Properties

Label 300.2.h.b.299.4
Level $300$
Weight $2$
Character 300.299
Analytic conductor $2.396$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 300.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.39551206064\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.342102016.5
Defining polynomial: \(x^{8} + x^{6} + 4 x^{4} + 4 x^{2} + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 299.4
Root \(-1.17915 - 0.780776i\) of defining polynomial
Character \(\chi\) \(=\) 300.299
Dual form 300.2.h.b.299.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.780776 + 1.17915i) q^{2} +(0.848071 + 1.51022i) q^{3} +(-0.780776 - 1.84130i) q^{4} +(-2.44293 - 0.179147i) q^{6} +3.02045 q^{7} +(2.78078 + 0.516994i) q^{8} +(-1.56155 + 2.56155i) q^{9} +O(q^{10})\) \(q+(-0.780776 + 1.17915i) q^{2} +(0.848071 + 1.51022i) q^{3} +(-0.780776 - 1.84130i) q^{4} +(-2.44293 - 0.179147i) q^{6} +3.02045 q^{7} +(2.78078 + 0.516994i) q^{8} +(-1.56155 + 2.56155i) q^{9} +1.32431 q^{11} +(2.11862 - 2.74070i) q^{12} +5.12311i q^{13} +(-2.35829 + 3.56155i) q^{14} +(-2.78078 + 2.87529i) q^{16} -2.00000 q^{17} +(-1.80122 - 3.84130i) q^{18} -1.32431i q^{19} +(2.56155 + 4.56155i) q^{21} +(-1.03399 + 1.56155i) q^{22} -0.371834i q^{23} +(1.57752 + 4.63804i) q^{24} +(-6.04090 - 4.00000i) q^{26} +(-5.19283 - 0.185917i) q^{27} +(-2.35829 - 5.56155i) q^{28} -3.12311i q^{29} -4.71659i q^{31} +(-1.21922 - 5.52390i) q^{32} +(1.12311 + 2.00000i) q^{33} +(1.56155 - 2.35829i) q^{34} +(5.93581 + 0.875288i) q^{36} +5.12311i q^{37} +(1.56155 + 1.03399i) q^{38} +(-7.73704 + 4.34475i) q^{39} -1.12311i q^{41} +(-7.37874 - 0.541105i) q^{42} +7.73704 q^{43} +(-1.03399 - 2.43845i) q^{44} +(0.438447 + 0.290319i) q^{46} +3.02045i q^{47} +(-6.70062 - 1.76115i) q^{48} +2.12311 q^{49} +(-1.69614 - 3.02045i) q^{51} +(9.43318 - 4.00000i) q^{52} -12.2462 q^{53} +(4.27366 - 5.97795i) q^{54} +(8.39919 + 1.56155i) q^{56} +(2.00000 - 1.12311i) q^{57} +(3.68260 + 2.43845i) q^{58} +14.1498 q^{59} +3.12311 q^{61} +(5.56155 + 3.68260i) q^{62} +(-4.71659 + 7.73704i) q^{63} +(7.46543 + 2.87529i) q^{64} +(-3.23519 - 0.237246i) q^{66} +4.34475 q^{67} +(1.56155 + 3.68260i) q^{68} +(0.561553 - 0.315342i) q^{69} +3.39228 q^{71} +(-5.66664 + 6.31579i) q^{72} -8.24621i q^{73} +(-6.04090 - 4.00000i) q^{74} +(-2.43845 + 1.03399i) q^{76} +4.00000 q^{77} +(0.917790 - 12.5154i) q^{78} -8.10887i q^{79} +(-4.12311 - 8.00000i) q^{81} +(1.32431 + 0.876894i) q^{82} -15.1022i q^{83} +(6.39919 - 8.27814i) q^{84} +(-6.04090 + 9.12311i) q^{86} +(4.71659 - 2.64861i) q^{87} +(3.68260 + 0.684658i) q^{88} -10.2462i q^{89} +15.4741i q^{91} +(-0.684658 + 0.290319i) q^{92} +(7.12311 - 4.00000i) q^{93} +(-3.56155 - 2.35829i) q^{94} +(7.30834 - 6.52596i) q^{96} -6.00000i q^{97} +(-1.65767 + 2.50345i) q^{98} +(-2.06798 + 3.39228i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 2q^{2} + 2q^{4} - 6q^{6} + 14q^{8} + 4q^{9} + O(q^{10}) \) \( 8q + 2q^{2} + 2q^{4} - 6q^{6} + 14q^{8} + 4q^{9} + 14q^{12} - 14q^{16} - 16q^{17} + 18q^{18} + 4q^{21} + 2q^{24} - 18q^{32} - 24q^{33} - 4q^{34} + 18q^{36} - 4q^{38} - 16q^{42} + 20q^{46} - 10q^{48} - 16q^{49} - 32q^{53} + 10q^{54} + 16q^{57} - 8q^{61} + 28q^{62} + 2q^{64} - 40q^{66} - 4q^{68} - 12q^{69} - 10q^{72} - 36q^{76} + 32q^{77} - 8q^{78} - 16q^{84} + 44q^{92} + 24q^{93} - 12q^{94} + 42q^{96} - 38q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.780776 + 1.17915i −0.552092 + 0.833783i
\(3\) 0.848071 + 1.51022i 0.489634 + 0.871928i
\(4\) −0.780776 1.84130i −0.390388 0.920650i
\(5\) 0 0
\(6\) −2.44293 0.179147i −0.997322 0.0731366i
\(7\) 3.02045 1.14162 0.570811 0.821081i \(-0.306629\pi\)
0.570811 + 0.821081i \(0.306629\pi\)
\(8\) 2.78078 + 0.516994i 0.983153 + 0.182785i
\(9\) −1.56155 + 2.56155i −0.520518 + 0.853851i
\(10\) 0 0
\(11\) 1.32431 0.399294 0.199647 0.979868i \(-0.436021\pi\)
0.199647 + 0.979868i \(0.436021\pi\)
\(12\) 2.11862 2.74070i 0.611594 0.791172i
\(13\) 5.12311i 1.42089i 0.703751 + 0.710447i \(0.251507\pi\)
−0.703751 + 0.710447i \(0.748493\pi\)
\(14\) −2.35829 + 3.56155i −0.630281 + 0.951865i
\(15\) 0 0
\(16\) −2.78078 + 2.87529i −0.695194 + 0.718822i
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) −1.80122 3.84130i −0.424553 0.905403i
\(19\) 1.32431i 0.303817i −0.988395 0.151908i \(-0.951458\pi\)
0.988395 0.151908i \(-0.0485419\pi\)
\(20\) 0 0
\(21\) 2.56155 + 4.56155i 0.558977 + 0.995412i
\(22\) −1.03399 + 1.56155i −0.220447 + 0.332924i
\(23\) 0.371834i 0.0775328i −0.999248 0.0387664i \(-0.987657\pi\)
0.999248 0.0387664i \(-0.0123428\pi\)
\(24\) 1.57752 + 4.63804i 0.322010 + 0.946736i
\(25\) 0 0
\(26\) −6.04090 4.00000i −1.18472 0.784465i
\(27\) −5.19283 0.185917i −0.999360 0.0357798i
\(28\) −2.35829 5.56155i −0.445676 1.05103i
\(29\) 3.12311i 0.579946i −0.957035 0.289973i \(-0.906354\pi\)
0.957035 0.289973i \(-0.0936464\pi\)
\(30\) 0 0
\(31\) 4.71659i 0.847124i −0.905867 0.423562i \(-0.860780\pi\)
0.905867 0.423562i \(-0.139220\pi\)
\(32\) −1.21922 5.52390i −0.215530 0.976497i
\(33\) 1.12311 + 2.00000i 0.195508 + 0.348155i
\(34\) 1.56155 2.35829i 0.267804 0.404444i
