\(622\) 14.5211 + 25.1512i 0.582242 + 1.00847i
\(623\) −21.8695 + 21.8695i −0.876185 + 0.876185i
\(624\) 4.53590 + 7.85641i 0.181581 + 0.314508i
\(625\) 0 0
\(626\) −22.0263 5.90192i −0.880347 0.235888i
\(627\) 4.52004 + 4.52004i 0.180513 + 0.180513i
\(628\) 3.24453 + 12.1087i 0.129471 + 0.483192i
\(629\) 65.5692i 2.61442i
\(630\) 0 0
\(631\) 29.5885i 1.17790i 0.808170 + 0.588949i \(0.200458\pi\)
−0.808170 + 0.588949i \(0.799542\pi\)
\(632\) 21.1117i 0.839777i
\(633\) −2.26002 2.26002i −0.0898278 0.0898278i
\(634\) 2.53590 9.46410i 0.100713 0.375867i
\(635\) 0 0
\(636\) 5.46410 9.46410i 0.216666 0.375276i
\(637\) 20.7327 20.7327i 0.821461 0.821461i
\(638\) 1.31268 0.757875i 0.0519694 0.0300045i
\(639\) 2.53590 0.100319
\(640\) 0 0
\(641\) −44.7846 −1.76889 −0.884443 0.466648i \(-0.845461\pi\)
−0.884443 + 0.466648i \(0.845461\pi\)
\(642\) −16.4901 + 9.52056i −0.650812 + 0.375746i
\(643\) −21.8695 + 21.8695i −0.862451 + 0.862451i −0.991622 0.129172i \(-0.958768\pi\)
0.129172 + 0.991622i \(0.458768\pi\)
\(644\) −33.3205 + 57.7128i −1.31301 + 2.27420i
\(645\) 0 0
\(646\) −7.01924 + 26.1962i −0.276168 + 1.03067i
\(647\) 13.3843 + 13.3843i 0.526190 + 0.526190i 0.919434 0.393244i \(-0.128647\pi\)
−0.393244 + 0.919434i \(0.628647\pi\)
\(648\) 2.82843i 0.111111i
\(649\) 22.9282i 0.900011i
\(650\) 0 0
\(651\) 16.6603i 0.652967i
\(652\) 3.90087 + 14.5582i 0.152770 + 0.570145i
\(653\) 7.34847 + 7.34847i 0.287568 + 0.287568i 0.836118 0.548550i \(-0.184820\pi\)
−0.548550 + 0.836118i \(0.684820\pi\)
\(654\) −9.56218 2.56218i −0.373911 0.100189i
\(655\) 0 0
\(656\) −2.92820 5.07180i −0.114327 0.198020i
\(657\) 2.82843 2.82843i 0.110347 0.110347i
\(658\) 2.92996 + 5.07484i 0.114222 + 0.197838i
\(659\) −21.4641 −0.836123 −0.418061 0.908419i \(-0.637290\pi\)
−0.418061 + 0.908419i \(0.637290\pi\)
\(660\) 0 0
\(661\) 19.8564 0.772325 0.386162 0.922431i \(-0.373800\pi\)
0.386162 + 0.922431i \(0.373800\pi\)
\(662\) −13.0053 22.5259i −0.505466 0.875493i
\(663\) 9.62209 9.62209i 0.373691 0.373691i
\(664\) −25.8564 25.8564i −1.00342 1.00342i
\(665\) 0 0
\(666\) 14.9282 + 4.00000i 0.578456 + 0.154997i
\(667\) −2.82843 2.82843i −0.109517 0.109517i
\(668\) −31.6675 + 8.48528i −1.22525 + 0.328305i
\(669\) 9.39230i 0.363127i
\(670\) 0 0
\(671\) 6.00000i 0.231627i
\(672\) −21.8695 12.6264i −0.843636 0.487073i
\(673\) −2.82843 2.82843i −0.109028 0.109028i 0.650488 0.759516i \(-0.274564\pi\)
−0.759516 + 0.650488i \(0.774564\pi\)
\(674\) 10.4904 39.1506i 0.404074 1.50803i
\(675\) 0 0
