Properties

Label 300.2.e.c.251.4
Level $300$
Weight $2$
Character 300.251
Analytic conductor $2.396$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 300.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.39551206064\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.342102016.5
Defining polynomial: \(x^{8} + x^{6} + 4 x^{4} + 4 x^{2} + 16\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.4
Root \(-0.599676 - 1.28078i\) of defining polynomial
Character \(\chi\) \(=\) 300.251
Dual form 300.2.e.c.251.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.599676 + 1.28078i) q^{2} +(-0.468213 - 1.66757i) q^{3} +(-1.28078 - 1.53610i) q^{4} +(2.41656 + 0.400324i) q^{6} -0.936426i q^{7} +(2.73546 - 0.719224i) q^{8} +(-2.56155 + 1.56155i) q^{9} +O(q^{10})\) \(q+(-0.599676 + 1.28078i) q^{2} +(-0.468213 - 1.66757i) q^{3} +(-1.28078 - 1.53610i) q^{4} +(2.41656 + 0.400324i) q^{6} -0.936426i q^{7} +(2.73546 - 0.719224i) q^{8} +(-2.56155 + 1.56155i) q^{9} -4.27156 q^{11} +(-1.96188 + 2.85500i) q^{12} -3.12311 q^{13} +(1.19935 + 0.561553i) q^{14} +(-0.719224 + 3.93481i) q^{16} -2.00000i q^{17} +(-0.463897 - 4.21720i) q^{18} -4.27156i q^{19} +(-1.56155 + 0.438447i) q^{21} +(2.56155 - 5.47091i) q^{22} -7.60669 q^{23} +(-2.48013 - 4.22480i) q^{24} +(1.87285 - 4.00000i) q^{26} +(3.80335 + 3.54042i) q^{27} +(-1.43845 + 1.19935i) q^{28} -5.12311i q^{29} -2.39871i q^{31} +(-4.60831 - 3.28078i) q^{32} +(2.00000 + 7.12311i) q^{33} +(2.56155 + 1.19935i) q^{34} +(5.67948 + 1.93481i) q^{36} +3.12311 q^{37} +(5.47091 + 2.56155i) q^{38} +(1.46228 + 5.20798i) q^{39} +7.12311i q^{41} +(0.374874 - 2.26293i) q^{42} -1.46228i q^{43} +(5.47091 + 6.56155i) q^{44} +(4.56155 - 9.74247i) q^{46} +0.936426 q^{47} +(6.89830 - 0.642976i) q^{48} +6.12311 q^{49} +(-3.33513 + 0.936426i) q^{51} +(4.00000 + 4.79741i) q^{52} -4.24621i q^{53} +(-6.81526 + 2.74813i) q^{54} +(-0.673500 - 2.56155i) q^{56} +(-7.12311 + 2.00000i) q^{57} +(6.56155 + 3.07221i) q^{58} -7.19612 q^{59} -5.12311 q^{61} +(3.07221 + 1.43845i) q^{62} +(1.46228 + 2.39871i) q^{63} +(6.96543 - 3.93481i) q^{64} +(-10.3225 - 1.71001i) q^{66} -5.20798i q^{67} +(-3.07221 + 2.56155i) q^{68} +(3.56155 + 12.6847i) q^{69} +6.67026 q^{71} +(-5.88391 + 6.11389i) q^{72} +8.24621 q^{73} +(-1.87285 + 4.00000i) q^{74} +(-6.56155 + 5.47091i) q^{76} +4.00000i q^{77} +(-7.54716 - 1.25025i) q^{78} +9.06897i q^{79} +(4.12311 - 8.00000i) q^{81} +(-9.12311 - 4.27156i) q^{82} +4.68213 q^{83} +(2.67350 + 1.83715i) q^{84} +(1.87285 + 0.876894i) q^{86} +(-8.54312 + 2.39871i) q^{87} +(-11.6847 + 3.07221i) q^{88} -6.24621i q^{89} +2.92456i q^{91} +(9.74247 + 11.6847i) q^{92} +(-4.00000 + 1.12311i) q^{93} +(-0.561553 + 1.19935i) q^{94} +(-3.31324 + 9.22076i) q^{96} +6.00000 q^{97} +(-3.67188 + 7.84233i) q^{98} +(10.9418 - 6.67026i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 2q^{4} - 6q^{6} - 4q^{9} + O(q^{10}) \) \( 8q - 2q^{4} - 6q^{6} - 4q^{9} - 4q^{12} + 8q^{13} - 14q^{16} - 16q^{18} + 4q^{21} + 4q^{22} - 2q^{24} - 28q^{28} + 16q^{33} + 4q^{34} + 18q^{36} - 8q^{37} + 12q^{42} + 20q^{46} + 36q^{48} + 16q^{49} + 32q^{52} - 10q^{54} - 24q^{57} + 36q^{58} - 8q^{61} - 2q^{64} - 40q^{66} + 12q^{69} - 24q^{72} - 36q^{76} - 40q^{78} - 40q^{82} + 16q^{84} - 44q^{88} - 32q^{93} + 12q^{94} + 42q^{96} + 48q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.599676 + 1.28078i −0.424035 + 0.905646i
\(3\) −0.468213 1.66757i −0.270323 0.962770i
\(4\) −1.28078 1.53610i −0.640388 0.768051i
\(5\) 0 0
\(6\) 2.41656 + 0.400324i 0.986555 + 0.163431i
\(7\) 0.936426i 0.353936i −0.984217 0.176968i \(-0.943371\pi\)
0.984217 0.176968i \(-0.0566289\pi\)
\(8\) 2.73546 0.719224i 0.967130 0.254284i