\(35\) 0 0
\(36\) 5.93581 + 0.875288i 0.989302 + 0.145881i
\(37\) 5.12311i 0.842233i 0.907006 + 0.421117i \(0.138362\pi\)
−0.907006 + 0.421117i \(0.861638\pi\)
\(38\) 1.56155 + 1.03399i 0.253317 + 0.167735i
\(39\) −7.73704 + 4.34475i −1.23892 + 0.695718i
\(40\) 0 0
\(41\) 1.12311i 0.175400i −0.996147 0.0876998i \(-0.972048\pi\)
0.996147 0.0876998i \(-0.0279516\pi\)
\(42\) −7.37874 0.541105i −1.13856 0.0834943i
\(43\) 7.73704 1.17989 0.589944 0.807445i \(-0.299150\pi\)
0.589944 + 0.807445i \(0.299150\pi\)
\(44\) −1.03399 2.43845i −0.155879 0.367610i
\(45\) 0 0
\(46\) 0.438447 + 0.290319i 0.0646455 + 0.0428052i
\(47\) 3.02045i 0.440578i 0.975435 + 0.220289i \(0.0707000\pi\)
−0.975435 + 0.220289i \(0.929300\pi\)
\(48\) −6.70062 1.76115i −0.967152 0.254200i
\(49\) 2.12311 0.303301
\(50\) 0 0
\(51\) −1.69614 3.02045i −0.237507 0.422947i
\(52\) 9.43318 4.00000i 1.30815 0.554700i
\(53\) −12.2462 −1.68215 −0.841073 0.540921i \(-0.818076\pi\)
−0.841073 + 0.540921i \(0.818076\pi\)
\(54\) 4.27366 5.97795i 0.581571 0.813495i
\(55\) 0 0
\(56\) 8.39919 + 1.56155i 1.12239 + 0.208671i
\(57\) 2.00000 1.12311i 0.264906 0.148759i
\(58\) 3.68260 + 2.43845i 0.483549 + 0.320184i
\(59\) 14.1498 1.84214 0.921071 0.389394i \(-0.127315\pi\)
0.921071 + 0.389394i \(0.127315\pi\)
\(60\) 0 0
\(61\) 3.12311 0.399873 0.199936 0.979809i \(-0.435926\pi\)
0.199936 + 0.979809i \(0.435926\pi\)
\(62\) 5.56155 + 3.68260i 0.706318 + 0.467691i
\(63\) −4.71659 + 7.73704i −0.594234 + 0.974775i
\(64\) 7.46543 + 2.87529i 0.933179 + 0.359411i
\(65\) 0 0
\(66\) −3.23519 0.237246i −0.398224 0.0292030i
\(67\) 4.34475 0.530796 0.265398 0.964139i \(-0.414497\pi\)
0.265398 + 0.964139i \(0.414497\pi\)
\(68\) 1.56155 + 3.68260i 0.189366 + 0.446581i
\(69\) 0.561553 0.315342i 0.0676030 0.0379627i
\(70\) 0 0
\(71\) 3.39228 0.402590 0.201295 0.979531i \(-0.435485\pi\)
0.201295 + 0.979531i \(0.435485\pi\)
\(72\) −5.66664 + 6.31579i −0.667819 + 0.744323i
\(73\) 8.24621i 0.965146i −0.875856 0.482573i \(-0.839702\pi\)
0.875856 0.482573i \(-0.160298\pi\)
\(74\) −6.04090 4.00000i −0.702240 0.464991i
\(75\) 0 0
\(76\) −2.43845 + 1.03399i −0.279709 + 0.118607i
\(77\) 4.00000 0.455842
\(78\) 0.917790 12.5154i 0.103919 1.41709i
\(79\) 8.10887i 0.912319i −0.889898 0.456160i \(-0.849225\pi\)
0.889898 0.456160i \(-0.150775\pi\)
\(80\) 0 0
\(81\) −4.12311 8.00000i −0.458123 0.888889i
\(82\) 1.32431 + 0.876894i 0.146245 + 0.0968368i
\(83\) 15.1022i 1.65769i −0.559481 0.828843i \(-0.689000\pi\)
0.559481 0.828843i \(-0.311000\pi\)
\(84\) 6.39919 8.27814i 0.698209 0.903219i
\(85\) 0 0
\(86\) −6.04090 + 9.12311i −0.651407 + 0.983770i
\(87\) 4.71659 2.64861i 0.505671 0.283961i
\(88\) 3.68260 + 0.684658i 0.392567 + 0.0729848i
\(89\) 10.2462i 1.08610i −0.839702 0.543048i \(-0.817270\pi\)
0.839702 0.543048i \(-0.182730\pi\)
\(90\) 0 0
\(91\) 15.4741i 1.62212i
\(92\) −0.684658 + 0.290319i −0.0713806 + 0.0302679i
\(93\) 7.12311 4.00000i 0.738632 0.414781i
\(94\) −3.56155 2.35829i −0.367346 0.243240i
\(95\) 0 0
\(96\) 7.30834 6.52596i 0.745904 0.666053i
\(97\) 6.00000i 0.609208i −0.952479 0.304604i \(-0.901476\pi\)
0.952479 0.304604i \(-0.0985241\pi\)
\(98\) −1.65767 + 2.50345i −0.167450 + 0.252887i
\(99\) −2.06798 + 3.39228i −0.207839 + 0.340937i
\(100\) 0 0
\(101\) 0.876894i 0.0872543i −0.999048 0.0436271i \(-0.986109\pi\)
0.999048 0.0436271i \(-0.0138914\pi\)
\(102\) 4.88586 + 0.358294i 0.483772 + 0.0354764i
\(103\) −9.80501 −0.966117 −0.483058 0.875588i \(-0.660474\pi\)
−0.483058 + 0.875588i \(0.660474\pi\)
\(104\) −2.64861 + 14.2462i −0.259718 + 1.39696i
\(105\) 0 0
\(106\) 9.56155 14.4401i 0.928700 1.40255i
\(107\) 3.02045i 0.291998i −0.989285 0.145999i \(-0.953360\pi\)
0.989285 0.145999i \(-0.0466396\pi\)
\(108\) 3.71211 + 9.70671i 0.357198 + 0.934029i
\(109\) 0.876894 0.0839912 0.0419956 0.999118i \(-0.486628\pi\)
0.0419956 + 0.999118i \(0.486628\pi\)
\(110\) 0 0
\(111\) −7.73704 + 4.34475i −0.734367 + 0.412386i
\(112\) −8.39919 + 8.68466i −0.793649 + 0.820623i
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) −0.237246 + 3.23519i −0.0222201 + 0.303003i
\(115\) 0 0
\(116\) −5.75058 + 2.43845i −0.533928 + 0.226404i
\(117\) −13.1231 8.00000i −1.21323 0.739600i
\(118\) −11.0478 + 16.6847i −1.01703 + 1.53595i
\(119\) −6.04090 −0.553768
\(120\) 0 0
\(121\) −9.24621 −0.840565
\(122\) −2.43845 + 3.68260i −0.220767 + 0.333407i
\(123\) 1.69614 0.952473i 0.152936 0.0858816i
\(124\) −8.68466 + 3.68260i −0.779905 + 0.330707i
\(125\) 0 0
\(126\) −5.44050 11.6024i −0.484679 1.03363i
\(127\) −15.1022 −1.34011 −0.670054 0.742313i \(-0.733729\pi\)
−0.670054 + 0.742313i \(0.733729\pi\)
\(128\) −9.21922 + 6.55789i −0.814872 + 0.579641i
\(129\) 6.56155 + 11.6847i 0.577713 + 1.02878i
\(130\) 0 0
\(131\) 5.46026 0.477065 0.238532 0.971135i \(-0.423334\pi\)
0.238532 + 0.971135i \(0.423334\pi\)
\(132\) 2.80571 3.62953i 0.244205 0.315910i
\(133\) 4.00000i 0.346844i
\(134\) −3.39228 + 5.12311i −0.293049 + 0.442569i
\(135\) 0 0
\(136\) −5.56155 1.03399i −0.476899 0.0886637i
\(137\) 8.24621 0.704521 0.352261 0.935902i \(-0.385413\pi\)
