Properties

Label 300.2.h.b.299.3
Level $300$
Weight $2$
Character 300.299
Analytic conductor $2.396$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 300.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.39551206064\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.342102016.5
Defining polynomial: \(x^{8} + x^{6} + 4 x^{4} + 4 x^{2} + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 299.3
Root \(1.17915 + 0.780776i\) of defining polynomial
Character \(\chi\) \(=\) 300.299
Dual form 300.2.h.b.299.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.780776 + 1.17915i) q^{2} +(-0.848071 + 1.51022i) q^{3} +(-0.780776 - 1.84130i) q^{4} +(-1.11862 - 2.17915i) q^{6} -3.02045 q^{7} +(2.78078 + 0.516994i) q^{8} +(-1.56155 - 2.56155i) q^{9} +O(q^{10})\) \(q+(-0.780776 + 1.17915i) q^{2} +(-0.848071 + 1.51022i) q^{3} +(-0.780776 - 1.84130i) q^{4} +(-1.11862 - 2.17915i) q^{6} -3.02045 q^{7} +(2.78078 + 0.516994i) q^{8} +(-1.56155 - 2.56155i) q^{9} -1.32431 q^{11} +(3.44293 + 0.382406i) q^{12} -5.12311i q^{13} +(2.35829 - 3.56155i) q^{14} +(-2.78078 + 2.87529i) q^{16} -2.00000 q^{17} +(4.23967 + 0.158699i) q^{18} -1.32431i q^{19} +(2.56155 - 4.56155i) q^{21} +(1.03399 - 1.56155i) q^{22} -0.371834i q^{23} +(-3.13907 + 3.76115i) q^{24} +(6.04090 + 4.00000i) q^{26} +(5.19283 - 0.185917i) q^{27} +(2.35829 + 5.56155i) q^{28} +3.12311i q^{29} -4.71659i q^{31} +(-1.21922 - 5.52390i) q^{32} +(1.12311 - 2.00000i) q^{33} +(1.56155 - 2.35829i) q^{34} +(-3.49737 + 4.87529i) q^{36} -5.12311i q^{37} +(1.56155 + 1.03399i) q^{38} +(7.73704 + 4.34475i) q^{39} +1.12311i q^{41} +(3.37874 + 6.58200i) q^{42} -7.73704 q^{43} +(1.03399 + 2.43845i) q^{44} +(0.438447 + 0.290319i) q^{46} +3.02045i q^{47} +(-1.98403 - 6.63804i) q^{48} +2.12311 q^{49} +(1.69614 - 3.02045i) q^{51} +(-9.43318 + 4.00000i) q^{52} -12.2462 q^{53} +(-3.83521 + 6.26827i) q^{54} +(-8.39919 - 1.56155i) q^{56} +(2.00000 + 1.12311i) q^{57} +(-3.68260 - 2.43845i) q^{58} -14.1498 q^{59} +3.12311 q^{61} +(5.56155 + 3.68260i) q^{62} +(4.71659 + 7.73704i) q^{63} +(7.46543 + 2.87529i) q^{64} +(1.48140 + 2.88586i) q^{66} -4.34475 q^{67} +(1.56155 + 3.68260i) q^{68} +(0.561553 + 0.315342i) q^{69} -3.39228 q^{71} +(-3.01802 - 7.93042i) q^{72} +8.24621i q^{73} +(6.04090 + 4.00000i) q^{74} +(-2.43845 + 1.03399i) q^{76} +4.00000 q^{77} +(-11.1640 + 5.73082i) q^{78} -8.10887i q^{79} +(-4.12311 + 8.00000i) q^{81} +(-1.32431 - 0.876894i) q^{82} -15.1022i q^{83} +(-10.3992 - 1.15504i) q^{84} +(6.04090 - 9.12311i) q^{86} +(-4.71659 - 2.64861i) q^{87} +(-3.68260 - 0.684658i) q^{88} +10.2462i q^{89} +15.4741i q^{91} +(-0.684658 + 0.290319i) q^{92} +(7.12311 + 4.00000i) q^{93} +(-3.56155 - 2.35829i) q^{94} +(9.37632 + 2.84336i) q^{96} +6.00000i q^{97} +(-1.65767 + 2.50345i) q^{98} +(2.06798 + 3.39228i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 2q^{2} + 2q^{4} - 6q^{6} + 14q^{8} + 4q^{9} + O(q^{10}) \) \( 8q + 2q^{2} + 2q^{4} - 6q^{6} + 14q^{8} + 4q^{9} + 14q^{12} - 14q^{16} - 16q^{17} + 18q^{18} + 4q^{21} + 2q^{24} - 18q^{32} - 24q^{33} - 4q^{34} + 18q^{36} - 4q^{38} - 16q^{42} + 20q^{46} - 10q^{48} - 16q^{49} - 32q^{53} + 10q^{54} + 16q^{57} - 8q^{61} + 28q^{62} + 2q^{64} - 40q^{66} - 4q^{68} - 12q^{69} - 10q^{72} - 36q^{76} + 32q^{77} - 8q^{78} - 16q^{84} + 44q^{92} + 24q^{93} - 12q^{94} + 42q^{96} - 38q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.780776 + 1.17915i −0.552092 + 0.833783i
\(3\) −0.848071 + 1.51022i −0.489634 + 0.871928i
\(4\) −0.780776 1.84130i −0.390388 0.920650i
\(5\) 0 0
\(6\) −1.11862 2.17915i −0.456676 0.889633i
\(7\) −3.02045 −1.14162 −0.570811 0.821081i \(-0.693371\pi\)
−0.570811 + 0.821081i \(0.693371\pi\)
\(8\) 2.78078 + 0.516994i 0.983153 + 0.182785i
\(9\) −1.56155 2.56155i −0.520518 0.853851i
\(10\) 0 0
\(11\) −1.32431 −0.399294 −0.199647 0.979868i \(-0.563979\pi\)
−0.199647 + 0.979868i \(0.563979\pi\)
\(12\) 3.44293 + 0.382406i 0.993888 + 0.110391i
\(13\) 5.12311i 1.42089i −0.703751 0.710447i \(-0.748493\pi\)
0.703751 0.710447i \(-0.251507\pi\)
\(14\) 2.35829 3.56155i 0.630281 0.951865i
\(15\) 0 0
\(16\) −2.78078 + 2.87529i −0.695194 + 0.718822i
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 4.23967 + 0.158699i 0.999300 + 0.0374058i
\(19\) 1.32431i 0.303817i −0.988395 0.151908i \(-0.951458\pi\)
0.988395 0.151908i \(-0.0485419\pi\)
\(20\) 0 0
\(21\) 2.56155 4.56155i 0.558977 0.995412i
\(22\) 1.03399 1.56155i 0.220447 0.332924i
\(23\) 0.371834i 0.0775328i −0.999248 0.0387664i \(-0.987657\pi\)
0.999248 0.0387664i \(-0.0123428\pi\)
\(24\) −3.13907 + 3.76115i −0.640760 + 0.767741i
\(25\) 0 0
\(26\) 6.04090 + 4.00000i 1.18472 + 0.784465i
\(27\) 5.19283 0.185917i 0.999360 0.0357798i
\(28\) 2.35829 + 5.56155i 0.445676 + 1.05103i
\(29\) 3.12311i 0.579946i 0.957035 + 0.289973i \(0.0936464\pi\)
−0.957035 + 0.289973i \(0.906354\pi\)
\(30\) 0 0
\(31\) 4.71659i 0.847124i −0.905867 0.423562i \(-0.860780\pi\)
0.905867 0.423562i \(-0.139220\pi\)
\(32\) −1.21922 5.52390i −0.215530 0.976497i
\(33\) 1.12311 2.00000i 0.195508 0.348155i
\(34\) 1.56155 2.35829i 0.267804 0.404444i