\(9\) −2.56155 + 1.56155i −0.853851 + 0.520518i
\(10\) 0 0
\(11\) −4.27156 −1.28792 −0.643962 0.765058i \(-0.722710\pi\)
−0.643962 + 0.765058i \(0.722710\pi\)
\(12\) −1.96188 + 2.85500i −0.566345 + 0.824168i
\(13\) −3.12311 −0.866194 −0.433097 0.901347i \(-0.642579\pi\)
−0.433097 + 0.901347i \(0.642579\pi\)
\(14\) 1.19935 + 0.561553i 0.320541 + 0.150081i
\(15\) 0 0
\(16\) −0.719224 + 3.93481i −0.179806 + 0.983702i
\(17\) 2.00000i 0.485071i −0.970143 0.242536i \(-0.922021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) −0.463897 4.21720i −0.109342 0.994004i
\(19\) 4.27156i 0.979963i −0.871733 0.489981i \(-0.837004\pi\)
0.871733 0.489981i \(-0.162996\pi\)
\(20\) 0 0
\(21\) −1.56155 + 0.438447i −0.340759 + 0.0956770i
\(22\) 2.56155 5.47091i 0.546125 1.16640i
\(23\) −7.60669 −1.58610 −0.793052 0.609154i \(-0.791509\pi\)
−0.793052 + 0.609154i \(0.791509\pi\)
\(24\) −2.48013 4.22480i −0.506254 0.862384i
\(25\) 0 0
\(26\) 1.87285 4.00000i 0.367297 0.784465i
\(27\) 3.80335 + 3.54042i 0.731954 + 0.681354i
\(28\) −1.43845 + 1.19935i −0.271841 + 0.226656i
\(29\) 5.12311i 0.951337i −0.879625 0.475668i \(-0.842206\pi\)
0.879625 0.475668i \(-0.157794\pi\)
\(30\) 0 0
\(31\) 2.39871i 0.430820i −0.976524 0.215410i \(-0.930891\pi\)
0.976524 0.215410i \(-0.0691088\pi\)
\(32\) −4.60831 3.28078i −0.814642 0.579965i
\(33\) 2.00000 + 7.12311i 0.348155 + 1.23997i
\(34\) 2.56155 + 1.19935i 0.439303 + 0.205687i
\(35\) 0 0
\(36\) 5.67948 + 1.93481i 0.946580 + 0.322468i
\(37\) 3.12311 0.513435 0.256718 0.966486i \(-0.417359\pi\)
0.256718 + 0.966486i \(0.417359\pi\)
\(38\) 5.47091 + 2.56155i 0.887499 + 0.415539i
\(39\) 1.46228 + 5.20798i 0.234152 + 0.833945i
\(40\) 0 0
\(41\) 7.12311i 1.11244i 0.831034 + 0.556221i \(0.187749\pi\)
−0.831034 + 0.556221i \(0.812251\pi\)
\(42\) 0.374874 2.26293i 0.0578442 0.349177i
\(43\) 1.46228i 0.222995i −0.993765 0.111498i \(-0.964435\pi\)
0.993765 0.111498i \(-0.0355648\pi\)
\(44\) 5.47091 + 6.56155i 0.824771 + 0.989191i
\(45\) 0 0
\(46\) 4.56155 9.74247i 0.672564 1.43645i
\(47\) 0.936426 0.136592 0.0682959 0.997665i \(-0.478244\pi\)
0.0682959 + 0.997665i \(0.478244\pi\)
\(48\) 6.89830 0.642976i 0.995684 0.0928056i
\(49\) 6.12311 0.874729
\(50\) 0 0
\(51\) −3.33513 + 0.936426i −0.467012 + 0.131126i
\(52\) 4.00000 + 4.79741i 0.554700 + 0.665281i
\(53\) 4.24621i 0.583262i −0.956531 0.291631i \(-0.905802\pi\)
0.956531 0.291631i \(-0.0941979\pi\)
\(54\) −6.81526 + 2.74813i −0.927440 + 0.373973i
\(55\) 0 0
\(56\) −0.673500 2.56155i −0.0900002 0.342302i
\(57\) −7.12311 + 2.00000i −0.943478 + 0.264906i
\(58\) 6.56155 + 3.07221i 0.861574 + 0.403400i
\(59\) −7.19612 −0.936855 −0.468427 0.883502i \(-0.655179\pi\)
−0.468427 + 0.883502i \(0.655179\pi\)
\(60\) 0 0
\(61\) −5.12311 −0.655946 −0.327973 0.944687i \(-0.606366\pi\)
−0.327973 + 0.944687i \(0.606366\pi\)
\(62\) 3.07221 + 1.43845i 0.390171 + 0.182683i
\(63\) 1.46228 + 2.39871i 0.184230 + 0.302209i
\(64\) 6.96543 3.93481i 0.870679 0.491851i
\(65\) 0 0
\(66\) −10.3225 1.71001i −1.27061 0.210487i
\(67\) 5.20798i 0.636257i −0.948048 0.318128i \(-0.896946\pi\)
0.948048 0.318128i \(-0.103054\pi\)
\(68\) −3.07221 + 2.56155i −0.372560 + 0.310634i
\(69\) 3.56155 + 12.6847i 0.428761 + 1.52705i
\(70\) 0 0
\(71\) 6.67026 0.791615 0.395807 0.918334i \(-0.370465\pi\)
0.395807 + 0.918334i \(0.370465\pi\)
\(72\) −5.88391 + 6.11389i −0.693425 + 0.720529i
\(73\) 8.24621 0.965146 0.482573 0.875856i \(-0.339702\pi\)
0.482573 + 0.875856i \(0.339702\pi\)
\(74\) −1.87285 + 4.00000i −0.217715 + 0.464991i
\(75\) 0 0
\(76\) −6.56155 + 5.47091i −0.752662 + 0.627557i
\(77\) 4.00000i 0.455842i
\(78\) −7.54716 1.25025i −0.854547 0.141563i