0.352261 + 0.935902i \(0.385413\pi\)
\(138\) −0.0666131 + 0.908365i −0.00567048 + 0.0773251i
\(139\) 17.5420i 1.48790i 0.668237 + 0.743949i \(0.267049\pi\)
−0.668237 + 0.743949i \(0.732951\pi\)
\(140\) 0 0
\(141\) −4.56155 + 2.56155i −0.384152 + 0.215722i
\(142\) −2.64861 + 4.00000i −0.222267 + 0.335673i
\(143\) 6.78456i 0.567354i
\(144\) −3.02287 11.6130i −0.251906 0.967752i
\(145\) 0 0
\(146\) 9.72350 + 6.43845i 0.804722 + 0.532850i
\(147\) 1.80054 + 3.20636i 0.148506 + 0.264457i
\(148\) 9.43318 4.00000i 0.775402 0.328798i
\(149\) 14.0000i 1.14692i 0.819232 + 0.573462i \(0.194400\pi\)
−0.819232 + 0.573462i \(0.805600\pi\)
\(150\) 0 0
\(151\) 7.36520i 0.599372i −0.954038 0.299686i \(-0.903118\pi\)
0.954038 0.299686i \(-0.0968819\pi\)
\(152\) 0.684658 3.68260i 0.0555331 0.298698i
\(153\) 3.12311 5.12311i 0.252488 0.414179i
\(154\) −3.12311 + 4.71659i −0.251667 + 0.380074i
\(155\) 0 0
\(156\) 14.0409 + 10.8539i 1.12417 + 0.869010i
\(157\) 3.36932i 0.268901i −0.990920 0.134450i \(-0.957073\pi\)
0.990920 0.134450i \(-0.0429269\pi\)
\(158\) 9.56155 + 6.33122i 0.760676 + 0.503684i
\(159\) −10.3857 18.4945i −0.823636 1.46671i
\(160\) 0 0
\(161\) 1.12311i 0.0885131i
\(162\) 12.6524 + 1.38446i 0.994067 + 0.108774i
\(163\) −15.6829 −1.22838 −0.614189 0.789159i \(-0.710517\pi\)
−0.614189 + 0.789159i \(0.710517\pi\)
\(164\) −2.06798 + 0.876894i −0.161482 + 0.0684739i
\(165\) 0 0
\(166\) 17.8078 + 11.7915i 1.38215 + 0.915196i
\(167\) 9.06134i 0.701188i −0.936528 0.350594i \(-0.885980\pi\)
0.936528 0.350594i \(-0.114020\pi\)
\(168\) 4.76481 + 14.0090i 0.367613 + 1.08082i
\(169\) −13.2462 −1.01894
\(170\) 0 0
\(171\) 3.39228 + 2.06798i 0.259414 + 0.158142i
\(172\) −6.04090 14.2462i −0.460614 1.08626i
\(173\) 2.00000 0.152057 0.0760286 0.997106i \(-0.475776\pi\)
0.0760286 + 0.997106i \(0.475776\pi\)
\(174\) −0.559496 + 7.62953i −0.0424153 + 0.578393i
\(175\) 0 0
\(176\) −3.68260 + 3.80776i −0.277587 + 0.287021i
\(177\) 12.0000 + 21.3693i 0.901975 + 1.60622i
\(178\) 12.0818 + 8.00000i 0.905569 + 0.599625i
\(179\) 10.0138 0.748468 0.374234 0.927334i \(-0.377906\pi\)
0.374234 + 0.927334i \(0.377906\pi\)
\(180\) 0 0
\(181\) −12.2462 −0.910254 −0.455127 0.890427i \(-0.650406\pi\)
−0.455127 + 0.890427i \(0.650406\pi\)
\(182\) −18.2462 12.0818i −1.35250 0.895562i
\(183\) 2.64861 + 4.71659i 0.195791 + 0.348660i
\(184\) 0.192236 1.03399i 0.0141718 0.0762266i
\(185\) 0 0
\(186\) −0.844964 + 11.5223i −0.0619558 + 0.844856i
\(187\) −2.64861 −0.193686
\(188\) 5.56155 2.35829i 0.405618 0.171996i
\(189\) −15.6847 0.561553i −1.14089 0.0408470i
\(190\) 0 0
\(191\) −24.9073 −1.80223 −0.901113 0.433585i \(-0.857248\pi\)
−0.901113 + 0.433585i \(0.857248\pi\)
\(192\) 1.98889 + 13.7129i 0.143535 + 0.989645i
\(193\) 0.246211i 0.0177227i 0.999961 + 0.00886134i \(0.00282069\pi\)
−0.999961 + 0.00886134i \(0.997179\pi\)
\(194\) 7.07488 + 4.68466i 0.507947 + 0.336339i
\(195\) 0 0
\(196\) −1.65767 3.90928i −0.118405 0.279234i
\(197\) −4.24621 −0.302530 −0.151265 0.988493i \(-0.548335\pi\)
−0.151265 + 0.988493i \(0.548335\pi\)
\(198\) −2.38537 5.08706i −0.169521 0.361522i
\(199\) 5.46026i 0.387067i −0.981094 0.193534i \(-0.938005\pi\)
0.981094 0.193534i \(-0.0619949\pi\)
\(200\) 0 0
\(201\) 3.68466 + 6.56155i 0.259896 + 0.462816i
\(202\) 1.03399 + 0.684658i 0.0727511 + 0.0481724i
\(203\) 9.43318i 0.662079i
\(204\) −4.23725 + 5.48140i −0.296667 + 0.383775i
\(205\) 0 0
\(206\) 7.65552 11.5616i 0.533385 0.805532i
\(207\) 0.952473 + 0.580639i 0.0662014 + 0.0403572i
\(208\) −14.7304 14.2462i −1.02137 0.987797i
\(209\) 1.75379i 0.121312i
\(210\) 0 0
\(211\) 16.7984i 1.15645i −0.815878 0.578224i \(-0.803746\pi\)
0.815878 0.578224i \(-0.196254\pi\)
\(212\) 9.56155 + 22.5490i 0.656690 + 1.54867i
\(213\) 2.87689 + 5.12311i 0.197122 + 0.351029i
\(214\) 3.56155 + 2.35829i 0.243463 + 0.161210i
\(215\) 0 0
\(216\) −14.3440 3.20165i −0.975983 0.217845i
\(217\) 14.2462i 0.967096i
\(218\) −0.684658 + 1.03399i −0.0463709 + 0.0700305i
\(219\) 12.4536 6.99337i 0.841538 0.472568i
\(220\) 0 0
\(221\) 10.2462i 0.689235i
\(222\) 0.917790 12.5154i 0.0615980 0.839978i
\(223\) 8.31768 0.556993 0.278496 0.960437i \(-0.410164\pi\)
0.278496 + 0.960437i \(0.410164\pi\)
\(224\) −3.68260 16.6847i −0.246054 1.11479i
\(225\) 0 0
\(226\) −10.9309 + 16.5081i −0.727111 + 1.09810i
\(227\) 21.8868i 1.45268i 0.687337 + 0.726339i \(0.258780\pi\)
−0.687337 + 0.726339i \(0.741220\pi\)
\(228\) −3.62953 2.80571i −0.240371 0.185812i
\(229\) 16.2462 1.07358 0.536790 0.843716i \(-0.319637\pi\)
0.536790 + 0.843716i \(0.319637\pi\)
\(230\) 0 0
\(231\) 3.39228 + 6.04090i 0.223196 + 0.397462i
\(232\) 1.61463 8.68466i 0.106005 0.570176i
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) 19.6794 9.22786i 1.28648 0.603244i
\(235\) 0 0
\(236\) −11.0478 26.0540i −0.719151 1.69597i
\(237\) 12.2462 6.87689i 0.795477 0.446702i
\(238\) 4.71659 7.12311i 0.305731 0.461722i
\(239\) −17.3790 −1.12416 −0.562078 0.827084i \(-0.689998\pi\)
−0.562078 + 0.827084i \(0.689998\pi\)
\(240\) 0 0