\(35\) 0 0
\(36\) −3.49737 + 4.87529i −0.582894 + 0.812548i
\(37\) 5.12311i 0.842233i −0.907006 0.421117i \(-0.861638\pi\)
0.907006 0.421117i \(-0.138362\pi\)
\(38\) 1.56155 + 1.03399i 0.253317 + 0.167735i
\(39\) 7.73704 + 4.34475i 1.23892 + 0.695718i
\(40\) 0 0
\(41\) 1.12311i 0.175400i 0.996147 + 0.0876998i \(0.0279516\pi\)
−0.996147 + 0.0876998i \(0.972048\pi\)
\(42\) 3.37874 + 6.58200i 0.521351 + 1.01562i
\(43\) −7.73704 −1.17989 −0.589944 0.807445i \(-0.700850\pi\)
−0.589944 + 0.807445i \(0.700850\pi\)
\(44\) 1.03399 + 2.43845i 0.155879 + 0.367610i
\(45\) 0 0
\(46\) 0.438447 + 0.290319i 0.0646455 + 0.0428052i
\(47\) 3.02045i 0.440578i 0.975435 + 0.220289i \(0.0707000\pi\)
−0.975435 + 0.220289i \(0.929300\pi\)
\(48\) −1.98403 6.63804i −0.286371 0.958119i
\(49\) 2.12311 0.303301
\(50\) 0 0
\(51\) 1.69614 3.02045i 0.237507 0.422947i
\(52\) −9.43318 + 4.00000i −1.30815 + 0.554700i
\(53\) −12.2462 −1.68215 −0.841073 0.540921i \(-0.818076\pi\)
−0.841073 + 0.540921i \(0.818076\pi\)
\(54\) −3.83521 + 6.26827i −0.521906 + 0.853003i
\(55\) 0 0
\(56\) −8.39919 1.56155i −1.12239 0.208671i
\(57\) 2.00000 + 1.12311i 0.264906 + 0.148759i
\(58\) −3.68260 2.43845i −0.483549 0.320184i
\(59\) −14.1498 −1.84214 −0.921071 0.389394i \(-0.872685\pi\)
−0.921071 + 0.389394i \(0.872685\pi\)
\(60\) 0 0
\(61\) 3.12311 0.399873 0.199936 0.979809i \(-0.435926\pi\)
0.199936 + 0.979809i \(0.435926\pi\)
\(62\) 5.56155 + 3.68260i 0.706318 + 0.467691i
\(63\) 4.71659 + 7.73704i 0.594234 + 0.974775i
\(64\) 7.46543 + 2.87529i 0.933179 + 0.359411i
\(65\) 0 0
\(66\) 1.48140 + 2.88586i 0.182348 + 0.355225i
\(67\) −4.34475 −0.530796 −0.265398 0.964139i \(-0.585503\pi\)
−0.265398 + 0.964139i \(0.585503\pi\)
\(68\) 1.56155 + 3.68260i 0.189366 + 0.446581i
\(69\) 0.561553 + 0.315342i 0.0676030 + 0.0379627i
\(70\) 0 0
\(71\) −3.39228 −0.402590 −0.201295 0.979531i \(-0.564515\pi\)
−0.201295 + 0.979531i \(0.564515\pi\)
\(72\) −3.01802 7.93042i −0.355677 0.934609i
\(73\) 8.24621i 0.965146i 0.875856 + 0.482573i \(0.160298\pi\)
−0.875856 + 0.482573i \(0.839702\pi\)
\(74\) 6.04090 + 4.00000i 0.702240 + 0.464991i
\(75\) 0 0
\(76\) −2.43845 + 1.03399i −0.279709 + 0.118607i
\(77\) 4.00000 0.455842
\(78\) −11.1640 + 5.73082i −1.26407 + 0.648888i
\(79\) 8.10887i 0.912319i −0.889898 0.456160i \(-0.849225\pi\)
0.889898 0.456160i \(-0.150775\pi\)
\(80\) 0 0
\(81\) −4.12311 + 8.00000i −0.458123 + 0.888889i
\(82\) −1.32431 0.876894i −0.146245 0.0968368i
\(83\) 15.1022i 1.65769i −0.559481 0.828843i \(-0.689000\pi\)
0.559481 0.828843i \(-0.311000\pi\)
\(84\) −10.3992 1.15504i −1.13464 0.126025i
\(85\) 0 0
\(86\) 6.04090 9.12311i 0.651407 0.983770i
\(87\) −4.71659 2.64861i −0.505671 0.283961i
\(88\) −3.68260 0.684658i −0.392567 0.0729848i
\(89\) 10.2462i 1.08610i 0.839702 + 0.543048i \(0.182730\pi\)
−0.839702 + 0.543048i \(0.817270\pi\)
\(90\) 0 0
\(91\) 15.4741i 1.62212i
\(92\) −0.684658 + 0.290319i −0.0713806 + 0.0302679i
\(93\) 7.12311 + 4.00000i 0.738632 + 0.414781i
\(94\) −3.56155 2.35829i −0.367346 0.243240i
\(95\) 0 0
\(96\) 9.37632 + 2.84336i 0.956966 + 0.290199i
\(97\) 6.00000i 0.609208i 0.952479 + 0.304604i \(0.0985241\pi\)
−0.952479 + 0.304604i \(0.901476\pi\)
\(98\) −1.65767 + 2.50345i −0.167450 + 0.252887i
\(99\) 2.06798 + 3.39228i 0.207839 + 0.340937i
\(100\) 0 0
\(101\) 0.876894i 0.0872543i 0.999048 + 0.0436271i \(0.0138914\pi\)
−0.999048 + 0.0436271i \(0.986109\pi\)
\(102\) 2.23725 + 4.35829i 0.221520 + 0.431535i
\(103\) 9.80501 0.966117 0.483058 0.875588i \(-0.339526\pi\)
0.483058 + 0.875588i \(0.339526\pi\)
\(104\) 2.64861 14.2462i 0.259718 1.39696i
\(105\) 0 0
\(106\) 9.56155 14.4401i 0.928700 1.40255i
\(107\) 3.02045i 0.291998i −0.989285 0.145999i \(-0.953360\pi\)
0.989285 0.145999i \(-0.0466396\pi\)
\(108\) −4.39676 9.41639i −0.423079 0.906093i
\(109\) 0.876894 0.0839912 0.0419956 0.999118i \(-0.486628\pi\)
0.0419956 + 0.999118i \(0.486628\pi\)
\(110\) 0 0
\(111\) 7.73704 + 4.34475i 0.734367 + 0.412386i
\(112\) 8.39919 8.68466i 0.793649 0.820623i
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) −2.88586 + 1.48140i −0.270286 + 0.138746i
\(115\) 0 0
\(116\) 5.75058 2.43845i 0.533928 0.226404i
\(117\) −13.1231 + 8.00000i −1.21323 + 0.739600i
\(118\) 11.0478 16.6847i 1.01703 1.53595i
\(119\) 6.04090 0.553768
\(120\) 0 0
\(121\) −9.24621 −0.840565
\(122\) −2.43845 + 3.68260i −0.220767 + 0.333407i
\(123\) −1.69614 0.952473i −0.152936 0.0858816i
\(124\) −8.68466 + 3.68260i −0.779905 + 0.330707i
\(125\) 0 0
\(126\) −12.8057 0.479343i −1.14082 0.0427033i
\(127\) 15.1022 1.34011 0.670054 0.742313i \(-0.266271\pi\)
0.670054 + 0.742313i \(0.266271\pi\)
\(128\) −9.21922 + 6.55789i −0.814872 + 0.579641i
\(129\) 6.56155 11.6847i 0.577713 1.02878i
\(130\) 0 0
\(131\) −5.46026 −0.477065 −0.238532 0.971135i \(-0.576666\pi\)
−0.238532 + 0.971135i \(0.576666\pi\)
\(132\) −4.55950 0.506422i −0.396853 0.0440784i
\(133\) 4.00000i 0.346844i
\(134\) 3.39228 5.12311i 0.293049 0.442569i
\(135\) 0 0
\(136\) −5.56155 1.03399i −0.476899 0.0886637i