\(79\) 9.06897i 1.02034i 0.860074 + 0.510169i \(0.170417\pi\)
−0.860074 + 0.510169i \(0.829583\pi\)
\(80\) 0 0
\(81\) 4.12311 8.00000i 0.458123 0.888889i
\(82\) −9.12311 4.27156i −1.00748 0.471715i
\(83\) 4.68213 0.513931 0.256965 0.966421i \(-0.417277\pi\)
0.256965 + 0.966421i \(0.417277\pi\)
\(84\) 2.67350 + 1.83715i 0.291703 + 0.200450i
\(85\) 0 0
\(86\) 1.87285 + 0.876894i 0.201955 + 0.0945580i
\(87\) −8.54312 + 2.39871i −0.915918 + 0.257168i
\(88\) −11.6847 + 3.07221i −1.24559 + 0.327498i
\(89\) 6.24621i 0.662097i −0.943614 0.331049i \(-0.892598\pi\)
0.943614 0.331049i \(-0.107402\pi\)
\(90\) 0 0
\(91\) 2.92456i 0.306577i
\(92\) 9.74247 + 11.6847i 1.01572 + 1.21821i
\(93\) −4.00000 + 1.12311i −0.414781 + 0.116461i
\(94\) −0.561553 + 1.19935i −0.0579198 + 0.123704i
\(95\) 0 0
\(96\) −3.31324 + 9.22076i −0.338156 + 0.941090i
\(97\) 6.00000 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(98\) −3.67188 + 7.84233i −0.370916 + 0.792195i
\(99\) 10.9418 6.67026i 1.09969 0.670387i
\(100\) 0 0
\(101\) 9.12311i 0.907783i −0.891057 0.453891i \(-0.850035\pi\)
0.891057 0.453891i \(-0.149965\pi\)
\(102\) 0.800647 4.83311i 0.0792759 0.478549i
\(103\) 12.4041i 1.22221i 0.791549 + 0.611106i \(0.209275\pi\)
−0.791549 + 0.611106i \(0.790725\pi\)
\(104\) −8.54312 + 2.24621i −0.837722 + 0.220259i
\(105\) 0 0
\(106\) 5.43845 + 2.54635i 0.528229 + 0.247324i
\(107\) −0.936426 −0.0905278 −0.0452639 0.998975i \(-0.514413\pi\)
−0.0452639 + 0.998975i \(0.514413\pi\)
\(108\) 0.567212 10.3768i 0.0545800 0.998509i
\(109\) −9.12311 −0.873835 −0.436918 0.899502i \(-0.643930\pi\)
−0.436918 + 0.899502i \(0.643930\pi\)
\(110\) 0 0
\(111\) −1.46228 5.20798i −0.138793 0.494320i
\(112\) 3.68466 + 0.673500i 0.348167 + 0.0636398i
\(113\) 14.0000i 1.31701i −0.752577 0.658505i \(-0.771189\pi\)
0.752577 0.658505i \(-0.228811\pi\)
\(114\) 1.71001 10.3225i 0.160157 0.966787i
\(115\) 0 0
\(116\) −7.86962 + 6.56155i −0.730676 + 0.609225i
\(117\) 8.00000 4.87689i 0.739600 0.450869i
\(118\) 4.31534 9.21662i 0.397259 0.848458i
\(119\) −1.87285 −0.171684
\(120\) 0 0
\(121\) 7.24621 0.658746
\(122\) 3.07221 6.56155i 0.278144 0.594055i
\(123\) 11.8782 3.33513i 1.07103 0.300719i
\(124\) −3.68466 + 3.07221i −0.330892 + 0.275892i
\(125\) 0 0
\(126\) −3.94910 + 0.434406i −0.351814 + 0.0386999i
\(127\) 4.68213i 0.415472i 0.978185 + 0.207736i \(0.0666095\pi\)
−0.978185 + 0.207736i \(0.933391\pi\)
\(128\) 0.862603 + 11.2808i 0.0762440 + 0.997089i
\(129\) −2.43845 + 0.684658i −0.214693 + 0.0602808i
\(130\) 0 0
\(131\) 17.6121 1.53878 0.769388 0.638782i \(-0.220562\pi\)
0.769388 + 0.638782i \(0.220562\pi\)
\(132\) 8.38027 12.1953i 0.729409 1.06147i
\(133\) −4.00000 −0.346844
\(134\) 6.67026 + 3.12311i 0.576223 + 0.269795i
\(135\) 0 0
\(136\) −1.43845 5.47091i −0.123346 0.469127i
\(137\) 8.24621i 0.704521i −0.935902 0.352261i \(-0.885413\pi\)
0.935902 0.352261i \(-0.114587\pi\)
\(138\) −18.3820 3.04514i −1.56478 0.259219i
\(139\) 13.8664i 1.17613i −0.808813 0.588066i \(-0.799890\pi\)
0.808813 0.588066i \(-0.200110\pi\)
\(140\) 0 0
\(141\) −0.438447 1.56155i −0.0369239 0.131506i
\(142\) −4.00000 + 8.54312i −0.335673 + 0.716922i
\(143\) 13.3405 1.11559
\(144\) −4.30208 11.2023i −0.358507 0.933527i
\(145\) 0 0
\(146\) −4.94506 + 10.5616i −0.409256 + 0.874080i
\(147\) −2.86692 10.2107i −0.236459 0.842163i
\(148\) −4.00000 4.79741i −0.328798 0.394345i
\(149\) 14.0000i 1.14692i −0.819232 0.573462i \(-0.805600\pi\)
0.819232 0.573462i \(-0.194400\pi\)
\(150\) 0 0
\(151\) 6.14441i 0.500025i 0.968243 + 0.250013i \(0.0804347\pi\)
−0.968243 + 0.250013i \(0.919565\pi\)
\(152\) −3.07221 11.6847i −0.249189 0.947751i
\(153\) 3.12311 + 5.12311i 0.252488 + 0.414179i