\(241\) 13.3693 0.861193 0.430597 0.902544i \(-0.358303\pi\)
0.430597 + 0.902544i \(0.358303\pi\)
\(242\) 7.21922 10.9026i 0.464069 0.700849i
\(243\) 8.58511 13.0114i 0.550735 0.834680i
\(244\) −2.43845 5.75058i −0.156106 0.368143i
\(245\) 0 0
\(246\) −0.201201 + 2.74367i −0.0128281 + 0.174930i
\(247\) 6.78456 0.431691
\(248\) 2.43845 13.1158i 0.154842 0.832853i
\(249\) 22.8078 12.8078i 1.44538 0.811659i
\(250\) 0 0
\(251\) 18.7033 1.18054 0.590272 0.807205i \(-0.299021\pi\)
0.590272 + 0.807205i \(0.299021\pi\)
\(252\) 17.9288 + 2.64376i 1.12941 + 0.166541i
\(253\) 0.492423i 0.0309583i
\(254\) 11.7915 17.8078i 0.739863 1.11736i
\(255\) 0 0
\(256\) −0.534565 15.9911i −0.0334103 0.999442i
\(257\) −30.4924 −1.90207 −0.951033 0.309091i \(-0.899975\pi\)
−0.951033 + 0.309091i \(0.899975\pi\)
\(258\) −18.9010 1.38607i −1.17673 0.0862929i
\(259\) 15.4741i 0.961512i
\(260\) 0 0
\(261\) 8.00000 + 4.87689i 0.495188 + 0.301872i
\(262\) −4.26324 + 6.43845i −0.263384 + 0.397769i
\(263\) 23.7917i 1.46706i 0.679656 + 0.733531i \(0.262129\pi\)
−0.679656 + 0.733531i \(0.737871\pi\)
\(264\) 2.08912 + 6.14219i 0.128576 + 0.378026i
\(265\) 0 0
\(266\) 4.71659 + 3.12311i 0.289193 + 0.191490i
\(267\) 15.4741 8.68951i 0.946998 0.531789i
\(268\) −3.39228 8.00000i −0.207217 0.488678i
\(269\) 14.0000i 0.853595i −0.904347 0.426798i \(-0.859642\pi\)
0.904347 0.426798i \(-0.140358\pi\)
\(270\) 0 0
\(271\) 15.3110i 0.930080i 0.885290 + 0.465040i \(0.153960\pi\)
−0.885290 + 0.465040i \(0.846040\pi\)
\(272\) 5.56155 5.75058i 0.337219 0.348680i
\(273\) −23.3693 + 13.1231i −1.41438 + 0.794246i
\(274\) −6.43845 + 9.72350i −0.388961 + 0.587418i
\(275\) 0 0
\(276\) −1.01909 0.787776i −0.0613418 0.0474186i
\(277\) 23.3693i 1.40413i 0.712115 + 0.702063i \(0.247738\pi\)
−0.712115 + 0.702063i \(0.752262\pi\)
\(278\) −20.6847 13.6964i −1.24058 0.821457i
\(279\) 12.0818 + 7.36520i 0.723318 + 0.440943i
\(280\) 0 0
\(281\) 13.6155i 0.812234i 0.913821 + 0.406117i \(0.133118\pi\)
−0.913821 + 0.406117i \(0.866882\pi\)
\(282\) 0.541105 7.37874i 0.0322223 0.439398i
\(283\) 23.2111 1.37976 0.689879 0.723925i \(-0.257664\pi\)
0.689879 + 0.723925i \(0.257664\pi\)
\(284\) −2.64861 6.24621i −0.157166 0.370644i
\(285\) 0 0
\(286\) −8.00000 5.29723i −0.473050 0.313232i
\(287\) 3.39228i 0.200240i
\(288\) 16.0536 + 5.50276i 0.945970 + 0.324253i
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 9.06134 5.08842i 0.531185 0.298289i
\(292\) −15.1838 + 6.43845i −0.888562 + 0.376782i
\(293\) 2.49242 0.145609 0.0728044 0.997346i \(-0.476805\pi\)
0.0728044 + 0.997346i \(0.476805\pi\)
\(294\) −5.18660 0.380349i −0.302489 0.0221824i
\(295\) 0 0
\(296\) −2.64861 + 14.2462i −0.153948 + 0.828044i
\(297\) −6.87689 0.246211i −0.399038 0.0142866i
\(298\) −16.5081 10.9309i −0.956286 0.633208i
\(299\) 1.90495 0.110166
\(300\) 0 0
\(301\) 23.3693 1.34699
\(302\) 8.68466 + 5.75058i 0.499746 + 0.330908i
\(303\) 1.32431 0.743668i 0.0760794 0.0427226i
\(304\) 3.80776 + 3.68260i 0.218390 + 0.211212i
\(305\) 0 0
\(306\) 3.60245 + 7.68260i 0.205938 + 0.439185i
\(307\) −11.1293 −0.635184 −0.317592 0.948227i \(-0.602874\pi\)
−0.317592 + 0.948227i \(0.602874\pi\)
\(308\) −3.12311 7.36520i −0.177955 0.419671i
\(309\) −8.31534 14.8078i −0.473043 0.842384i
\(310\) 0 0
\(311\) 20.7713 1.17783 0.588916 0.808194i \(-0.299555\pi\)
0.588916 + 0.808194i \(0.299555\pi\)
\(312\) −23.7612 + 8.08179i −1.34521 + 0.457541i
\(313\) 22.4924i 1.27135i 0.771958 + 0.635673i \(0.219278\pi\)
−0.771958 + 0.635673i \(0.780722\pi\)
\(314\) 3.97292 + 2.63068i 0.224205 + 0.148458i
\(315\) 0 0
\(316\) −14.9309 + 6.33122i −0.839927 + 0.356159i
\(317\) 16.7386 0.940135 0.470068 0.882630i \(-0.344230\pi\)
0.470068 + 0.882630i \(0.344230\pi\)
\(318\) 29.9166 + 2.19387i 1.67764 + 0.123026i
\(319\) 4.13595i 0.231569i
\(320\) 0 0
\(321\) 4.56155 2.56155i 0.254601 0.142972i
\(322\) 1.32431 + 0.876894i 0.0738007 + 0.0488674i
\(323\) 2.64861i 0.147373i
\(324\) −11.5112 + 13.8381i −0.639510 + 0.768783i
\(325\) 0 0
\(326\) 12.2448 18.4924i 0.678178 1.02420i
\(327\) 0.743668 + 1.32431i 0.0411249 + 0.0732343i
\(328\) 0.580639 3.12311i 0.0320604 0.172445i
\(329\) 9.12311i 0.502973i
\(330\) 0 0
\(331\) 3.22925i 0.177496i −0.996054 0.0887479i \(-0.971713\pi\)
0.996054 0.0887479i \(-0.0282865\pi\)
\(332\) −27.8078 + 11.7915i −1.52615 + 0.647141i
\(333\) −13.1231 8.00000i −0.719142 0.438397i
\(334\) 10.6847 + 7.07488i 0.584638 + 0.387120i
\(335\) 0 0
\(336\) −20.2389 5.31946i −1.10412 0.290200i
\(337\) 1.50758i 0.0821230i −0.999157 0.0410615i \(-0.986926\pi\)
0.999157 0.0410615i \(-0.0130740\pi\)
\(338\) 10.3423 15.6192i 0.562549 0.849574i
\(339\) 11.8730 + 21.1431i 0.644852 + 1.14834i
\(340\) 0 0
\(341\) 6.24621i 0.338251i
\(342\) −5.08706 + 2.38537i −0.275077 + 0.128986i
\(343\) −14.7304 −0.795367
\(344\) 21.5150 + 4.00000i 1.16001 + 0.215666i
\(345\) 0 0
\(346\) −1.56155 + 2.35829i −0.0839496 + 0.126783i
\(347\) 22.6305i 1.21487i −0.794370 0.607434i \(-0.792199\pi\)
0.794370 0.607434i \(-0.207801\pi\)
\(348\) −8.55950 6.61668i −0.458837 0.354691i