\(137\) 8.24621 0.704521 0.352261 0.935902i \(-0.385413\pi\)
0.352261 + 0.935902i \(0.385413\pi\)
\(138\) −0.810281 + 0.415942i −0.0689757 + 0.0354074i
\(139\) 17.5420i 1.48790i 0.668237 + 0.743949i \(0.267049\pi\)
−0.668237 + 0.743949i \(0.732951\pi\)
\(140\) 0 0
\(141\) −4.56155 2.56155i −0.384152 0.215722i
\(142\) 2.64861 4.00000i 0.222267 0.335673i
\(143\) 6.78456i 0.567354i
\(144\) 11.7075 + 2.63319i 0.975628 + 0.219433i
\(145\) 0 0
\(146\) −9.72350 6.43845i −0.804722 0.532850i
\(147\) −1.80054 + 3.20636i −0.148506 + 0.264457i
\(148\) −9.43318 + 4.00000i −0.775402 + 0.328798i
\(149\) 14.0000i 1.14692i −0.819232 0.573462i \(-0.805600\pi\)
0.819232 0.573462i \(-0.194400\pi\)
\(150\) 0 0
\(151\) 7.36520i 0.599372i −0.954038 0.299686i \(-0.903118\pi\)
0.954038 0.299686i \(-0.0968819\pi\)
\(152\) 0.684658 3.68260i 0.0555331 0.298698i
\(153\) 3.12311 + 5.12311i 0.252488 + 0.414179i
\(154\) −3.12311 + 4.71659i −0.251667 + 0.380074i
\(155\) 0 0
\(156\) 1.95910 17.6385i 0.156854 1.41221i
\(157\) 3.36932i 0.268901i 0.990920 + 0.134450i \(0.0429269\pi\)
−0.990920 + 0.134450i \(0.957073\pi\)
\(158\) 9.56155 + 6.33122i 0.760676 + 0.503684i
\(159\) 10.3857 18.4945i 0.823636 1.46671i
\(160\) 0 0
\(161\) 1.12311i 0.0885131i
\(162\) −6.21395 11.1080i −0.488214 0.872724i
\(163\) 15.6829 1.22838 0.614189 0.789159i \(-0.289483\pi\)
0.614189 + 0.789159i \(0.289483\pi\)
\(164\) 2.06798 0.876894i 0.161482 0.0684739i
\(165\) 0 0
\(166\) 17.8078 + 11.7915i 1.38215 + 0.915196i
\(167\) 9.06134i 0.701188i −0.936528 0.350594i \(-0.885980\pi\)
0.936528 0.350594i \(-0.114020\pi\)
\(168\) 9.48140 11.3604i 0.731506 0.876470i
\(169\) −13.2462 −1.01894
\(170\) 0 0
\(171\) −3.39228 + 2.06798i −0.259414 + 0.158142i
\(172\) 6.04090 + 14.2462i 0.460614 + 1.08626i
\(173\) 2.00000 0.152057 0.0760286 0.997106i \(-0.475776\pi\)
0.0760286 + 0.997106i \(0.475776\pi\)
\(174\) 6.80571 3.49358i 0.515939 0.264847i
\(175\) 0 0
\(176\) 3.68260 3.80776i 0.277587 0.287021i
\(177\) 12.0000 21.3693i 0.901975 1.60622i
\(178\) −12.0818 8.00000i −0.905569 0.599625i
\(179\) −10.0138 −0.748468 −0.374234 0.927334i \(-0.622094\pi\)
−0.374234 + 0.927334i \(0.622094\pi\)
\(180\) 0 0
\(181\) −12.2462 −0.910254 −0.455127 0.890427i \(-0.650406\pi\)
−0.455127 + 0.890427i \(0.650406\pi\)
\(182\) −18.2462 12.0818i −1.35250 0.895562i
\(183\) −2.64861 + 4.71659i −0.195791 + 0.348660i
\(184\) 0.192236 1.03399i 0.0141718 0.0762266i
\(185\) 0 0
\(186\) −10.2781 + 5.27608i −0.753630 + 0.386861i
\(187\) 2.64861 0.193686
\(188\) 5.56155 2.35829i 0.405618 0.171996i
\(189\) −15.6847 + 0.561553i −1.14089 + 0.0408470i
\(190\) 0 0
\(191\) 24.9073 1.80223 0.901113 0.433585i \(-0.142752\pi\)
0.901113 + 0.433585i \(0.142752\pi\)
\(192\) −10.6735 + 8.83603i −0.770297 + 0.637686i
\(193\) 0.246211i 0.0177227i −0.999961 0.00886134i \(-0.997179\pi\)
0.999961 0.00886134i \(-0.00282069\pi\)
\(194\) −7.07488 4.68466i −0.507947 0.336339i
\(195\) 0 0
\(196\) −1.65767 3.90928i −0.118405 0.279234i
\(197\) −4.24621 −0.302530 −0.151265 0.988493i \(-0.548335\pi\)
−0.151265 + 0.988493i \(0.548335\pi\)
\(198\) −5.61463 0.210167i −0.399014 0.0149359i
\(199\) 5.46026i 0.387067i −0.981094 0.193534i \(-0.938005\pi\)
0.981094 0.193534i \(-0.0619949\pi\)
\(200\) 0 0
\(201\) 3.68466 6.56155i 0.259896 0.462816i
\(202\) −1.03399 0.684658i −0.0727511 0.0481724i
\(203\) 9.43318i 0.662079i
\(204\) −6.88586 0.764811i −0.482107 0.0535475i
\(205\) 0 0
\(206\) −7.65552 + 11.5616i −0.533385 + 0.805532i
\(207\) −0.952473 + 0.580639i −0.0662014 + 0.0403572i
\(208\) 14.7304 + 14.2462i 1.02137 + 0.987797i
\(209\) 1.75379i 0.121312i
\(210\) 0 0
\(211\) 16.7984i 1.15645i −0.815878 0.578224i \(-0.803746\pi\)
0.815878 0.578224i \(-0.196254\pi\)
\(212\) 9.56155 + 22.5490i 0.656690 + 1.54867i
\(213\) 2.87689 5.12311i 0.197122 0.351029i
\(214\) 3.56155 + 2.35829i 0.243463 + 0.161210i
\(215\) 0 0
\(216\) 14.5362 + 2.16766i 0.989063 + 0.147491i
\(217\) 14.2462i 0.967096i
\(218\) −0.684658 + 1.03399i −0.0463709 + 0.0700305i
\(219\) −12.4536 6.99337i −0.841538 0.472568i
\(220\) 0 0
\(221\) 10.2462i 0.689235i
\(222\) −11.1640 + 5.73082i −0.749279 + 0.384628i
\(223\) −8.31768 −0.556993 −0.278496 0.960437i \(-0.589836\pi\)
−0.278496 + 0.960437i \(0.589836\pi\)
\(224\) 3.68260 + 16.6847i 0.246054 + 1.11479i
\(225\) 0 0
\(226\) −10.9309 + 16.5081i −0.727111 + 1.09810i
\(227\) 21.8868i 1.45268i 0.687337 + 0.726339i \(0.258780\pi\)
−0.687337 + 0.726339i \(0.741220\pi\)
\(228\) 0.506422 4.55950i 0.0335386 0.301960i
\(229\) 16.2462 1.07358 0.536790 0.843716i \(-0.319637\pi\)
0.536790 + 0.843716i \(0.319637\pi\)
\(230\) 0 0
\(231\) −3.39228 + 6.04090i −0.223196 + 0.397462i
\(232\) −1.61463 + 8.68466i −0.106005 + 0.570176i
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) 0.813033 21.7203i 0.0531497 1.41990i
\(235\) 0 0
\(236\) 11.0478 + 26.0540i 0.719151 + 1.69597i
\(237\) 12.2462 + 6.87689i 0.795477 + 0.446702i
\(238\) −4.71659 + 7.12311i −0.305731 + 0.461722i
\(239\) 17.3790 1.12416 0.562078 0.827084i \(-0.310002\pi\)
0.562078 + 0.827084i \(0.310002\pi\)
\(240\) 0 0