\(676\) −13.6077 7.85641i −0.523373 0.302169i
\(677\) −23.0807 + 23.0807i −0.887063 + 0.887063i −0.994240 0.107177i \(-0.965819\pi\)
0.107177 + 0.994240i \(0.465819\pi\)
\(678\) 16.9706 9.79796i 0.651751 0.376288i
\(679\) −43.4449 −1.66726
\(680\) 0 0
\(681\) −8.39230 −0.321594
\(682\) 9.14162 5.27792i 0.350051 0.202102i
\(683\) 13.3843 13.3843i 0.512135 0.512135i −0.403045 0.915180i \(-0.632048\pi\)
0.915180 + 0.403045i \(0.132048\pi\)
\(684\) 5.53590 + 3.19615i 0.211670 + 0.122208i
\(685\) 0 0
\(686\) −9.68653 + 36.1506i −0.369834 + 1.38024i
\(687\) 2.01978 + 2.01978i 0.0770596 + 0.0770596i
\(688\) −17.2480 4.62158i −0.657572 0.176196i
\(689\) 12.3923i 0.472109i
\(690\) 0 0
\(691\) 9.32051i 0.354569i −0.984160 0.177284i \(-0.943269\pi\)
0.984160 0.177284i \(-0.0567312\pi\)
\(692\) 9.52056 2.55103i 0.361917 0.0969754i
\(693\) 6.31319 + 6.31319i 0.239818 + 0.239818i
\(694\) −34.0526 9.12436i −1.29262 0.346356i
\(695\) 0 0
\(696\) 1.07180 1.07180i 0.0406264 0.0406264i
\(697\) −6.21166 + 6.21166i −0.235283 + 0.235283i
\(698\) 16.8690 + 29.2180i 0.638502 + 1.10592i
\(699\) 8.39230 0.317426
\(700\) 0 0
\(701\) −8.53590 −0.322396 −0.161198 0.986922i \(-0.551536\pi\)
−0.161198 + 0.986922i \(0.551536\pi\)
\(702\) −1.60368 2.77766i −0.0605271 0.104836i
\(703\) −24.6980 + 24.6980i −0.931502 + 0.931502i
\(704\) 16.0000i 0.603023i
\(705\) 0 0
\(706\) 16.1962 + 4.33975i 0.609550 + 0.163328i
\(707\) −17.2480 17.2480i −0.648676 0.648676i
\(708\) 5.93426 + 22.1469i 0.223023 + 0.832333i
\(709\) 2.85641i 0.107275i 0.998560 + 0.0536373i \(0.0170815\pi\)
−0.998560 + 0.0536373i \(0.982919\pi\)
\(710\) 0 0
\(711\) 7.46410i 0.279926i
\(712\) 19.5959 0.734388
\(713\) −19.6975 19.6975i −0.737675 0.737675i
\(714\) −9.80385 + 36.5885i −0.366900 + 1.36929i
\(715\) 0 0
\(716\) −9.32051 + 16.1436i −0.348324 + 0.603314i
\(717\) −7.45001 + 7.45001i −0.278226 + 0.278226i
\(718\) −4.41851 + 2.55103i −0.164897 + 0.0952034i
\(719\) −0.928203 −0.0346161 −0.0173081 0.999850i \(-0.505510\pi\)
−0.0173081 + 0.999850i \(0.505510\pi\)
\(720\) 0 0
\(721\) 30.9282 1.15183
\(722\) 10.7589 6.21166i 0.400405 0.231174i
\(723\) 9.09085 9.09085i 0.338092 0.338092i
\(724\) −0.0717968 + 0.124356i −0.00266831 + 0.00462164i
\(725\) 0 0
\(726\) −2.56218 + 9.56218i −0.0950913 + 0.354886i
\(727\) −20.5804 20.5804i −0.763286 0.763286i 0.213629 0.976915i \(-0.431472\pi\)
−0.976915 + 0.213629i \(0.931472\pi\)
\(728\) −28.6360 −1.06132
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 26.7846i 0.990665i