\(154\) −5.12311 2.39871i −0.412832 0.193293i
\(155\) 0 0
\(156\) 6.12715 8.91648i 0.490564 0.713889i
\(157\) −21.3693 −1.70546 −0.852729 0.522354i \(-0.825054\pi\)
−0.852729 + 0.522354i \(0.825054\pi\)
\(158\) −11.6153 5.43845i −0.924065 0.432660i
\(159\) −7.08084 + 1.98813i −0.561547 + 0.157669i
\(160\) 0 0
\(161\) 7.12311i 0.561379i
\(162\) 7.77368 + 10.0782i 0.610758 + 0.791817i
\(163\) 24.1671i 1.89291i −0.322834 0.946456i \(-0.604636\pi\)
0.322834 0.946456i \(-0.395364\pi\)
\(164\) 10.9418 9.12311i 0.854413 0.712395i
\(165\) 0 0
\(166\) −2.80776 + 5.99676i −0.217925 + 0.465439i
\(167\) −2.80928 −0.217389 −0.108694 0.994075i \(-0.534667\pi\)
−0.108694 + 0.994075i \(0.534667\pi\)
\(168\) −3.95622 + 2.32246i −0.305229 + 0.179182i
\(169\) −3.24621 −0.249709
\(170\) 0 0
\(171\) 6.67026 + 10.9418i 0.510088 + 0.836742i
\(172\) −2.24621 + 1.87285i −0.171272 + 0.142804i
\(173\) 2.00000i 0.152057i −0.997106 0.0760286i \(-0.975776\pi\)
0.997106 0.0760286i \(-0.0242240\pi\)
\(174\) 2.05090 12.3803i 0.155478 0.938546i
\(175\) 0 0
\(176\) 3.07221 16.8078i 0.231576 1.26693i
\(177\) 3.36932 + 12.0000i 0.253253 + 0.901975i
\(178\) 8.00000 + 3.74571i 0.599625 + 0.280752i
\(179\) 14.6875 1.09780 0.548899 0.835889i \(-0.315047\pi\)
0.548899 + 0.835889i \(0.315047\pi\)
\(180\) 0 0
\(181\) 4.24621 0.315618 0.157809 0.987470i \(-0.449557\pi\)
0.157809 + 0.987470i \(0.449557\pi\)
\(182\) −3.74571 1.75379i −0.277650 0.129999i
\(183\) 2.39871 + 8.54312i 0.177317 + 0.631525i
\(184\) −20.8078 + 5.47091i −1.53397 + 0.403321i
\(185\) 0 0
\(186\) 0.960258 5.79661i 0.0704096 0.425028i
\(187\) 8.54312i 0.624735i
\(188\) −1.19935 1.43845i −0.0874718 0.104910i
\(189\) 3.31534 3.56155i 0.241156 0.259065i
\(190\) 0 0
\(191\) −7.72197 −0.558742 −0.279371 0.960183i \(-0.590126\pi\)
−0.279371 + 0.960183i \(0.590126\pi\)
\(192\) −9.82286 9.77299i −0.708904 0.705305i
\(193\) −16.2462 −1.16943 −0.584714 0.811240i \(-0.698793\pi\)
−0.584714 + 0.811240i \(0.698793\pi\)
\(194\) −3.59806 + 7.68466i −0.258326 + 0.551726i
\(195\) 0 0
\(196\) −7.84233 9.40572i −0.560166 0.671837i
\(197\) 12.2462i 0.872506i 0.899824 + 0.436253i \(0.143695\pi\)
−0.899824 + 0.436253i \(0.856305\pi\)
\(198\) 1.98156 + 18.0140i 0.140824 + 1.28020i
\(199\) 17.6121i 1.24849i 0.781230 + 0.624244i \(0.214593\pi\)
−0.781230 + 0.624244i \(0.785407\pi\)
\(200\) 0 0
\(201\) −8.68466 + 2.43845i −0.612569 + 0.171995i
\(202\) 11.6847 + 5.47091i 0.822130 + 0.384932i
\(203\) −4.79741 −0.336712
\(204\) 5.71001 + 3.92375i 0.399780 + 0.274718i
\(205\) 0 0
\(206\) −15.8869 7.43845i −1.10689 0.518261i
\(207\) 19.4849 11.8782i 1.35430 0.825595i
\(208\) 2.24621 12.2888i 0.155747 0.852077i
\(209\) 18.2462i 1.26212i
\(210\) 0 0
\(211\) 1.34700i 0.0927313i 0.998925 + 0.0463656i \(0.0147639\pi\)
−0.998925 + 0.0463656i \(0.985236\pi\)
\(212\) −6.52262 + 5.43845i −0.447975 + 0.373514i
\(213\) −3.12311 11.1231i −0.213992 0.762143i
\(214\) 0.561553 1.19935i 0.0383870 0.0819861i
\(215\) 0 0
\(216\) 12.9502 + 6.94920i 0.881152 + 0.472833i
\(217\) −2.24621 −0.152483
\(218\) 5.47091 11.6847i 0.370537 0.791385i
\(219\) −3.86098 13.7511i −0.260901 0.929213i
\(220\) 0 0
\(221\) 6.24621i 0.420166i
\(222\) 7.54716 + 1.25025i 0.506532 + 0.0839115i
\(223\) 18.0227i 1.20689i 0.797406 + 0.603443i \(0.206205\pi\)
−0.797406 + 0.603443i \(0.793795\pi\)
\(224\) −3.07221 + 4.31534i −0.205270 + 0.288331i
\(225\) 0 0
\(226\) 17.9309 + 8.39547i 1.19274 + 0.558458i
\(227\) −8.65840 −0.574678 −0.287339 0.957829i \(-0.592771\pi\)
−0.287339 + 0.957829i \(0.592771\pi\)
\(228\) 12.1953 + 8.38027i 0.807654 + 0.554997i
\(229\) 0.246211 0.0162701 0.00813505 0.999967i \(-0.497411\pi\)
0.00813505 + 0.999967i \(0.497411\pi\)
