Newspace parameters
Level: | \( N \) | \(=\) | \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 300.i (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.39551206064\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(i)\) |
Coefficient field: | \(\Q(i, \sqrt{5})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 3x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 60) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} + 3x^{2} + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu^{2} + \nu + 1 \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{3} + 2\nu \)
|
\(\beta_{3}\) | \(=\) |
\( -\nu^{2} + \nu - 1 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{3} + \beta_1 ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( ( -\beta_{3} + \beta _1 - 2 ) / 2 \)
|
\(\nu^{3}\) | \(=\) |
\( -\beta_{3} + \beta_{2} - \beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(151\) | \(277\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(-\beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
257.1 |
|
0 | −1.61803 | − | 0.618034i | 0 | 0 | 0 | 1.00000 | + | 1.00000i | 0 | 2.23607 | + | 2.00000i | 0 | ||||||||||||||||||||||||
257.2 | 0 | 0.618034 | + | 1.61803i | 0 | 0 | 0 | 1.00000 | + | 1.00000i | 0 | −2.23607 | + | 2.00000i | 0 | |||||||||||||||||||||||||
293.1 | 0 | −1.61803 | + | 0.618034i | 0 | 0 | 0 | 1.00000 | − | 1.00000i | 0 | 2.23607 | − | 2.00000i | 0 | |||||||||||||||||||||||||
293.2 | 0 | 0.618034 | − | 1.61803i | 0 | 0 | 0 | 1.00000 | − | 1.00000i | 0 | −2.23607 | − | 2.00000i | 0 | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
15.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 300.2.i.a | 4 | |
3.b | odd | 2 | 1 | inner | 300.2.i.a | 4 | |
4.b | odd | 2 | 1 | 1200.2.v.i | 4 | ||
5.b | even | 2 | 1 | 60.2.i.a | ✓ | 4 | |
5.c | odd | 4 | 1 | 60.2.i.a | ✓ | 4 | |
5.c | odd | 4 | 1 | inner | 300.2.i.a | 4 | |
12.b | even | 2 | 1 | 1200.2.v.i | 4 | ||
15.d | odd | 2 | 1 | 60.2.i.a | ✓ | 4 | |
15.e | even | 4 | 1 | 60.2.i.a | ✓ | 4 | |
15.e | even | 4 | 1 | inner | 300.2.i.a | 4 | |
20.d | odd | 2 | 1 | 240.2.v.b | 4 | ||
20.e | even | 4 | 1 | 240.2.v.b | 4 | ||
20.e | even | 4 | 1 | 1200.2.v.i | 4 | ||
40.e | odd | 2 | 1 | 960.2.v.h | 4 | ||
40.f | even | 2 | 1 | 960.2.v.e | 4 | ||
40.i | odd | 4 | 1 | 960.2.v.e | 4 | ||
40.k | even | 4 | 1 | 960.2.v.h | 4 | ||
45.h | odd | 6 | 2 | 1620.2.x.b | 8 | ||
45.j | even | 6 | 2 | 1620.2.x.b | 8 | ||
45.k | odd | 12 | 2 | 1620.2.x.b | 8 | ||
45.l | even | 12 | 2 | 1620.2.x.b | 8 | ||
60.h | even | 2 | 1 | 240.2.v.b | 4 | ||
60.l | odd | 4 | 1 | 240.2.v.b | 4 | ||
60.l | odd | 4 | 1 | 1200.2.v.i | 4 | ||
120.i | odd | 2 | 1 | 960.2.v.e | 4 | ||
120.m | even | 2 | 1 | 960.2.v.h | 4 | ||
120.q | odd | 4 | 1 | 960.2.v.h | 4 | ||
120.w | even | 4 | 1 | 960.2.v.e | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
60.2.i.a | ✓ | 4 | 5.b | even | 2 | 1 | |
60.2.i.a | ✓ | 4 | 5.c | odd | 4 | 1 | |
60.2.i.a | ✓ | 4 | 15.d | odd | 2 | 1 | |
60.2.i.a | ✓ | 4 | 15.e | even | 4 | 1 | |
240.2.v.b | 4 | 20.d | odd | 2 | 1 | ||
240.2.v.b | 4 | 20.e | even | 4 | 1 | ||
240.2.v.b | 4 | 60.h | even | 2 | 1 | ||
240.2.v.b | 4 | 60.l | odd | 4 | 1 | ||
300.2.i.a | 4 | 1.a | even | 1 | 1 | trivial | |
300.2.i.a | 4 | 3.b | odd | 2 | 1 | inner | |
300.2.i.a | 4 | 5.c | odd | 4 | 1 | inner | |
300.2.i.a | 4 | 15.e | even | 4 | 1 | inner | |
960.2.v.e | 4 | 40.f | even | 2 | 1 | ||
960.2.v.e | 4 | 40.i | odd | 4 | 1 | ||
960.2.v.e | 4 | 120.i | odd | 2 | 1 | ||
960.2.v.e | 4 | 120.w | even | 4 | 1 | ||
960.2.v.h | 4 | 40.e | odd | 2 | 1 | ||
960.2.v.h | 4 | 40.k | even | 4 | 1 | ||
960.2.v.h | 4 | 120.m | even | 2 | 1 | ||
960.2.v.h | 4 | 120.q | odd | 4 | 1 | ||
1200.2.v.i | 4 | 4.b | odd | 2 | 1 | ||
1200.2.v.i | 4 | 12.b | even | 2 | 1 | ||
1200.2.v.i | 4 | 20.e | even | 4 | 1 | ||
1200.2.v.i | 4 | 60.l | odd | 4 | 1 | ||
1620.2.x.b | 8 | 45.h | odd | 6 | 2 | ||
1620.2.x.b | 8 | 45.j | even | 6 | 2 | ||
1620.2.x.b | 8 | 45.k | odd | 12 | 2 | ||
1620.2.x.b | 8 | 45.l | even | 12 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{2} - 2T_{7} + 2 \)
acting on \(S_{2}^{\mathrm{new}}(300, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} \)
$3$
\( T^{4} + 2 T^{3} + 2 T^{2} + 6 T + 9 \)
$5$
\( T^{4} \)
$7$
\( (T^{2} - 2 T + 2)^{2} \)
$11$
\( (T^{2} + 20)^{2} \)
$13$
\( (T^{2} - 6 T + 18)^{2} \)
$17$
\( T^{4} + 100 \)
$19$
\( (T^{2} + 4)^{2} \)
$23$
\( T^{4} + 100 \)
$29$
\( (T^{2} - 20)^{2} \)
$31$
\( (T - 4)^{4} \)
$37$
\( (T^{2} - 6 T + 18)^{2} \)
$41$
\( (T^{2} + 80)^{2} \)
$43$
\( (T^{2} - 6 T + 18)^{2} \)
$47$
\( T^{4} + 8100 \)
$53$
\( T^{4} + 100 \)
$59$
\( (T^{2} - 80)^{2} \)
$61$
\( (T + 6)^{4} \)
$67$
\( (T^{2} - 2 T + 2)^{2} \)
$71$
\( (T^{2} + 20)^{2} \)
$73$
\( (T^{2} + 2 T + 2)^{2} \)
$79$
\( (T^{2} + 36)^{2} \)
$83$
\( T^{4} + 8100 \)
$89$
\( (T^{2} - 20)^{2} \)
$97$
\( (T^{2} + 18 T + 162)^{2} \)
show more
show less