\(732\) −1.55291 5.79555i −0.0573974 0.214210i
\(733\) 25.2528 + 25.2528i 0.932732 + 0.932732i 0.997876 0.0651435i \(-0.0207505\pi\)
−0.0651435 + 0.997876i \(0.520751\pi\)
\(734\) 42.8827 + 11.4904i 1.58283 + 0.424118i
\(735\) 0 0
\(736\) 40.7846 10.9282i 1.50334 0.402819i
\(737\) 7.82894 7.82894i 0.288383 0.288383i
\(738\) 1.03528 + 1.79315i 0.0381090 + 0.0660068i
\(739\) −6.39230 −0.235145 −0.117572 0.993064i \(-0.537511\pi\)
−0.117572 + 0.993064i \(0.537511\pi\)
\(740\) 0 0
\(741\) 7.24871 0.266288
\(742\) 17.2480 + 29.8744i 0.633193 + 1.09672i
\(743\) 12.0716 12.0716i 0.442863 0.442863i −0.450110 0.892973i \(-0.648615\pi\)
0.892973 + 0.450110i \(0.148615\pi\)
\(744\) 7.46410 7.46410i 0.273647 0.273647i
\(745\) 0 0
\(746\) 50.0788 + 13.4186i 1.83352 + 0.491289i
\(747\) 9.14162 + 9.14162i 0.334474 + 0.334474i
\(748\) 23.1822 6.21166i 0.847626 0.227121i
\(749\) 60.1051i 2.19619i
\(750\) 0 0
\(751\) 4.53590i 0.165517i 0.996570 + 0.0827586i \(0.0263731\pi\)
−0.996570 + 0.0827586i \(0.973627\pi\)
\(752\) 0.960947 3.58630i 0.0350421 0.130779i
\(753\) 21.1117 + 21.1117i 0.769352 + 0.769352i
\(754\) 0.444864 1.66025i 0.0162010 0.0604629i
\(755\) 0 0
\(756\) 7.73205 + 4.46410i 0.281212 + 0.162358i
\(757\) −13.2963 + 13.2963i −0.483263 + 0.483263i −0.906172 0.422909i \(-0.861009\pi\)
0.422909 + 0.906172i \(0.361009\pi\)
\(758\) 15.0251 8.67475i 0.545736 0.315081i
\(759\) −14.9282 −0.541859
\(760\) 0 0
\(761\) −22.6410 −0.820736 −0.410368 0.911920i \(-0.634600\pi\)
−0.410368 + 0.911920i \(0.634600\pi\)
\(762\) 13.3843 7.72741i 0.484861 0.279934i
\(763\) 22.0962 22.0962i 0.799935 0.799935i
\(764\) 5.32051 + 3.07180i 0.192489 + 0.111134i
\(765\) 0 0
\(766\) 9.07180 33.8564i 0.327777 1.22328i
\(767\) 18.3848 + 18.3848i 0.663836 + 0.663836i
\(768\) 4.14110 + 15.4548i 0.149429 + 0.557678i
\(769\) 16.0718i 0.579564i 0.957093 + 0.289782i \(0.0935828\pi\)
−0.957093 + 0.289782i \(0.906417\pi\)
\(770\) 0 0
\(771\) 28.7846i 1.03665i
\(772\) −19.8362 + 5.31508i −0.713919 + 0.191294i
\(773\) 20.6312 + 20.6312i 0.742052 + 0.742052i 0.972973 0.230920i \(-0.0741736\pi\)
−0.230920 + 0.972973i \(0.574174\pi\)
\(774\) 6.09808 + 1.63397i 0.219191 + 0.0587320i
\(775\) 0 0
\(776\) 19.4641 + 19.4641i 0.698721 + 0.698721i
\(777\) −34.4959 + 34.4959i −1.23753 + 1.23753i
\(778\) −15.1774 26.2880i −0.544137 0.942472i
\(779\) −4.67949 −0.167660
\(780\) 0 0
\(781\) 5.07180 0.181483
\(782\) −31.6675 54.8497i −1.13243 1.96142i
\(783\) −0.378937 + 0.378937i −0.0135421 + 0.0135421i