\(230\) 0 0
\(231\) 6.67026 1.87285i 0.438871 0.123225i
\(232\) −3.68466 14.0140i −0.241910 0.920066i
\(233\) 10.0000i 0.655122i 0.944830 + 0.327561i \(0.106227\pi\)
−0.944830 + 0.327561i \(0.893773\pi\)
\(234\) 1.44880 + 13.1708i 0.0947110 + 0.861000i
\(235\) 0 0
\(236\) 9.21662 + 11.0540i 0.599951 + 0.719553i
\(237\) 15.1231 4.24621i 0.982351 0.275821i
\(238\) 1.12311 2.39871i 0.0728001 0.155485i
\(239\) −20.8319 −1.34751 −0.673753 0.738957i \(-0.735319\pi\)
−0.673753 + 0.738957i \(0.735319\pi\)
\(240\) 0 0
\(241\) −11.3693 −0.732362 −0.366181 0.930544i \(-0.619335\pi\)
−0.366181 + 0.930544i \(0.619335\pi\)
\(242\) −4.34538 + 9.28078i −0.279332 + 0.596591i
\(243\) −15.2710 3.12985i −0.979636 0.200780i
\(244\) 6.56155 + 7.86962i 0.420060 + 0.503801i
\(245\) 0 0
\(246\) −2.85155 + 17.2134i −0.181808 + 1.09749i
\(247\) 13.3405i 0.848837i
\(248\) −1.72521 6.56155i −0.109551 0.416659i
\(249\) −2.19224 7.80776i −0.138927 0.494797i
\(250\) 0 0
\(251\) −25.1035 −1.58452 −0.792259 0.610184i \(-0.791095\pi\)
−0.792259 + 0.610184i \(0.791095\pi\)
\(252\) 1.81181 5.31842i 0.114133 0.335029i
\(253\) 32.4924 2.04278
\(254\) −5.99676 2.80776i −0.376270 0.176175i
\(255\) 0 0
\(256\) −14.9654 5.66001i −0.935340 0.353751i
\(257\) 2.49242i 0.155473i 0.996974 + 0.0777365i \(0.0247693\pi\)
−0.996974 + 0.0777365i \(0.975231\pi\)
\(258\) 0.585385 3.53368i 0.0364445 0.219997i
\(259\) 2.92456i 0.181723i
\(260\) 0 0
\(261\) 8.00000 + 13.1231i 0.495188 + 0.812300i
\(262\) −10.5616 + 22.5571i −0.652495 + 1.39359i
\(263\) −15.0981 −0.930989 −0.465494 0.885051i \(-0.654123\pi\)
−0.465494 + 0.885051i \(0.654123\pi\)
\(264\) 10.5940 + 18.0465i 0.652017 + 1.11068i
\(265\) 0 0
\(266\) 2.39871 5.12311i 0.147074 0.314118i
\(267\) −10.4160 + 2.92456i −0.637447 + 0.178980i
\(268\) −8.00000 + 6.67026i −0.488678 + 0.407451i
\(269\) 14.0000i 0.853595i 0.904347 + 0.426798i \(0.140358\pi\)
−0.904347 + 0.426798i \(0.859642\pi\)
\(270\) 0 0
\(271\) 31.7738i 1.93012i −0.262032 0.965059i \(-0.584392\pi\)
0.262032 0.965059i \(-0.415608\pi\)
\(272\) 7.86962 + 1.43845i 0.477166 + 0.0872187i
\(273\) 4.87689 1.36932i 0.295163 0.0828748i
\(274\) 10.5616 + 4.94506i 0.638047 + 0.298742i
\(275\) 0 0
\(276\) 14.9234 21.7171i 0.898282 1.30722i
\(277\) 1.36932 0.0822743 0.0411371 0.999154i \(-0.486902\pi\)
0.0411371 + 0.999154i \(0.486902\pi\)
\(278\) 17.7597 + 8.31534i 1.06516 + 0.498721i
\(279\) 3.74571 + 6.14441i 0.224250 + 0.367856i
\(280\) 0 0
\(281\) 27.6155i 1.64740i −0.567023 0.823702i \(-0.691905\pi\)
0.567023 0.823702i \(-0.308095\pi\)
\(282\) 2.26293 + 0.374874i 0.134755 + 0.0223234i
\(283\) 4.38684i 0.260770i −0.991463 0.130385i \(-0.958379\pi\)
0.991463 0.130385i \(-0.0416214\pi\)
\(284\) −8.54312 10.2462i −0.506941 0.608001i
\(285\) 0 0
\(286\) −8.00000 + 17.0862i −0.473050 + 1.01033i
\(287\) 6.67026 0.393733
\(288\) 16.9275 + 1.20777i 0.997464 + 0.0711682i
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) −2.80928 10.0054i −0.164683 0.586527i
\(292\) −10.5616 12.6670i −0.618068 0.741282i
\(293\) 30.4924i 1.78139i 0.454605 + 0.890693i \(0.349780\pi\)
−0.454605 + 0.890693i \(0.650220\pi\)
\(294\) 14.7968 + 2.45122i 0.862968 + 0.142958i
\(295\) 0 0
\(296\) 8.54312 2.24621i 0.496559 0.130558i
\(297\) −16.2462 15.1231i −0.942701 0.877532i
\(298\) 17.9309 + 8.39547i 1.03871 + 0.486337i
\(299\) 23.7565 1.37387
\(300\) 0 0
\(301\) −1.36932 −0.0789261
\(302\) −7.86962 3.68466i −0.452846 0.212028i
\(303\) −15.2134 + 4.27156i −0.873986 + 0.245395i
\(304\) 16.8078 + 3.07221i 0.963991 + 0.176203i
\(305\) 0 0
\(306\) −8.43441 + 0.927794i −0.482163 + 0.0530385i
\(307\) 8.13254i 0.464149i −0.972698 0.232074i \(-0.925449\pi\)
0.972698 0.232074i \(-0.0745513\pi\)