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 0.952473 26.6034i 0.0508392 1.41998i
\(352\) −1.61463 7.31534i −0.0860599 0.389909i
\(353\) −20.2462 −1.07760 −0.538799 0.842435i \(-0.681122\pi\)
−0.538799 + 0.842435i \(0.681122\pi\)
\(354\) −34.5669 2.53489i −1.83721 0.134728i
\(355\) 0 0
\(356\) −18.8664 + 8.00000i −0.999915 + 0.423999i
\(357\) −5.12311 9.12311i −0.271144 0.482846i
\(358\) −7.81855 + 11.8078i −0.413223 + 0.624060i
\(359\) −21.5150 −1.13552 −0.567758 0.823195i \(-0.692189\pi\)
−0.567758 + 0.823195i \(0.692189\pi\)
\(360\) 0 0
\(361\) 17.2462 0.907695
\(362\) 9.56155 14.4401i 0.502544 0.758954i
\(363\) −7.84144 13.9638i −0.411569 0.732912i
\(364\) 28.4924 12.0818i 1.49341 0.633258i
\(365\) 0 0
\(366\) −7.62953 0.559496i −0.398802 0.0292453i
\(367\) 10.9663 0.572436 0.286218 0.958165i \(-0.407602\pi\)
0.286218 + 0.958165i \(0.407602\pi\)
\(368\) 1.06913 + 1.03399i 0.0557323 + 0.0539003i
\(369\) 2.87689 + 1.75379i 0.149765 + 0.0912986i
\(370\) 0 0
\(371\) −36.9890 −1.92038
\(372\) −12.9268 9.99267i −0.670221 0.518096i
\(373\) 9.12311i 0.472377i 0.971707 + 0.236188i \(0.0758982\pi\)
−0.971707 + 0.236188i \(0.924102\pi\)
\(374\) 2.06798 3.12311i 0.106932 0.161492i
\(375\) 0 0
\(376\) −1.56155 + 8.39919i −0.0805309 + 0.433155i
\(377\) 16.0000 0.824042
\(378\) 12.9084 18.0561i 0.663935 0.928704i
\(379\) 18.7033i 0.960725i −0.877070 0.480363i \(-0.840505\pi\)
0.877070 0.480363i \(-0.159495\pi\)
\(380\) 0 0
\(381\) −12.8078 22.8078i −0.656162 1.16848i
\(382\) 19.4470 29.3693i 0.994995 1.50266i
\(383\) 15.1022i 0.771688i 0.922564 + 0.385844i \(0.126090\pi\)
−0.922564 + 0.385844i \(0.873910\pi\)
\(384\) −17.7224 8.36154i −0.904394 0.426698i
\(385\) 0 0
\(386\) −0.290319 0.192236i −0.0147769 0.00978455i
\(387\) −12.0818 + 19.8188i −0.614152 + 1.00745i
\(388\) −11.0478 + 4.68466i −0.560867 + 0.237827i
\(389\) 20.7386i 1.05149i 0.850642 + 0.525745i \(0.176213\pi\)
−0.850642 + 0.525745i \(0.823787\pi\)
\(390\) 0 0
\(391\) 0.743668i 0.0376089i
\(392\) 5.90388 + 1.09763i 0.298191 + 0.0554388i
\(393\) 4.63068 + 8.24621i 0.233587 + 0.415966i
\(394\) 3.31534 5.00691i 0.167024 0.252244i
\(395\) 0 0
\(396\) 7.86084 + 1.15915i 0.395022 + 0.0582495i
\(397\) 14.8769i 0.746650i 0.927701 + 0.373325i \(0.121782\pi\)
−0.927701 + 0.373325i \(0.878218\pi\)
\(398\) 6.43845 + 4.26324i 0.322730 + 0.213697i
\(399\) 6.04090 3.39228i 0.302423 0.169827i
\(400\) 0 0
\(401\) 24.0000i 1.19850i 0.800561 + 0.599251i \(0.204535\pi\)
−0.800561 + 0.599251i \(0.795465\pi\)
\(402\) −10.6139 0.778351i −0.529375 0.0388206i
\(403\) 24.1636 1.20367
\(404\) −1.61463 + 0.684658i −0.0803307 + 0.0340630i
\(405\) 0 0
\(406\) 11.1231 + 7.36520i 0.552030 + 0.365529i
\(407\) 6.78456i 0.336298i
\(408\) −3.15504 9.27608i −0.156198 0.459235i
\(409\) −25.3693 −1.25443 −0.627216 0.778845i \(-0.715806\pi\)
−0.627216 + 0.778845i \(0.715806\pi\)
\(410\) 0 0
\(411\) 6.99337 + 12.4536i 0.344957 + 0.614292i
\(412\) 7.65552 + 18.0540i 0.377161 + 0.889456i
\(413\) 42.7386 2.10303
\(414\) −1.42833 + 0.669757i −0.0701984 + 0.0329167i
\(415\) 0 0
\(416\) 28.2995 6.24621i 1.38750 0.306246i
\(417\) −26.4924 + 14.8769i −1.29734 + 0.728525i
\(418\) 2.06798 + 1.36932i 0.101148 + 0.0669755i
\(419\) −7.36520 −0.359814 −0.179907 0.983684i \(-0.557580\pi\)
−0.179907 + 0.983684i \(0.557580\pi\)
\(420\) 0 0
\(421\) −25.3693 −1.23642 −0.618212 0.786011i \(-0.712143\pi\)
−0.618212 + 0.786011i \(0.712143\pi\)
\(422\) 19.8078 + 13.1158i 0.964227 + 0.638466i
\(423\) −7.73704 4.71659i −0.376188 0.229328i
\(424\) −34.0540 6.33122i −1.65381 0.307471i
\(425\) 0 0
\(426\) −8.28711 0.607718i −0.401512 0.0294440i
\(427\) 9.43318 0.456503
\(428\) −5.56155 + 2.35829i −0.268828 + 0.113992i
\(429\) −10.2462 + 5.75379i −0.494692 + 0.277796i
\(430\) 0 0
\(431\) −16.6354 −0.801297 −0.400648 0.916232i \(-0.631215\pi\)
−0.400648 + 0.916232i \(0.631215\pi\)
\(432\) 14.9747 14.4139i 0.720468 0.693488i
\(433\) 18.0000i 0.865025i −0.901628 0.432512i \(-0.857627\pi\)
0.901628 0.432512i \(-0.142373\pi\)
\(434\) 16.7984 + 11.1231i 0.806348 + 0.533926i
\(435\) 0 0
\(436\) −0.684658 1.61463i −0.0327892 0.0773266i
\(437\) −0.492423 −0.0235558
\(438\) −1.47729 + 20.1449i −0.0705875 + 0.962561i
\(439\) 9.27015i 0.442440i −0.975224 0.221220i \(-0.928996\pi\)
0.975224 0.221220i \(-0.0710039\pi\)
\(440\) 0 0
\(441\) −3.31534 + 5.43845i −0.157873 + 0.258974i
\(442\) 12.0818 + 8.00000i 0.574672 + 0.380521i
\(443\) 16.5896i 0.788195i 0.919069 + 0.394097i \(0.128943\pi\)
−0.919069 + 0.394097i \(0.871057\pi\)
\(444\) 14.0409 + 10.8539i 0.666351 + 0.515105i
\(445\) 0 0
\(446\) −6.49424 + 9.80776i −0.307511 + 0.464411i
\(447\) −21.1431 + 11.8730i −1.00004 + 0.561573i
\(448\) 22.5490 + 8.68466i 1.06534 + 0.410312i
\(449\) 27.3693i 1.29164i 0.763491 + 0.645819i \(0.223484\pi\)
−0.763491 + 0.645819i \(0.776516\pi\)
\(450\) 0 0
\(451\) 1.48734i 0.0700359i
\(452\) −10.9309 25.7782i −0.514145 1.21250i
\(453\) 11.1231 6.24621i 0.522609 0.293473i
\(454\) −25.8078 17.0887i −1.21122 0.802012i
\(455\) 0 0
\(456\) 6.14219 2.08912i 0.287634 0.0978319i
\(457\) 10.0000i 0.467780i −0.972263 0.233890i \(-0.924854\pi\)