\(241\) 13.3693 0.861193 0.430597 0.902544i \(-0.358303\pi\)
0.430597 + 0.902544i \(0.358303\pi\)
\(242\) 7.21922 10.9026i 0.464069 0.700849i
\(243\) −8.58511 13.0114i −0.550735 0.834680i
\(244\) −2.43845 5.75058i −0.156106 0.368143i
\(245\) 0 0
\(246\) 2.44741 1.25633i 0.156041 0.0801008i
\(247\) −6.78456 −0.431691
\(248\) 2.43845 13.1158i 0.154842 0.832853i
\(249\) 22.8078 + 12.8078i 1.44538 + 0.811659i
\(250\) 0 0
\(251\) −18.7033 −1.18054 −0.590272 0.807205i \(-0.700979\pi\)
−0.590272 + 0.807205i \(0.700979\pi\)
\(252\) 10.5636 14.7256i 0.665445 0.927623i
\(253\) 0.492423i 0.0309583i
\(254\) −11.7915 + 17.8078i −0.739863 + 1.11736i
\(255\) 0 0
\(256\) −0.534565 15.9911i −0.0334103 0.999442i
\(257\) −30.4924 −1.90207 −0.951033 0.309091i \(-0.899975\pi\)
−0.951033 + 0.309091i \(0.899975\pi\)
\(258\) 8.65483 + 16.8601i 0.538826 + 1.04967i
\(259\) 15.4741i 0.961512i
\(260\) 0 0
\(261\) 8.00000 4.87689i 0.495188 0.301872i
\(262\) 4.26324 6.43845i 0.263384 0.397769i
\(263\) 23.7917i 1.46706i 0.679656 + 0.733531i \(0.262129\pi\)
−0.679656 + 0.733531i \(0.737871\pi\)
\(264\) 4.15709 4.98091i 0.255851 0.306554i
\(265\) 0 0
\(266\) −4.71659 3.12311i −0.289193 0.191490i
\(267\) −15.4741 8.68951i −0.946998 0.531789i
\(268\) 3.39228 + 8.00000i 0.207217 + 0.488678i
\(269\) 14.0000i 0.853595i 0.904347 + 0.426798i \(0.140358\pi\)
−0.904347 + 0.426798i \(0.859642\pi\)
\(270\) 0 0
\(271\) 15.3110i 0.930080i 0.885290 + 0.465040i \(0.153960\pi\)
−0.885290 + 0.465040i \(0.846040\pi\)
\(272\) 5.56155 5.75058i 0.337219 0.348680i
\(273\) −23.3693 13.1231i −1.41438 0.794246i
\(274\) −6.43845 + 9.72350i −0.388961 + 0.587418i
\(275\) 0 0
\(276\) 0.142191 1.28020i 0.00855892 0.0770589i
\(277\) 23.3693i 1.40413i −0.712115 0.702063i \(-0.752262\pi\)
0.712115 0.702063i \(-0.247738\pi\)
\(278\) −20.6847 13.6964i −1.24058 0.821457i
\(279\) −12.0818 + 7.36520i −0.723318 + 0.440943i
\(280\) 0 0
\(281\) 13.6155i 0.812234i −0.913821 0.406117i \(-0.866882\pi\)
0.913821 0.406117i \(-0.133118\pi\)
\(282\) 6.58200 3.37874i 0.391952 0.201201i
\(283\) −23.2111 −1.37976 −0.689879 0.723925i \(-0.742336\pi\)
−0.689879 + 0.723925i \(0.742336\pi\)
\(284\) 2.64861 + 6.24621i 0.157166 + 0.370644i
\(285\) 0 0
\(286\) −8.00000 5.29723i −0.473050 0.313232i
\(287\) 3.39228i 0.200240i
\(288\) −12.2459 + 11.7490i −0.721596 + 0.692315i
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) −9.06134 5.08842i −0.531185 0.298289i
\(292\) 15.1838 6.43845i 0.888562 0.376782i
\(293\) 2.49242 0.145609 0.0728044 0.997346i \(-0.476805\pi\)
0.0728044 + 0.997346i \(0.476805\pi\)
\(294\) −2.37495 4.62656i −0.138510 0.269826i
\(295\) 0 0
\(296\) 2.64861 14.2462i 0.153948 0.828044i
\(297\) −6.87689 + 0.246211i −0.399038 + 0.0142866i
\(298\) 16.5081 + 10.9309i 0.956286 + 0.633208i
\(299\) −1.90495 −0.110166
\(300\) 0 0
\(301\) 23.3693 1.34699
\(302\) 8.68466 + 5.75058i 0.499746 + 0.330908i
\(303\) −1.32431 0.743668i −0.0760794 0.0427226i
\(304\) 3.80776 + 3.68260i 0.218390 + 0.211212i
\(305\) 0 0
\(306\) −8.47934 0.317399i −0.484732 0.0181445i
\(307\) 11.1293 0.635184 0.317592 0.948227i \(-0.397126\pi\)
0.317592 + 0.948227i \(0.397126\pi\)
\(308\) −3.12311 7.36520i −0.177955 0.419671i
\(309\) −8.31534 + 14.8078i −0.473043 + 0.842384i
\(310\) 0 0
\(311\) −20.7713 −1.17783 −0.588916 0.808194i \(-0.700445\pi\)
−0.588916 + 0.808194i \(0.700445\pi\)
\(312\) 19.2688 + 16.0818i 1.09088 + 0.910452i
\(313\) 22.4924i 1.27135i −0.771958 0.635673i \(-0.780722\pi\)
0.771958 0.635673i \(-0.219278\pi\)
\(314\) −3.97292 2.63068i −0.224205 0.148458i
\(315\) 0 0
\(316\) −14.9309 + 6.33122i −0.839927 + 0.356159i
\(317\) 16.7386 0.940135 0.470068 0.882630i \(-0.344230\pi\)
0.470068 + 0.882630i \(0.344230\pi\)
\(318\) 13.6989 + 26.6863i 0.768196 + 1.49649i
\(319\) 4.13595i 0.231569i
\(320\) 0 0
\(321\) 4.56155 + 2.56155i 0.254601 + 0.142972i
\(322\) −1.32431 0.876894i −0.0738007 0.0488674i
\(323\) 2.64861i 0.147373i
\(324\) 17.9496 + 1.34567i 0.997202 + 0.0747592i
\(325\) 0 0
\(326\) −12.2448 + 18.4924i −0.678178 + 1.02420i
\(327\) −0.743668 + 1.32431i −0.0411249 + 0.0732343i
\(328\) −0.580639 + 3.12311i −0.0320604 + 0.172445i
\(329\) 9.12311i 0.502973i
\(330\) 0 0
\(331\) 3.22925i 0.177496i −0.996054 0.0887479i \(-0.971713\pi\)
0.996054 0.0887479i \(-0.0282865\pi\)
\(332\) −27.8078 + 11.7915i −1.52615 + 0.647141i
\(333\) −13.1231 + 8.00000i −0.719142 + 0.438397i
\(334\) 10.6847 + 7.07488i 0.584638 + 0.387120i
\(335\) 0 0
\(336\) 5.99267 + 20.0499i 0.326927 + 1.09381i
\(337\) 1.50758i 0.0821230i 0.999157 + 0.0410615i \(0.0130740\pi\)
−0.999157 + 0.0410615i \(0.986926\pi\)
\(338\) 10.3423 15.6192i 0.562549 0.849574i
\(339\) −11.8730 + 21.1431i −0.644852 + 1.14834i
\(340\) 0 0
\(341\) 6.24621i 0.338251i
\(342\) 0.210167 5.61463i 0.0113645 0.303604i
\(343\) 14.7304 0.795367
\(344\) −21.5150 4.00000i −1.16001 0.215666i
\(345\) 0 0
\(346\) −1.56155 + 2.35829i −0.0839496 + 0.126783i
\(347\) 22.6305i 1.21487i −0.794370 0.607434i \(-0.792199\pi\)
0.794370 0.607434i \(-0.207801\pi\)
\(348\) −1.19429 + 10.7526i −0.0640208 + 0.576402i