\(308\) 6.14441 5.12311i 0.350110 0.291916i
\(309\) 20.6847 5.80776i 1.17671 0.330392i
\(310\) 0 0
\(311\) −14.1617 −0.803035 −0.401517 0.915851i \(-0.631517\pi\)
−0.401517 + 0.915851i \(0.631517\pi\)
\(312\) 7.74571 + 13.1945i 0.438514 + 0.746992i
\(313\) −10.4924 −0.593067 −0.296533 0.955022i \(-0.595831\pi\)
−0.296533 + 0.955022i \(0.595831\pi\)
\(314\) 12.8147 27.3693i 0.723174 1.54454i
\(315\) 0 0
\(316\) 13.9309 11.6153i 0.783673 0.653413i
\(317\) 32.7386i 1.83878i −0.393342 0.919392i \(-0.628681\pi\)
0.393342 0.919392i \(-0.371319\pi\)
\(318\) 1.69986 10.2612i 0.0953233 0.575420i
\(319\) 21.8836i 1.22525i
\(320\) 0 0
\(321\) 0.438447 + 1.56155i 0.0244717 + 0.0871574i
\(322\) −9.12311 4.27156i −0.508411 0.238045i
\(323\) −8.54312 −0.475352
\(324\) −17.5696 + 3.91270i −0.976089 + 0.217372i
\(325\) 0 0
\(326\) 30.9526 + 14.4924i 1.71431 + 0.802661i
\(327\) 4.27156 + 15.2134i 0.236218 + 0.841302i
\(328\) 5.12311 + 19.4849i 0.282876 + 1.07588i
\(329\) 0.876894i 0.0483448i
\(330\) 0 0
\(331\) 28.0281i 1.54056i 0.637705 + 0.770281i \(0.279884\pi\)
−0.637705 + 0.770281i \(0.720116\pi\)
\(332\) −5.99676 7.19224i −0.329115 0.394725i
\(333\) −8.00000 + 4.87689i −0.438397 + 0.267252i
\(334\) 1.68466 3.59806i 0.0921804 0.196877i
\(335\) 0 0
\(336\) −0.602100 6.45975i −0.0328473 0.352408i
\(337\) 34.4924 1.87892 0.939461 0.342656i \(-0.111326\pi\)
0.939461 + 0.342656i \(0.111326\pi\)
\(338\) 1.94668 4.15767i 0.105885 0.226147i
\(339\) −23.3459 + 6.55498i −1.26798 + 0.356018i
\(340\) 0 0
\(341\) 10.2462i 0.554863i
\(342\) −18.0140 + 1.98156i −0.974087 + 0.107151i
\(343\) 12.2888i 0.663534i
\(344\) −1.05171 4.00000i −0.0567042 0.215666i
\(345\) 0 0
\(346\) 2.56155 + 1.19935i 0.137710 + 0.0644776i
\(347\) 23.8718 1.28150 0.640752 0.767748i \(-0.278623\pi\)
0.640752 + 0.767748i \(0.278623\pi\)
\(348\) 14.6265 + 10.0509i 0.784062 + 0.538785i
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) −11.8782 11.0571i −0.634014 0.590184i
\(352\) 19.6847 + 14.0140i 1.04920 + 0.746950i
\(353\) 3.75379i 0.199794i 0.994998 + 0.0998970i \(0.0318513\pi\)
−0.994998 + 0.0998970i \(0.968149\pi\)
\(354\) −17.3898 2.88078i −0.924258 0.153111i
\(355\) 0 0
\(356\) −9.59482 + 8.00000i −0.508525 + 0.423999i
\(357\) 0.876894 + 3.12311i 0.0464102 + 0.165292i
\(358\) −8.80776 + 18.8114i −0.465505 + 0.994215i
\(359\) 1.05171 0.0555069 0.0277535 0.999615i \(-0.491165\pi\)
0.0277535 + 0.999615i \(0.491165\pi\)
\(360\) 0 0
\(361\) 0.753789 0.0396731
\(362\) −2.54635 + 5.43845i −0.133833 + 0.285838i
\(363\) −3.39277 12.0835i −0.178074 0.634221i
\(364\) 4.49242 3.74571i 0.235467 0.196328i
\(365\) 0 0
\(366\) −12.3803 2.05090i −0.647127 0.107202i
\(367\) 26.5658i 1.38672i −0.720590 0.693361i \(-0.756129\pi\)
0.720590 0.693361i \(-0.243871\pi\)
\(368\) 5.47091 29.9309i 0.285191 1.56025i
\(369\) −11.1231 18.2462i −0.579046 0.949860i
\(370\) 0 0
\(371\) −3.97626 −0.206437
\(372\) 6.84831 + 4.70596i 0.355068 + 0.243993i
\(373\) 0.876894 0.0454039 0.0227019 0.999742i \(-0.492773\pi\)
0.0227019 + 0.999742i \(0.492773\pi\)
\(374\) −10.9418 5.12311i −0.565788 0.264909i
\(375\) 0 0
\(376\) 2.56155 0.673500i 0.132102 0.0347331i
\(377\) 16.0000i 0.824042i
\(378\) 2.57342 + 6.38199i 0.132362 + 0.328254i
\(379\) 25.1035i 1.28948i −0.764402 0.644740i \(-0.776966\pi\)
0.764402 0.644740i \(-0.223034\pi\)
\(380\) 0 0
\(381\) 7.80776 2.19224i 0.400004 0.112312i
\(382\) 4.63068 9.89012i 0.236926 0.506022i
\(383\) −4.68213 −0.239246 −0.119623 0.992819i \(-0.538169\pi\)
−0.119623 + 0.992819i \(0.538169\pi\)
\(384\) 18.4076 6.72026i 0.939357 0.342942i
\(385\) 0 0
\(386\) 9.74247 20.8078i 0.495879 1.05909i
\(387\) 2.28343 + 3.74571i 0.116073 + 0.190405i