0.972263 0.233890i \(-0.0751456\pi\)
\(458\) −12.6847 + 19.1567i −0.592715 + 0.895133i
\(459\) 10.3857 + 0.371834i 0.484761 + 0.0173557i
\(460\) 0 0
\(461\) 41.8617i 1.94970i 0.222872 + 0.974848i \(0.428457\pi\)
−0.222872 + 0.974848i \(0.571543\pi\)
\(462\) −9.77172 0.716589i −0.454622 0.0333387i
\(463\) 3.02045 0.140372 0.0701861 0.997534i \(-0.477641\pi\)
0.0701861 + 0.997534i \(0.477641\pi\)
\(464\) 8.97983 + 8.68466i 0.416878 + 0.403175i
\(465\) 0 0
\(466\) 7.80776 11.7915i 0.361688 0.546229i
\(467\) 2.27678i 0.105357i 0.998612 + 0.0526784i \(0.0167758\pi\)
−0.998612 + 0.0526784i \(0.983224\pi\)
\(468\) −4.48419 + 30.4098i −0.207282 + 1.40569i
\(469\) 13.1231 0.605969
\(470\) 0 0
\(471\) 5.08842 2.85742i 0.234462 0.131663i
\(472\) 39.3473 + 7.31534i 1.81111 + 0.336716i
\(473\) 10.2462 0.471121
\(474\) −1.45268 + 19.8094i −0.0667239 + 0.909876i
\(475\) 0 0
\(476\) 4.71659 + 11.1231i 0.216184 + 0.509827i
\(477\) 19.1231 31.3693i 0.875587 1.43630i
\(478\) 13.5691 20.4924i 0.620637 0.937302i
\(479\) −25.6509 −1.17202 −0.586010 0.810304i \(-0.699302\pi\)
−0.586010 + 0.810304i \(0.699302\pi\)
\(480\) 0 0
\(481\) −26.2462 −1.19672
\(482\) −10.4384 + 15.7644i −0.475458 + 0.718048i
\(483\) 1.69614 0.952473i 0.0771771 0.0433390i
\(484\) 7.21922 + 17.0251i 0.328147 + 0.773866i
\(485\) 0 0
\(486\) 8.63928 + 20.2821i 0.391886 + 0.920014i
\(487\) 25.2791 1.14550 0.572752 0.819728i \(-0.305876\pi\)
0.572752 + 0.819728i \(0.305876\pi\)
\(488\) 8.68466 + 1.61463i 0.393136 + 0.0730907i
\(489\) −13.3002 23.6847i −0.601455 1.07106i
\(490\) 0 0
\(491\) 26.9752 1.21737 0.608687 0.793410i \(-0.291696\pi\)
0.608687 + 0.793410i \(0.291696\pi\)
\(492\) −3.07810 2.37944i −0.138771 0.107273i
\(493\) 6.24621i 0.281315i
\(494\) −5.29723 + 8.00000i −0.238334 + 0.359937i
\(495\) 0 0
\(496\) 13.5616 + 13.1158i 0.608932 + 0.588916i
\(497\) 10.2462 0.459605
\(498\) −2.70552 + 36.8937i −0.121237 + 1.65325i
\(499\) 32.2725i 1.44471i −0.691521 0.722357i \(-0.743059\pi\)
0.691521 0.722357i \(-0.256941\pi\)
\(500\) 0 0
\(501\) 13.6847 7.68466i 0.611385 0.343325i
\(502\) −14.6031 + 22.0540i −0.651769 + 0.984317i
\(503\) 14.3586i 0.640217i −0.947381 0.320109i \(-0.896281\pi\)
0.947381 0.320109i \(-0.103719\pi\)
\(504\) −17.1158 + 19.0765i −0.762397 + 0.849736i
\(505\) 0 0
\(506\) 0.580639 + 0.384472i 0.0258125 + 0.0170919i
\(507\) −11.2337 20.0047i −0.498907 0.888442i
\(508\) 11.7915 + 27.8078i 0.523162 + 1.23377i
\(509\) 11.1231i 0.493023i −0.969140 0.246511i \(-0.920716\pi\)
0.969140 0.246511i \(-0.0792843\pi\)
\(510\) 0 0
\(511\) 24.9073i 1.10183i
\(512\) 19.2732 + 11.8551i 0.851763 + 0.523927i
\(513\) −0.246211 + 6.87689i −0.0108705 + 0.303622i
\(514\) 23.8078 35.9551i 1.05012 1.58591i
\(515\) 0 0
\(516\) 16.3919 21.2049i 0.721612 0.933494i
\(517\) 4.00000i 0.175920i
\(518\) −18.2462 12.0818i −0.801692 0.530843i
\(519\) 1.69614 + 3.02045i 0.0744523 + 0.132583i
\(520\) 0 0
\(521\) 38.2462i 1.67560i −0.545980 0.837798i \(-0.683842\pi\)
0.545980 0.837798i \(-0.316158\pi\)
\(522\) −11.9968 + 5.62541i −0.525085 + 0.246218i
\(523\) −35.2929 −1.54325 −0.771625 0.636077i \(-0.780556\pi\)
−0.771625 + 0.636077i \(0.780556\pi\)
\(524\) −4.26324 10.0540i −0.186241 0.439210i
\(525\) 0 0
\(526\) −28.0540 18.5760i −1.22321 0.809954i
\(527\) 9.43318i 0.410916i
\(528\) −8.87368 2.33230i −0.386177 0.101500i
\(529\) 22.8617 0.993989
\(530\) 0 0
\(531\) −22.0956 + 36.2454i −0.958868 + 1.57292i
\(532\) −7.36520 + 3.12311i −0.319322 + 0.135404i
\(533\) 5.75379 0.249224
\(534\) −1.83558 + 25.0308i −0.0794333 + 1.08319i
\(535\) 0 0
\(536\) 12.0818 + 2.24621i 0.521854 + 0.0970215i
\(537\) 8.49242 + 15.1231i 0.366475 + 0.652610i
\(538\) 16.5081 + 10.9309i 0.711713 + 0.471263i
\(539\) 2.81164 0.121106
\(540\) 0 0
\(541\) −26.9848 −1.16017 −0.580085 0.814556i \(-0.696980\pi\)
−0.580085 + 0.814556i \(0.696980\pi\)
\(542\) −18.0540 11.9545i −0.775485 0.513490i
\(543\) −10.3857 18.4945i −0.445691 0.793676i
\(544\) 2.43845 + 11.0478i 0.104548 + 0.473671i
\(545\) 0 0
\(546\) 2.77214 37.8021i 0.118637 1.61778i
\(547\) −5.83209 −0.249362 −0.124681 0.992197i \(-0.539791\pi\)
−0.124681 + 0.992197i \(0.539791\pi\)
\(548\) −6.43845 15.1838i −0.275037 0.648618i
\(549\) −4.87689 + 8.00000i −0.208141 + 0.341432i
\(550\) 0 0
\(551\) −4.13595 −0.176197
\(552\) 1.72458 0.586575i 0.0734031 0.0249663i
\(553\) 24.4924i 1.04152i
\(554\) −27.5559 18.2462i −1.17074 0.775207i
\(555\) 0 0
\(556\) 32.3002 13.6964i 1.36983 0.580858i
\(557\) −36.2462 −1.53580 −0.767901 0.640569i \(-0.778699\pi\)
−0.767901 + 0.640569i \(0.778699\pi\)
\(558\) −18.1178 + 8.49563i −0.766989 + 0.359649i
\(559\) 39.6377i 1.67649i
\(560\) 0 0
\(561\) −2.24621 4.00000i −0.0948351 0.168880i
\(562\) −16.0547 10.6307i −0.677227 0.448428i
\(563\) 7.90007i 0.332948i 0.986046 + 0.166474i \(0.0532382\pi\)
−0.986046 + 0.166474i \(0.946762\pi\)
\(564\) 8.27814 + 6.39919i 0.348573 + 0.269455i
\(565\) 0 0
\(566\) −18.1227 + 27.3693i −0.761753 + 1.15042i
\(567\) −12.4536 24.1636i −0.523003 1.01478i
\(568\) 9.43318 + 1.75379i 0.395807 + 0.0735873i