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) −0.952473 26.6034i −0.0508392 1.41998i
\(352\) 1.61463 + 7.31534i 0.0860599 + 0.389909i
\(353\) −20.2462 −1.07760 −0.538799 0.842435i \(-0.681122\pi\)
−0.538799 + 0.842435i \(0.681122\pi\)
\(354\) 15.8283 + 30.8344i 0.841262 + 1.63883i
\(355\) 0 0
\(356\) 18.8664 8.00000i 0.999915 0.423999i
\(357\) −5.12311 + 9.12311i −0.271144 + 0.482846i
\(358\) 7.81855 11.8078i 0.413223 0.624060i
\(359\) 21.5150 1.13552 0.567758 0.823195i \(-0.307811\pi\)
0.567758 + 0.823195i \(0.307811\pi\)
\(360\) 0 0
\(361\) 17.2462 0.907695
\(362\) 9.56155 14.4401i 0.502544 0.758954i
\(363\) 7.84144 13.9638i 0.411569 0.732912i
\(364\) 28.4924 12.0818i 1.49341 0.633258i
\(365\) 0 0
\(366\) −3.49358 6.80571i −0.182612 0.355740i
\(367\) −10.9663 −0.572436 −0.286218 0.958165i \(-0.592398\pi\)
−0.286218 + 0.958165i \(0.592398\pi\)
\(368\) 1.06913 + 1.03399i 0.0557323 + 0.0539003i
\(369\) 2.87689 1.75379i 0.149765 0.0912986i
\(370\) 0 0
\(371\) 36.9890 1.92038
\(372\) 1.80365 16.2389i 0.0935149 0.841947i
\(373\) 9.12311i 0.472377i −0.971707 0.236188i \(-0.924102\pi\)
0.971707 0.236188i \(-0.0758982\pi\)
\(374\) −2.06798 + 3.12311i −0.106932 + 0.161492i
\(375\) 0 0
\(376\) −1.56155 + 8.39919i −0.0805309 + 0.433155i
\(377\) 16.0000 0.824042
\(378\) 11.5841 18.9330i 0.595820 0.973807i
\(379\) 18.7033i 0.960725i −0.877070 0.480363i \(-0.840505\pi\)
0.877070 0.480363i \(-0.159495\pi\)
\(380\) 0 0
\(381\) −12.8078 + 22.8078i −0.656162 + 1.16848i
\(382\) −19.4470 + 29.3693i −0.994995 + 1.50266i
\(383\) 15.1022i 0.771688i 0.922564 + 0.385844i \(0.126090\pi\)
−0.922564 + 0.385844i \(0.873910\pi\)
\(384\) −2.08533 19.4846i −0.106417 0.994322i
\(385\) 0 0
\(386\) 0.290319 + 0.192236i 0.0147769 + 0.00978455i
\(387\) 12.0818 + 19.8188i 0.614152 + 1.00745i
\(388\) 11.0478 4.68466i 0.560867 0.237827i
\(389\) 20.7386i 1.05149i −0.850642 0.525745i \(-0.823787\pi\)
0.850642 0.525745i \(-0.176213\pi\)
\(390\) 0 0
\(391\) 0.743668i 0.0376089i
\(392\) 5.90388 + 1.09763i 0.298191 + 0.0554388i
\(393\) 4.63068 8.24621i 0.233587 0.415966i
\(394\) 3.31534 5.00691i 0.167024 0.252244i
\(395\) 0 0
\(396\) 4.63159 6.45638i 0.232746 0.324445i
\(397\) 14.8769i 0.746650i −0.927701 0.373325i \(-0.878218\pi\)
0.927701 0.373325i \(-0.121782\pi\)
\(398\) 6.43845 + 4.26324i 0.322730 + 0.213697i
\(399\) −6.04090 3.39228i −0.302423 0.169827i
\(400\) 0 0
\(401\) 24.0000i 1.19850i −0.800561 0.599251i \(-0.795465\pi\)
0.800561 0.599251i \(-0.204535\pi\)
\(402\) 4.86014 + 9.46786i 0.242402 + 0.472214i
\(403\) −24.1636 −1.20367
\(404\) 1.61463 0.684658i 0.0803307 0.0340630i
\(405\) 0 0
\(406\) 11.1231 + 7.36520i 0.552030 + 0.365529i
\(407\) 6.78456i 0.336298i
\(408\) 6.27814 7.52230i 0.310814 0.372409i
\(409\) −25.3693 −1.25443 −0.627216 0.778845i \(-0.715806\pi\)
−0.627216 + 0.778845i \(0.715806\pi\)
\(410\) 0 0
\(411\) −6.99337 + 12.4536i −0.344957 + 0.614292i
\(412\) −7.65552 18.0540i −0.377161 0.889456i
\(413\) 42.7386 2.10303
\(414\) 0.0590098 1.57645i 0.00290017 0.0774785i
\(415\) 0 0
\(416\) −28.2995 + 6.24621i −1.38750 + 0.306246i
\(417\) −26.4924 14.8769i −1.29734 0.728525i
\(418\) −2.06798 1.36932i −0.101148 0.0669755i
\(419\) 7.36520 0.359814 0.179907 0.983684i \(-0.442420\pi\)
0.179907 + 0.983684i \(0.442420\pi\)
\(420\) 0 0
\(421\) −25.3693 −1.23642 −0.618212 0.786011i \(-0.712143\pi\)
−0.618212 + 0.786011i \(0.712143\pi\)
\(422\) 19.8078 + 13.1158i 0.964227 + 0.638466i
\(423\) 7.73704 4.71659i 0.376188 0.229328i
\(424\) −34.0540 6.33122i −1.65381 0.307471i
\(425\) 0 0
\(426\) 3.79468 + 7.39228i 0.183853 + 0.358157i
\(427\) −9.43318 −0.456503
\(428\) −5.56155 + 2.35829i −0.268828 + 0.113992i
\(429\) −10.2462 5.75379i −0.494692 0.277796i
\(430\) 0 0
\(431\) 16.6354 0.801297 0.400648 0.916232i \(-0.368785\pi\)
0.400648 + 0.916232i \(0.368785\pi\)
\(432\) −13.9055 + 15.4479i −0.669030 + 0.743236i
\(433\) 18.0000i 0.865025i 0.901628 + 0.432512i \(0.142373\pi\)
−0.901628 + 0.432512i \(0.857627\pi\)
\(434\) −16.7984 11.1231i −0.806348 0.533926i
\(435\) 0 0
\(436\) −0.684658 1.61463i −0.0327892 0.0773266i
\(437\) −0.492423 −0.0235558
\(438\) 17.9697 9.22440i 0.858626 0.440759i
\(439\) 9.27015i 0.442440i −0.975224 0.221220i \(-0.928996\pi\)
0.975224 0.221220i \(-0.0710039\pi\)
\(440\) 0 0
\(441\) −3.31534 5.43845i −0.157873 0.258974i
\(442\) −12.0818 8.00000i −0.574672 0.380521i
\(443\) 16.5896i 0.788195i 0.919069 + 0.394097i \(0.128943\pi\)
−0.919069 + 0.394097i \(0.871057\pi\)
\(444\) 1.95910 17.6385i 0.0929750 0.837086i
\(445\) 0 0
\(446\) 6.49424 9.80776i 0.307511 0.464411i
\(447\) 21.1431 + 11.8730i 1.00004 + 0.561573i
\(448\) −22.5490 8.68466i −1.06534 0.410312i
\(449\) 27.3693i 1.29164i −0.763491 0.645819i \(-0.776516\pi\)
0.763491 0.645819i \(-0.223484\pi\)
\(450\) 0 0
\(451\) 1.48734i 0.0700359i
\(452\) −10.9309 25.7782i −0.514145 1.21250i
\(453\) 11.1231 + 6.24621i 0.522609 + 0.293473i
\(454\) −25.8078 17.0887i −1.21122 0.802012i
\(455\) 0 0
\(456\) 4.98091 + 4.15709i 0.233253 + 0.194674i
\(457\) 10.0000i 0.467780i 0.972263 + 0.233890i \(0.0751456\pi\)