\(388\) −7.68466 9.21662i −0.390129 0.467903i
\(389\) 28.7386i 1.45711i 0.684989 + 0.728553i \(0.259807\pi\)
−0.684989 + 0.728553i \(0.740193\pi\)
\(390\) 0 0
\(391\) 15.2134i 0.769374i
\(392\) 16.7495 4.40388i 0.845977 0.222430i
\(393\) −8.24621 29.3693i −0.415966 1.48149i
\(394\) −15.6847 7.34376i −0.790182 0.369973i
\(395\) 0 0
\(396\) −24.2602 8.26465i −1.21912 0.415314i
\(397\) −23.1231 −1.16052 −0.580258 0.814433i \(-0.697048\pi\)
−0.580258 + 0.814433i \(0.697048\pi\)
\(398\) −22.5571 10.5616i −1.13069 0.529403i
\(399\) 1.87285 + 6.67026i 0.0937599 + 0.333931i
\(400\) 0 0
\(401\) 24.0000i 1.19850i 0.800561 + 0.599251i \(0.204535\pi\)
−0.800561 + 0.599251i \(0.795465\pi\)
\(402\) 2.08488 12.5854i 0.103984 0.627702i
\(403\) 7.49141i 0.373174i
\(404\) −14.0140 + 11.6847i −0.697224 + 0.581333i
\(405\) 0 0
\(406\) 2.87689 6.14441i 0.142778 0.304942i
\(407\) −13.3405 −0.661265
\(408\) −8.44961 + 4.96026i −0.418318 + 0.245569i
\(409\) 0.630683 0.0311853 0.0155926 0.999878i \(-0.495037\pi\)
0.0155926 + 0.999878i \(0.495037\pi\)
\(410\) 0 0
\(411\) −13.7511 + 3.86098i −0.678292 + 0.190448i
\(412\) 19.0540 15.8869i 0.938722 0.782690i
\(413\) 6.73863i 0.331586i
\(414\) 3.52872 + 32.0790i 0.173427 + 1.57659i
\(415\) 0 0
\(416\) 14.3922 + 10.2462i 0.705637 + 0.502362i
\(417\) −23.1231 + 6.49242i −1.13234 + 0.317935i
\(418\) −23.3693 10.9418i −1.14303 0.535182i
\(419\) −6.14441 −0.300174 −0.150087 0.988673i \(-0.547955\pi\)
−0.150087 + 0.988673i \(0.547955\pi\)
\(420\) 0 0
\(421\) −0.630683 −0.0307376 −0.0153688 0.999882i \(-0.504892\pi\)
−0.0153688 + 0.999882i \(0.504892\pi\)
\(422\) −1.72521 0.807764i −0.0839817 0.0393213i
\(423\) −2.39871 + 1.46228i −0.116629 + 0.0710985i
\(424\) −3.05398 11.6153i −0.148314 0.564090i
\(425\) 0 0
\(426\) 16.1191 + 2.67026i 0.780971 + 0.129375i
\(427\) 4.79741i 0.232163i
\(428\) 1.19935 + 1.43845i 0.0579729 + 0.0695300i
\(429\) −6.24621 22.2462i −0.301570 1.07406i
\(430\) 0 0
\(431\) 36.0453 1.73624 0.868121 0.496353i \(-0.165328\pi\)
0.868121 + 0.496353i \(0.165328\pi\)
\(432\) −16.6663 + 12.4191i −0.801859 + 0.597513i
\(433\) −18.0000 −0.865025 −0.432512 0.901628i \(-0.642373\pi\)
−0.432512 + 0.901628i \(0.642373\pi\)
\(434\) 1.34700 2.87689i 0.0646581 0.138095i
\(435\) 0 0
\(436\) 11.6847 + 14.0140i 0.559594 + 0.671150i
\(437\) 32.4924i 1.55432i
\(438\) 19.9274 + 3.30115i 0.952169 + 0.157735i
\(439\) 29.9009i 1.42709i −0.700608 0.713546i \(-0.747088\pi\)
0.700608 0.713546i \(-0.252912\pi\)
\(440\) 0 0
\(441\) −15.6847 + 9.56155i −0.746888 + 0.455312i
\(442\) −8.00000 3.74571i −0.380521 0.178165i
\(443\) 25.7446 1.22316 0.611582 0.791181i \(-0.290533\pi\)
0.611582 + 0.791181i \(0.290533\pi\)
\(444\) −6.12715 + 8.91648i −0.290782 + 0.423157i
\(445\) 0 0
\(446\) −23.0830 10.8078i −1.09301 0.511762i
\(447\) −23.3459 + 6.55498i −1.10422 + 0.310040i
\(448\) −3.68466 6.52262i −0.174084 0.308165i
\(449\) 2.63068i 0.124150i −0.998071 0.0620748i \(-0.980228\pi\)
0.998071 0.0620748i \(-0.0197717\pi\)
\(450\) 0 0
\(451\) 30.4268i 1.43274i
\(452\) −21.5054 + 17.9309i −1.01153 + 0.843397i
\(453\) 10.2462 2.87689i 0.481409 0.135168i
\(454\) 5.19224 11.0895i 0.243684 0.520455i
\(455\) 0 0
\(456\) −18.0465 + 10.5940i −0.845104 + 0.496110i
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) −0.147647 + 0.315342i −0.00689909 + 0.0147349i
\(459\) 7.08084 7.60669i 0.330505 0.355050i
\(460\) 0 0
\(461\) 15.8617i 0.738755i −0.929279 0.369377i \(-0.879571\pi\)
0.929279 0.369377i \(-0.120429\pi\)
\(462\) −1.60129 + 9.66622i −0.0744990 + 0.449713i
\(463\) 0.936426i 0.0435194i 0.999763 + 0.0217597i \(0.00692688\pi\)
−0.999763 + 0.0217597i \(0.993073\pi\)