\(569\) 13.1231i 0.550149i 0.961423 + 0.275075i \(0.0887026\pi\)
−0.961423 + 0.275075i \(0.911297\pi\)
\(570\) 0 0
\(571\) 33.0161i 1.38168i 0.723007 + 0.690841i \(0.242759\pi\)
−0.723007 + 0.690841i \(0.757241\pi\)
\(572\) 12.4924 5.29723i 0.522334 0.221488i
\(573\) −21.1231 37.6155i −0.882430 1.57141i
\(574\) 4.00000 + 2.64861i 0.166957 + 0.110551i
\(575\) 0 0
\(576\) −19.0229 + 14.6332i −0.792620 + 0.609716i
\(577\) 32.2462i 1.34243i −0.741264 0.671214i \(-0.765773\pi\)
0.741264 0.671214i \(-0.234227\pi\)
\(578\) 10.1501 15.3289i 0.422188 0.637599i
\(579\) −0.371834 + 0.208805i −0.0154529 + 0.00867762i
\(580\) 0 0
\(581\) 45.6155i 1.89245i
\(582\) −1.07488 + 14.6576i −0.0445554 + 0.607576i
\(583\) −16.2177 −0.671670
\(584\) 4.26324 22.9309i 0.176414 0.948886i
\(585\) 0 0
\(586\) −1.94602 + 2.93893i −0.0803895 + 0.121406i
\(587\) 1.85917i 0.0767362i 0.999264 + 0.0383681i \(0.0122159\pi\)
−0.999264 + 0.0383681i \(0.987784\pi\)
\(588\) 4.49806 5.81880i 0.185497 0.239963i
\(589\) −6.24621 −0.257371
\(590\) 0 0
\(591\) −3.60109 6.41273i −0.148129 0.263784i
\(592\) −14.7304 14.2462i −0.605416 0.585516i
\(593\) 8.24621 0.338631 0.169316 0.985562i \(-0.445844\pi\)
0.169316 + 0.985562i \(0.445844\pi\)
\(594\) 5.65964 7.91664i 0.232218 0.324823i
\(595\) 0 0
\(596\) 25.7782 10.9309i 1.05592 0.447746i
\(597\) 8.24621 4.63068i 0.337495 0.189521i
\(598\) −1.48734 + 2.24621i −0.0608217 + 0.0918544i
\(599\) 44.1912 1.80560 0.902802 0.430056i \(-0.141506\pi\)
0.902802 + 0.430056i \(0.141506\pi\)
\(600\) 0 0
\(601\) 23.1231 0.943211 0.471606 0.881810i \(-0.343675\pi\)
0.471606 + 0.881810i \(0.343675\pi\)
\(602\) −18.2462 + 27.5559i −0.743660 + 1.12309i
\(603\) −6.78456 + 11.1293i −0.276289 + 0.453221i
\(604\) −13.5616 + 5.75058i −0.551812 + 0.233988i
\(605\) 0 0
\(606\) −0.157093 + 2.14219i −0.00638148 + 0.0870206i
\(607\) −4.50778 −0.182965 −0.0914827 0.995807i \(-0.529161\pi\)
−0.0914827 + 0.995807i \(0.529161\pi\)
\(608\) −7.31534 + 1.61463i −0.296676 + 0.0654817i
\(609\) 14.2462 8.00000i 0.577286 0.324176i
\(610\) 0 0
\(611\) −15.4741 −0.626014
\(612\) −11.8716 1.75058i −0.479882 0.0707629i
\(613\) 9.12311i 0.368479i −0.982881 0.184239i \(-0.941018\pi\)
0.982881 0.184239i \(-0.0589822\pi\)
\(614\) 8.68951 13.1231i 0.350680 0.529605i
\(615\) 0 0
\(616\) 11.1231 + 2.06798i 0.448163 + 0.0833211i
\(617\) 14.0000 0.563619 0.281809 0.959470i \(-0.409065\pi\)
0.281809 + 0.959470i \(0.409065\pi\)
\(618\) 23.9530 + 1.75654i 0.963529 + 0.0706584i
\(619\) 28.1365i 1.13090i 0.824782 + 0.565451i \(0.191298\pi\)
−0.824782 + 0.565451i \(0.808702\pi\)
\(620\) 0 0
\(621\) −0.0691303 + 1.93087i −0.00277410 + 0.0774831i
\(622\) −16.2177 + 24.4924i −0.650272 + 0.982057i
\(623\) 30.9481i 1.23991i
\(624\) 9.02255 34.3280i 0.361191 1.37422i
\(625\) 0 0
\(626\) −26.5219 17.5616i −1.06003 0.701901i
\(627\) 2.64861 1.48734i 0.105775 0.0593985i
\(628\) −6.20393 + 2.63068i −0.247564 + 0.104976i
\(629\) 10.2462i 0.408543i
\(630\) 0 0
\(631\) 39.8007i 1.58444i 0.610235 + 0.792220i \(0.291075\pi\)
−0.610235 + 0.792220i \(0.708925\pi\)
\(632\) 4.19224 22.5490i 0.166758 0.896949i
\(633\) 25.3693 14.2462i 1.00834 0.566236i
\(634\) −13.0691 + 19.7373i −0.519041 + 0.783869i
\(635\) 0 0
\(636\) −25.9451 + 33.5632i −1.02879 + 1.33087i
\(637\) 10.8769i 0.430958i
\(638\) 4.87689 + 3.22925i 0.193078 + 0.127847i
\(639\) −5.29723 + 8.68951i −0.209555 + 0.343752i
\(640\) 0 0
\(641\) 6.38447i 0.252171i −0.992019 0.126086i \(-0.959759\pi\)
0.992019 0.126086i \(-0.0402414\pi\)
\(642\) −0.541105 + 7.37874i −0.0213557 + 0.291216i
\(643\) 3.60109 0.142013 0.0710065 0.997476i \(-0.477379\pi\)
0.0710065 + 0.997476i \(0.477379\pi\)
\(644\) −2.06798 + 0.876894i −0.0814896 + 0.0345545i
\(645\) 0 0
\(646\) −3.12311 2.06798i −0.122877 0.0813634i
\(647\) 36.6172i 1.43957i −0.694197 0.719786i \(-0.744240\pi\)
0.694197 0.719786i \(-0.255760\pi\)
\(648\) −7.32948 24.3778i −0.287929 0.957652i
\(649\) 18.7386 0.735556
\(650\) 0 0
\(651\) 21.5150 12.0818i 0.843238 0.473523i
\(652\) 12.2448 + 28.8769i 0.479544 + 1.13091i
\(653\) −38.9848 −1.52559 −0.762797 0.646638i \(-0.776175\pi\)
−0.762797 + 0.646638i \(0.776175\pi\)
\(654\) −2.14219 0.157093i −0.0837663 0.00614283i
\(655\) 0 0
\(656\) 3.22925 + 3.12311i 0.126081 + 0.121937i
\(657\) 21.1231 + 12.8769i 0.824091 + 0.502375i
\(658\) −10.7575 7.12311i −0.419370 0.277688i
\(659\) −24.7442 −0.963898 −0.481949 0.876199i \(-0.660071\pi\)
−0.481949 + 0.876199i \(0.660071\pi\)
\(660\) 0 0
\(661\) 28.1080 1.09327 0.546636 0.837370i \(-0.315908\pi\)
0.546636 + 0.837370i \(0.315908\pi\)
\(662\) 3.80776 + 2.52132i 0.147993 + 0.0979940i
\(663\) 15.4741 8.68951i 0.600963 0.337473i
\(664\) 7.80776 41.9960i 0.303000 1.62976i
\(665\) 0 0
\(666\) 19.6794 9.22786i 0.762561 0.357572i
\(667\) −1.16128 −0.0449648
\(668\) −16.6847 + 7.07488i −0.645549 + 0.273735i
\(669\) 7.05398 + 12.5616i 0.272722 + 0.485658i
\(670\) 0 0
\(671\) 4.13595 0.159667
\(672\) 22.0745 19.7113i 0.851541 0.760381i
\(673\) 22.4924i 0.867019i −0.901149 0.433510i \(-0.857275\pi\)
0.901149 0.433510i \(-0.142725\pi\)