−0.972263 + 0.233890i \(0.924854\pi\)
\(458\) −12.6847 + 19.1567i −0.592715 + 0.895133i
\(459\) −10.3857 + 0.371834i −0.484761 + 0.0173557i
\(460\) 0 0
\(461\) 41.8617i 1.94970i −0.222872 0.974848i \(-0.571543\pi\)
0.222872 0.974848i \(-0.428457\pi\)
\(462\) −4.47449 8.71659i −0.208172 0.405532i
\(463\) −3.02045 −0.140372 −0.0701861 0.997534i \(-0.522359\pi\)
−0.0701861 + 0.997534i \(0.522359\pi\)
\(464\) −8.97983 8.68466i −0.416878 0.403175i
\(465\) 0 0
\(466\) 7.80776 11.7915i 0.361688 0.546229i
\(467\) 2.27678i 0.105357i 0.998612 + 0.0526784i \(0.0167758\pi\)
−0.998612 + 0.0526784i \(0.983224\pi\)
\(468\) 24.9766 + 17.9174i 1.15454 + 0.828231i
\(469\) 13.1231 0.605969
\(470\) 0 0
\(471\) −5.08842 2.85742i −0.234462 0.131663i
\(472\) −39.3473 7.31534i −1.81111 0.336716i
\(473\) 10.2462 0.471121
\(474\) −17.6704 + 9.07077i −0.811629 + 0.416634i
\(475\) 0 0
\(476\) −4.71659 11.1231i −0.216184 0.509827i
\(477\) 19.1231 + 31.3693i 0.875587 + 1.43630i
\(478\) −13.5691 + 20.4924i −0.620637 + 0.937302i
\(479\) 25.6509 1.17202 0.586010 0.810304i \(-0.300698\pi\)
0.586010 + 0.810304i \(0.300698\pi\)
\(480\) 0 0
\(481\) −26.2462 −1.19672
\(482\) −10.4384 + 15.7644i −0.475458 + 0.718048i
\(483\) −1.69614 0.952473i −0.0771771 0.0433390i
\(484\) 7.21922 + 17.0251i 0.328147 + 0.773866i
\(485\) 0 0
\(486\) 22.0454 + 0.0358705i 0.999999 + 0.00162712i
\(487\) −25.2791 −1.14550 −0.572752 0.819728i \(-0.694124\pi\)
−0.572752 + 0.819728i \(0.694124\pi\)
\(488\) 8.68466 + 1.61463i 0.393136 + 0.0730907i
\(489\) −13.3002 + 23.6847i −0.601455 + 1.07106i
\(490\) 0 0
\(491\) −26.9752 −1.21737 −0.608687 0.793410i \(-0.708304\pi\)
−0.608687 + 0.793410i \(0.708304\pi\)
\(492\) −0.429482 + 3.86677i −0.0193625 + 0.174328i
\(493\) 6.24621i 0.281315i
\(494\) 5.29723 8.00000i 0.238334 0.359937i
\(495\) 0 0
\(496\) 13.5616 + 13.1158i 0.608932 + 0.588916i
\(497\) 10.2462 0.459605
\(498\) −32.9100 + 16.8937i −1.47473 + 0.757025i
\(499\) 32.2725i 1.44471i −0.691521 0.722357i \(-0.743059\pi\)
0.691521 0.722357i \(-0.256941\pi\)
\(500\) 0 0
\(501\) 13.6847 + 7.68466i 0.611385 + 0.343325i
\(502\) 14.6031 22.0540i 0.651769 0.984317i
\(503\) 14.3586i 0.640217i −0.947381 0.320109i \(-0.896281\pi\)
0.947381 0.320109i \(-0.103719\pi\)
\(504\) 9.11578 + 23.9534i 0.406049 + 1.06697i
\(505\) 0 0
\(506\) −0.580639 0.384472i −0.0258125 0.0170919i
\(507\) 11.2337 20.0047i 0.498907 0.888442i
\(508\) −11.7915 27.8078i −0.523162 1.23377i
\(509\) 11.1231i 0.493023i 0.969140 + 0.246511i \(0.0792843\pi\)
−0.969140 + 0.246511i \(0.920716\pi\)
\(510\) 0 0
\(511\) 24.9073i 1.10183i
\(512\) 19.2732 + 11.8551i 0.851763 + 0.523927i
\(513\) −0.246211 6.87689i −0.0108705 0.303622i
\(514\) 23.8078 35.9551i 1.05012 1.58591i
\(515\) 0 0
\(516\) −26.6381 2.95869i −1.17268 0.130249i
\(517\) 4.00000i 0.175920i
\(518\) −18.2462 12.0818i −0.801692 0.530843i
\(519\) −1.69614 + 3.02045i −0.0744523 + 0.132583i
\(520\) 0 0
\(521\) 38.2462i 1.67560i 0.545980 + 0.837798i \(0.316158\pi\)
−0.545980 + 0.837798i \(0.683842\pi\)
\(522\) −0.495635 + 13.2409i −0.0216933 + 0.579540i
\(523\) 35.2929 1.54325 0.771625 0.636077i \(-0.219444\pi\)
0.771625 + 0.636077i \(0.219444\pi\)
\(524\) 4.26324 + 10.0540i 0.186241 + 0.439210i
\(525\) 0 0
\(526\) −28.0540 18.5760i −1.22321 0.809954i
\(527\) 9.43318i 0.410916i
\(528\) 2.62747 + 8.79081i 0.114346 + 0.382571i
\(529\) 22.8617 0.993989
\(530\) 0 0
\(531\) 22.0956 + 36.2454i 0.958868 + 1.57292i
\(532\) 7.36520 3.12311i 0.319322 0.135404i
\(533\) 5.75379 0.249224
\(534\) 22.3280 11.4616i 0.966227 0.495994i
\(535\) 0 0
\(536\) −12.0818 2.24621i −0.521854 0.0970215i
\(537\) 8.49242 15.1231i 0.366475 0.652610i
\(538\) −16.5081 10.9309i −0.711713 0.471263i
\(539\) −2.81164 −0.121106
\(540\) 0 0
\(541\) −26.9848 −1.16017 −0.580085 0.814556i \(-0.696980\pi\)
−0.580085 + 0.814556i \(0.696980\pi\)
\(542\) −18.0540 11.9545i −0.775485 0.513490i
\(543\) 10.3857 18.4945i 0.445691 0.793676i
\(544\) 2.43845 + 11.0478i 0.104548 + 0.473671i
\(545\) 0 0
\(546\) 33.7203 17.3097i 1.44309 0.740785i
\(547\) 5.83209 0.249362 0.124681 0.992197i \(-0.460209\pi\)
0.124681 + 0.992197i \(0.460209\pi\)
\(548\) −6.43845 15.1838i −0.275037 0.648618i
\(549\) −4.87689 8.00000i −0.208141 0.341432i
\(550\) 0 0
\(551\) 4.13595 0.176197
\(552\) 1.39852 + 1.16721i 0.0595251 + 0.0496799i
\(553\) 24.4924i 1.04152i
\(554\) 27.5559 + 18.2462i 1.17074 + 0.775207i
\(555\) 0 0
\(556\) 32.3002 13.6964i 1.36983 0.580858i
\(557\) −36.2462 −1.53580 −0.767901 0.640569i \(-0.778699\pi\)
−0.767901 + 0.640569i \(0.778699\pi\)
\(558\) 0.748519 19.9968i 0.0316874 0.846532i
\(559\) 39.6377i 1.67649i
\(560\) 0 0
\(561\) −2.24621 + 4.00000i −0.0948351 + 0.168880i
\(562\) 16.0547 + 10.6307i 0.677227 + 0.448428i
\(563\) 7.90007i 0.332948i 0.986046 + 0.166474i \(0.0532382\pi\)
−0.986046 + 0.166474i \(0.946762\pi\)
\(564\) −1.15504 + 10.3992i −0.0486358 + 0.437885i
\(565\) 0 0
\(566\) 18.1227 27.3693i 0.761753 1.15042i
\(567\) 12.4536 24.1636i 0.523003 1.01478i
\(568\) −9.43318 1.75379i −0.395807 0.0735873i