\(674\) 1.77766 + 1.17708i 0.0684727 + 0.0453395i
\(675\) 0 0
\(676\) 10.3423 + 24.3903i 0.397782 + 0.938087i
\(677\) −1.50758 −0.0579409 −0.0289705 0.999580i \(-0.509223\pi\)
−0.0289705 + 0.999580i \(0.509223\pi\)
\(678\) −34.2010 2.50806i −1.31348 0.0963215i
\(679\) 18.1227i 0.695485i
\(680\) 0 0
\(681\) −33.0540 + 18.5616i −1.26663 + 0.711280i
\(682\) 7.36520 + 4.87689i 0.282028 + 0.186746i
\(683\) 7.90007i 0.302288i −0.988512 0.151144i \(-0.951704\pi\)
0.988512 0.151144i \(-0.0482957\pi\)
\(684\) 1.15915 7.86084i 0.0443212 0.300567i
\(685\) 0 0
\(686\) 11.5012 17.3693i 0.439116 0.663164i
\(687\) 13.7779 + 24.5354i 0.525661 + 0.936085i
\(688\) −21.5150 + 22.2462i −0.820251 + 0.848129i
\(689\) 62.7386i 2.39015i
\(690\) 0 0
\(691\) 18.2857i 0.695621i −0.937565 0.347811i \(-0.886925\pi\)
0.937565 0.347811i \(-0.113075\pi\)
\(692\) −1.56155 3.68260i −0.0593613 0.139991i
\(693\) −6.24621 + 10.2462i −0.237274 + 0.389221i
\(694\) 26.6847 + 17.6693i 1.01294 + 0.670719i
\(695\) 0 0
\(696\) 14.4851 4.92676i 0.549056 0.186748i
\(697\) 2.24621i 0.0850813i
\(698\) −10.9309 + 16.5081i −0.413740 + 0.624839i
\(699\) −8.48071 15.1022i −0.320770 0.571219i
\(700\) 0 0
\(701\) 17.5076i 0.661252i 0.943762 + 0.330626i \(0.107260\pi\)
−0.943762 + 0.330626i \(0.892740\pi\)
\(702\) 30.6256 + 21.8944i 1.15589 + 0.826351i
\(703\) 6.78456 0.255885
\(704\) 9.88653 + 3.80776i 0.372612 + 0.143511i
\(705\) 0 0
\(706\) 15.8078 23.8733i 0.594933 0.898482i
\(707\) 2.64861i 0.0996114i
\(708\) 29.9780 38.7803i 1.12664 1.45745i
\(709\) −6.49242 −0.243828 −0.121914 0.992541i \(-0.538903\pi\)
−0.121914 + 0.992541i \(0.538903\pi\)
\(710\) 0 0
\(711\) 20.7713 + 12.6624i 0.778985 + 0.474878i
\(712\) 5.29723 28.4924i 0.198522 1.06780i
\(713\) −1.75379 −0.0656799
\(714\) 14.7575 + 1.08221i 0.552285 + 0.0405007i
\(715\) 0 0
\(716\) −7.81855 18.4384i −0.292193 0.689077i
\(717\) −14.7386 26.2462i −0.550424 0.980183i
\(718\) 16.7984 25.3693i 0.626910 0.946774i
\(719\) 30.9481 1.15417 0.577086 0.816684i \(-0.304190\pi\)
0.577086 + 0.816684i \(0.304190\pi\)
\(720\) 0 0
\(721\) −29.6155 −1.10294
\(722\) −13.4654 + 20.3358i −0.501132 + 0.756821i
\(723\) 11.3381 + 20.1907i 0.421669 + 0.750899i
\(724\) 9.56155 + 22.5490i 0.355352 + 0.838025i
\(725\) 0 0
\(726\) 22.5878 + 1.65643i 0.838314 + 0.0614760i
\(727\) −10.9663 −0.406717 −0.203359 0.979104i \(-0.565186\pi\)
−0.203359 + 0.979104i \(0.565186\pi\)
\(728\) −8.00000 + 43.0299i −0.296500 + 1.59480i
\(729\) 26.9309 + 1.93087i 0.997440 + 0.0715137i
\(730\) 0 0
\(731\) −15.4741 −0.572329
\(732\) 6.61668 8.55950i 0.244560 0.316368i
\(733\) 26.8769i 0.992721i 0.868117 + 0.496360i \(0.165331\pi\)
−0.868117 + 0.496360i \(0.834669\pi\)
\(734\) −8.56222 + 12.9309i −0.316037 + 0.477287i
\(735\) 0 0
\(736\) −2.05398 + 0.453349i −0.0757105 + 0.0167107i
\(737\) 5.75379 0.211944
\(738\) −4.31419 + 2.02297i −0.158807 + 0.0744664i
\(739\) 26.9752i 0.992300i −0.868237 0.496150i \(-0.834747\pi\)
0.868237 0.496150i \(-0.165253\pi\)
\(740\) 0 0
\(741\) 5.75379 + 10.2462i 0.211371 + 0.376404i
\(742\) 28.8802 43.6155i 1.06022 1.60118i
\(743\) 9.80501i 0.359711i 0.983693 + 0.179856i \(0.0575630\pi\)
−0.983693 + 0.179856i \(0.942437\pi\)
\(744\) 21.8757 7.44050i 0.802004 0.272782i
\(745\) 0 0
\(746\) −10.7575 7.12311i −0.393860 0.260795i
\(747\) 38.6852 + 23.5829i 1.41542 + 0.862855i
\(748\) 2.06798 + 4.87689i 0.0756127 + 0.178317i
\(749\) 9.12311i 0.333351i
\(750\) 0 0
\(751\) 11.5012i 0.419683i −0.977735 0.209842i \(-0.932705\pi\)
0.977735 0.209842i \(-0.0672948\pi\)
\(752\) −8.68466 8.39919i −0.316697 0.306287i
\(753\) 15.8617 + 28.2462i 0.578034 + 1.02935i
\(754\) −12.4924 + 18.8664i −0.454947 + 0.687072i
\(755\) 0 0
\(756\) 11.2122 + 29.3186i 0.407785 + 1.06631i
\(757\) 10.8769i 0.395327i 0.980270 + 0.197664i \(0.0633354\pi\)
−0.980270 + 0.197664i \(0.936665\pi\)
\(758\) 22.0540 + 14.6031i 0.801036 + 0.530409i
\(759\) 0.743668 0.417609i 0.0269934 0.0151582i
\(760\) 0 0
\(761\) 31.2311i 1.13212i −0.824362 0.566062i \(-0.808466\pi\)
0.824362 0.566062i \(-0.191534\pi\)
\(762\) 36.8937 + 2.70552i 1.33652 + 0.0980108i
\(763\) 2.64861 0.0958863
\(764\) 19.4470 + 45.8617i 0.703568 + 1.65922i
\(765\) 0 0
\(766\) −17.8078 11.7915i −0.643421 0.426043i
\(767\) 72.4908i 2.61749i
\(768\) 23.6967 14.3689i 0.855083 0.518492i
\(769\) −38.9848 −1.40583 −0.702915 0.711274i \(-0.748118\pi\)
−0.702915 + 0.711274i \(0.748118\pi\)
\(770\) 0 0
\(771\) −25.8597 46.0504i −0.931315 1.65846i
\(772\) 0.453349 0.192236i 0.0163164 0.00691872i
\(773\) −0.246211 −0.00885560 −0.00442780 0.999990i \(-0.501409\pi\)
−0.00442780 + 0.999990i \(0.501409\pi\)
\(774\) −13.9361 29.7203i −0.500924 1.06827i
\(775\) 0 0
\(776\) 3.10196 16.6847i 0.111354 0.598944i
\(777\) −23.3693 + 13.1231i −0.838370 + 0.470789i
\(778\) −24.4539 16.1922i −0.876715 0.580520i
\(779\) −1.48734 −0.0532894
\(780\) 0 0
\(781\) 4.49242 0.160752
\(782\) −0.876894 0.580639i −0.0313577 0.0207636i
\(783\) −0.580639 + 16.2177i −0.0207503 + 0.579575i
\(784\) −5.90388 + 6.10454i −0.210853 + 0.218019i
\(785\) 0