\(569\) 13.1231i 0.550149i −0.961423 0.275075i \(-0.911297\pi\)
0.961423 0.275075i \(-0.0887026\pi\)
\(570\) 0 0
\(571\) 33.0161i 1.38168i 0.723007 + 0.690841i \(0.242759\pi\)
−0.723007 + 0.690841i \(0.757241\pi\)
\(572\) 12.4924 5.29723i 0.522334 0.221488i
\(573\) −21.1231 + 37.6155i −0.882430 + 1.57141i
\(574\) 4.00000 + 2.64861i 0.166957 + 0.110551i
\(575\) 0 0
\(576\) −4.29247 23.6130i −0.178853 0.983876i
\(577\) 32.2462i 1.34243i 0.741264 + 0.671214i \(0.234227\pi\)
−0.741264 + 0.671214i \(0.765773\pi\)
\(578\) 10.1501 15.3289i 0.422188 0.637599i
\(579\) 0.371834 + 0.208805i 0.0154529 + 0.00867762i
\(580\) 0 0
\(581\) 45.6155i 1.89245i
\(582\) 13.0749 6.71174i 0.541971 0.278210i
\(583\) 16.2177 0.671670
\(584\) −4.26324 + 22.9309i −0.176414 + 0.948886i
\(585\) 0 0
\(586\) −1.94602 + 2.93893i −0.0803895 + 0.121406i
\(587\) 1.85917i 0.0767362i 0.999264 + 0.0383681i \(0.0122159\pi\)
−0.999264 + 0.0383681i \(0.987784\pi\)
\(588\) 7.30970 + 0.811887i 0.301447 + 0.0334817i
\(589\) −6.24621 −0.257371
\(590\) 0 0
\(591\) 3.60109 6.41273i 0.148129 0.263784i
\(592\) 14.7304 + 14.2462i 0.605416 + 0.585516i
\(593\) 8.24621 0.338631 0.169316 0.985562i \(-0.445844\pi\)
0.169316 + 0.985562i \(0.445844\pi\)
\(594\) 5.07900 8.30111i 0.208394 0.340599i
\(595\) 0 0
\(596\) −25.7782 + 10.9309i −1.05592 + 0.447746i
\(597\) 8.24621 + 4.63068i 0.337495 + 0.189521i
\(598\) 1.48734 2.24621i 0.0608217 0.0918544i
\(599\) −44.1912 −1.80560 −0.902802 0.430056i \(-0.858494\pi\)
−0.902802 + 0.430056i \(0.858494\pi\)
\(600\) 0 0
\(601\) 23.1231 0.943211 0.471606 0.881810i \(-0.343675\pi\)
0.471606 + 0.881810i \(0.343675\pi\)
\(602\) −18.2462 + 27.5559i −0.743660 + 1.12309i
\(603\) 6.78456 + 11.1293i 0.276289 + 0.453221i
\(604\) −13.5616 + 5.75058i −0.551812 + 0.233988i
\(605\) 0 0
\(606\) 1.91088 0.980914i 0.0776243 0.0398469i
\(607\) 4.50778 0.182965 0.0914827 0.995807i \(-0.470839\pi\)
0.0914827 + 0.995807i \(0.470839\pi\)
\(608\) −7.31534 + 1.61463i −0.296676 + 0.0654817i
\(609\) 14.2462 + 8.00000i 0.577286 + 0.324176i
\(610\) 0 0
\(611\) 15.4741 0.626014
\(612\) 6.99473 9.75058i 0.282745 0.394144i
\(613\) 9.12311i 0.368479i 0.982881 + 0.184239i \(0.0589822\pi\)
−0.982881 + 0.184239i \(0.941018\pi\)
\(614\) −8.68951 + 13.1231i −0.350680 + 0.529605i
\(615\) 0 0
\(616\) 11.1231 + 2.06798i 0.448163 + 0.0833211i
\(617\) 14.0000 0.563619 0.281809 0.959470i \(-0.409065\pi\)
0.281809 + 0.959470i \(0.409065\pi\)
\(618\) −10.9681 21.3666i −0.441202 0.859489i
\(619\) 28.1365i 1.13090i 0.824782 + 0.565451i \(0.191298\pi\)
−0.824782 + 0.565451i \(0.808702\pi\)
\(620\) 0 0
\(621\) −0.0691303 1.93087i −0.00277410 0.0774831i
\(622\) 16.2177 24.4924i 0.650272 0.982057i
\(623\) 30.9481i 1.23991i
\(624\) −34.0074 + 10.1644i −1.36139 + 0.406902i
\(625\) 0 0
\(626\) 26.5219 + 17.5616i 1.06003 + 0.701901i
\(627\) −2.64861 1.48734i −0.105775 0.0593985i
\(628\) 6.20393 2.63068i 0.247564 0.104976i
\(629\) 10.2462i 0.408543i
\(630\) 0 0
\(631\) 39.8007i 1.58444i 0.610235 + 0.792220i \(0.291075\pi\)
−0.610235 + 0.792220i \(0.708925\pi\)
\(632\) 4.19224 22.5490i 0.166758 0.896949i
\(633\) 25.3693 + 14.2462i 1.00834 + 0.566236i
\(634\) −13.0691 + 19.7373i −0.519041 + 0.783869i
\(635\) 0 0
\(636\) −42.1628 4.68302i −1.67187 0.185694i
\(637\) 10.8769i 0.430958i
\(638\) 4.87689 + 3.22925i 0.193078 + 0.127847i
\(639\) 5.29723 + 8.68951i 0.209555 + 0.343752i
\(640\) 0 0
\(641\) 6.38447i 0.252171i 0.992019 + 0.126086i \(0.0402414\pi\)
−0.992019 + 0.126086i \(0.959759\pi\)
\(642\) −6.58200 + 3.37874i −0.259771 + 0.133348i
\(643\) −3.60109 −0.142013 −0.0710065 0.997476i \(-0.522621\pi\)
−0.0710065 + 0.997476i \(0.522621\pi\)
\(644\) 2.06798 0.876894i 0.0814896 0.0345545i
\(645\) 0 0
\(646\) −3.12311 2.06798i −0.122877 0.0813634i
\(647\) 36.6172i 1.43957i −0.694197 0.719786i \(-0.744240\pi\)
0.694197 0.719786i \(-0.255760\pi\)
\(648\) −15.6014 + 20.1146i −0.612880 + 0.790176i
\(649\) 18.7386 0.735556
\(650\) 0 0
\(651\) −21.5150 12.0818i −0.843238 0.473523i
\(652\) −12.2448 28.8769i −0.479544 1.13091i
\(653\) −38.9848 −1.52559 −0.762797 0.646638i \(-0.776175\pi\)
−0.762797 + 0.646638i \(0.776175\pi\)
\(654\) −0.980914 1.91088i −0.0383568 0.0747214i
\(655\) 0 0
\(656\) −3.22925 3.12311i −0.126081 0.121937i
\(657\) 21.1231 12.8769i 0.824091 0.502375i
\(658\) 10.7575 + 7.12311i 0.419370 + 0.277688i
\(659\) 24.7442 0.963898 0.481949 0.876199i \(-0.339929\pi\)
0.481949 + 0.876199i \(0.339929\pi\)
\(660\) 0 0
\(661\) 28.1080 1.09327 0.546636 0.837370i \(-0.315908\pi\)
0.546636 + 0.837370i \(0.315908\pi\)
\(662\) 3.80776 + 2.52132i 0.147993 + 0.0979940i
\(663\) −15.4741 8.68951i −0.600963 0.337473i
\(664\) 7.80776 41.9960i 0.303000 1.62976i
\(665\) 0 0
\(666\) 0.813033 21.7203i 0.0315044 0.841644i
\(667\) 1.16128 0.0449648
\(668\) −16.6847 + 7.07488i −0.645549 + 0.273735i
\(669\) 7.05398 12.5616i 0.272722 0.485658i
\(670\) 0 0
\(671\) −4.13595 −0.159667
\(672\) −28.3207 8.58821i −1.09249 0.331298i
\(673\) 22.4924i 0.867019i 0.901149 + 0.433510i \(0.142725\pi\)
−0.901149 + 0.433510i \(0.857275\pi\)
\(674\) −1.77766 1.17708i −0.0684727 0.0453395i
\(675\) 0 0
\(676\) 10.3423 + 24.3903i 0.397782 + 0.938087i
\(677\) −1.50758 −0.0579409 −0.0289705 0.999580i \(-0.509223\pi\)
−0.0289705 + 0.999580i \(0.509223\pi\)
\(678\) −15.6607 30.5081i −0.601446 1.17166i
\(679\) 18.1227i 0.695485i
\(680\) 0 0
\(681\) −33.0540 18.5616i −1.26663 0.711280i
\(682\) −7.36520 4.87689i −0.282028 0.186746i
\(683\) 7.90007i 0.302288i −0.988512 0.151144i \(-0.951704\pi\)
0.988512 0.151144i \(-0.0482957\pi\)
\(684\) 6.45638 + 4.63159i 0.246866 + 0.177093i
\(685\) 0 0
\(686\) −11.5012 + 17.3693i −0.439116 + 0.663164i
\(687\) −13.7779 + 24.5354i −0.525661 + 0.936085i
\(688\) 21.5150 22.2462i 0.820251 0.848129i
\(689\) 62.7386i 2.39015i
\(690\) 0 0
\(691\) 18.2857i 0.695621i −0.937565 0.347811i \(-0.886925\pi\)
0.937565 0.347811i \(-0.113075\pi\)
\(692\) −1.56155 3.68260i −0.0593613 0.139991i
\(693\) −6.24621 10.2462i −0.237274 0.389221i
\(694\) 26.6847 + 17.6693i 1.01294 + 0.670719i
\(695\) 0 0
\(696\) −11.7465 9.80365i −0.445249 0.371606i
\(697\) 2.24621i 0.0850813i
\(698\) −10.9309 + 16.5081i −0.413740 + 0.624839i
\(699\) 8.48071 15.1022i 0.320770 0.571219i
\(700\) 0 0
\(701\) 17.5076i 0.661252i −0.943762 0.330626i \(-0.892740\pi\)
0.943762 0.330626i \(-0.107260\pi\)
\(702\) 32.1130 + 19.6482i 1.21203 + 0.741573i
\(703\) −6.78456 −0.255885
\(704\) −9.88653 3.80776i −0.372612 0.143511i
\(705\) 0 0
\(706\) 15.8078 23.8733i 0.594933 0.898482i
\(707\) 2.64861i 0.0996114i
\(708\) −48.7167 5.41095i −1.83088 0.203356i
\(709\) −6.49242 −0.243828 −0.121914 0.992541i \(-0.538903\pi\)
−0.121914 + 0.992541i \(0.538903\pi\)
\(710\) 0 0
\(711\) −20.7713 + 12.6624i −0.778985 + 0.474878i
\(712\) −5.29723 + 28.4924i −0.198522 + 1.06780i
\(713\) −1.75379 −0.0656799
\(714\) −6.75748 13.1640i −0.252893 0.492650i
\(715\) 0 0
\(716\) 7.81855 + 18.4384i 0.292193 + 0.689077i
\(717\) −14.7386 + 26.2462i −0.550424 + 0.980183i
\(718\) −16.7984 + 25.3693i −0.626910 + 0.946774i
\(719\) −30.9481 −1.15417 −0.577086 0.816684i \(-0.695810\pi\)
−0.577086 + 0.816684i \(0.695810\pi\)
\(720\) 0 0
\(721\) −29.6155 −1.10294
\(722\) −13.4654 + 20.3358i −0.501132 + 0.756821i
\(723\) −11.3381 + 20.1907i −0.421669 + 0.750899i
\(724\) 9.56155 + 22.5490i 0.355352 + 0.838025i
\(725\) 0 0
\(726\) 10.3430 + 20.1489i 0.383866 + 0.747794i
\(727\) 10.9663 0.406717 0.203359 0.979104i \(-0.434814\pi\)
0.203359 + 0.979104i \(0.434814\pi\)
\(728\) −8.00000 + 43.0299i −0.296500 + 1.59480i
\(729\) 26.9309 1.93087i 0.997440 0.0715137i
\(730\) 0 0
\(731\) 15.4741 0.572329
\(732\) 10.7526 + 1.19429i 0.397429 + 0.0441423i
\(733\) 26.8769i 0.992721i −0.868117 0.496360i \(-0.834669\pi\)
0.868117 0.496360i \(-0.165331\pi\)
\(734\) 8.56222 12.9309i 0.316037 0.477287i
\(735\) 0 0
\(736\) −2.05398 + 0.453349i −0.0757105 + 0.0167107i
\(737\) 5.75379 0.211944
\(738\) −0.178236 + 4.76160i −0.00656096 + 0.175277i
\(739\) 26.9752i 0.992300i −0.868237 0.496150i \(-0.834747\pi\)
0.868237 0.496150i \(-0.165253\pi\)
\(740\) 0 0
\(741\) 5.75379 10.2462i 0.211371 0.376404i
\(742\) −28.8802 + 43.6155i −1.06022 + 1.60118i
\(743\) 9.80501i 0.359711i 0.983693 + 0.179856i \(0.0575630\pi\)
−0.983693 + 0.179856i \(0.942437\pi\)
\(744\) 17.7398 + 14.8057i 0.650372 + 0.542804i
\(745\) 0 0
\(746\) 10.7575 + 7.12311i 0.393860 + 0.260795i
\(747\) −38.6852 + 23.5829i −1.41542 + 0.862855i
\(748\) −2.06798 4.87689i −0.0756127 0.178317i
\(749\) 9.12311i 0.333351i
\(750\) 0 0
\(751\) 11.5012i 0.419683i −0.977735 0.209842i \(-0.932705\pi\)
0.977735 0.209842i \(-0.0672948\pi\)
\(752\) −8.68466 8.39919i −0.316697 0.306287i
\(753\) 15.8617 28.2462i 0.578034 1.02935i
\(754\) −12.4924 + 18.8664i −0.454947 + 0.687072i
\(755\) 0 0
\(756\) 13.2802 + 28.4417i 0.482996 + 1.03442i
\(757\) 10.8769i 0.395327i −0.980270 0.197664i \(-0.936665\pi\)
0.980270 0.197664i \(-0.0633354\pi\)
\(758\) 22.0540 + 14.6031i 0.801036 + 0.530409i
\(759\) −0.743668 0.417609i −0.0269934 0.0151582i
\(760\) 0 0
\(761\) 31.2311i 1.13212i 0.824362 + 0.566062i \(0.191534\pi\)
−0.824362 + 0.566062i \(0.808466\pi\)
\(762\) −16.8937 32.9100i −0.611995 1.19220i
\(763\) −2.64861 −0.0958863
\(764\) −19.4470 45.8617i −0.703568 1.65922i
\(765\) 0 0
\(766\) −17.8078 11.7915i −0.643421 0.426043i
\(767\) 72.4908i 2.61749i
\(768\) 24.6034 + 12.7542i 0.887800 + 0.460229i
\(769\) −38.9848 −1.40583 −0.702915 0.711274i \(-0.748118\pi\)
−0.702915 + 0.711274i \(0.748118\pi\)
\(770\) 0 0
\(771\) 25.8597 46.0504i 0.931315 1.65846i
\(772\) −0.453349 + 0.192236i −0.0163164 + 0.00691872i
\(773\) −0.246211 −0.00885560 −0.00442780 0.999990i \(-0.501409\pi\)
−0.00442780 + 0.999990i \(0.501409\pi\)
\(774\) −32.8025 1.22786i −1.17906 0.0441346i
\(775\) 0 0
\(776\) −3.10196 + 16.6847i −0.111354 + 0.598944i
\(777\) −23.3693 13.1231i −0.838370 0.470789i
\(778\) 24.4539 + 16.1922i 0.876715 + 0.580520i
\(779\) 1.48734 0.0532894
\(780\) 0 0
\(781\) 4.49242 0.160752
\(782\) −0.876894 0.580639i −0.0313577 0.0207636i
\(783\) 0.580639 + 16.2177i 0.0207503 + 0.579575i
\(784\) −5.90388 + 6.10454i −0.210853 + 0.218019i
\(785\)