\(464\) 20.1584 + 3.68466i 0.935832 + 0.171056i
\(465\) 0 0
\(466\) −12.8078 5.99676i −0.593308 0.277795i
\(467\) 16.1498 0.747324 0.373662 0.927565i \(-0.378102\pi\)
0.373662 + 0.927565i \(0.378102\pi\)
\(468\) −17.7376 6.04261i −0.819922 0.279320i
\(469\) −4.87689 −0.225194
\(470\) 0 0
\(471\) 10.0054 + 35.6347i 0.461024 + 1.64196i
\(472\) −19.6847 + 5.17562i −0.906060 + 0.238227i
\(473\) 6.24621i 0.287201i
\(474\) −3.63052 + 21.9157i −0.166755 + 1.00662i
\(475\) 0 0
\(476\) 2.39871 + 2.87689i 0.109944 + 0.131862i
\(477\) 6.63068 + 10.8769i 0.303598 + 0.498019i
\(478\) 12.4924 26.6811i 0.571390 1.22036i
\(479\) 22.9354 1.04794 0.523971 0.851736i \(-0.324450\pi\)
0.523971 + 0.851736i \(0.324450\pi\)
\(480\) 0 0
\(481\) −9.75379 −0.444734
\(482\) 6.81791 14.5616i 0.310547 0.663261i
\(483\) 11.8782 3.33513i 0.540479 0.151754i
\(484\) −9.28078 11.1309i −0.421853 0.505951i
\(485\) 0 0
\(486\) 13.1663 17.6819i 0.597236 0.802066i
\(487\) 15.3287i 0.694608i 0.937753 + 0.347304i \(0.112903\pi\)
−0.937753 + 0.347304i \(0.887097\pi\)
\(488\) −14.0140 + 3.68466i −0.634385 + 0.166797i
\(489\) −40.3002 + 11.3153i −1.82244 + 0.511697i
\(490\) 0 0
\(491\) 18.6638 0.842285 0.421143 0.906994i \(-0.361629\pi\)
0.421143 + 0.906994i \(0.361629\pi\)
\(492\) −20.3365 13.9747i −0.916840 0.630026i
\(493\) −10.2462 −0.461466
\(494\) −17.0862 8.00000i −0.768746 0.359937i
\(495\) 0 0
\(496\) 9.43845 + 1.72521i 0.423799 + 0.0774640i
\(497\) 6.24621i 0.280181i
\(498\) 11.3146 + 1.87437i 0.507021 + 0.0839924i
\(499\) 1.57756i 0.0706212i 0.999376 + 0.0353106i \(0.0112421\pi\)
−0.999376 + 0.0353106i \(0.988758\pi\)
\(500\) 0 0
\(501\) 1.31534 + 4.68466i 0.0587651 + 0.209295i
\(502\) 15.0540 32.1520i 0.671892 1.43501i
\(503\) 19.8955 0.887097 0.443549 0.896250i \(-0.353719\pi\)
0.443549 + 0.896250i \(0.353719\pi\)
\(504\) 5.72521 + 5.50985i 0.255021 + 0.245428i
\(505\) 0 0
\(506\) −19.4849 + 41.6155i −0.866211 + 1.85004i
\(507\) 1.51992 + 5.41327i 0.0675020 + 0.240412i
\(508\) 7.19224 5.99676i 0.319104 0.266063i
\(509\) 2.87689i 0.127516i 0.997965 + 0.0637581i \(0.0203086\pi\)
−0.997965 + 0.0637581i \(0.979691\pi\)
\(510\) 0 0
\(511\) 7.72197i 0.341600i
\(512\) 16.2236 15.7732i 0.716990 0.697083i
\(513\) 15.1231 16.2462i 0.667701 0.717288i
\(514\) −3.19224 1.49465i −0.140803 0.0659261i
\(515\) 0 0
\(516\) 4.17481 + 2.86881i 0.183786 + 0.126292i
\(517\) −4.00000 −0.175920
\(518\) 3.74571 + 1.75379i 0.164577 + 0.0770571i
\(519\) −3.33513 + 0.936426i −0.146396 + 0.0411046i
\(520\) 0 0
\(521\) 21.7538i 0.953051i −0.879161 0.476525i \(-0.841896\pi\)
0.879161 0.476525i \(-0.158104\pi\)
\(522\) −21.6052 + 2.37659i −0.945633 + 0.104021i
\(523\) 0.641132i 0.0280348i 0.999902 + 0.0140174i \(0.00446202\pi\)
−0.999902 + 0.0140174i \(0.995538\pi\)
\(524\) −22.5571 27.0540i −0.985413 1.18186i
\(525\) 0 0
\(526\) 9.05398 19.3373i 0.394772 0.843146i
\(527\) −4.79741 −0.208979
\(528\) −29.4665 + 2.74651i −1.28236 + 0.119527i
\(529\) 34.8617 1.51573
\(530\) 0 0
\(531\) 18.4332 11.2371i 0.799934 0.487649i
\(532\) 5.12311 + 6.14441i 0.222115 + 0.266394i
\(533\) 22.2462i 0.963590i
\(534\) 2.50051 15.0943i 0.108207 0.653195i
\(535\) 0 0
\(536\) −3.74571 14.2462i −0.161790 0.615343i
\(537\) −6.87689 24.4924i −0.296760 1.05693i
\(538\) −17.9309 8.39547i −0.773055 0.361954i
\(539\) −26.1552 −1.12658
\(540\) 0 0
\(541\) 38.9848 1.67609 0.838045 0.545602i \(-0.183699\pi\)
0.838045 + 0.545602i \(0.183699\pi\)
\(542\) 40.6951 + 19.0540i 1.74800 + 0.818438i
\(543\) −1.98813 7.08084i −0.0853189 0.303868i
\(544\) −6.56155 + 9.21662i −0.281324 + 0.395159i
\(545\) 0 0
\(546\) −1.17077 + 7.06736i −0.0501043 + 0.302455i
\(547\) 25.2188i 1.07828i −0.842217 0.539139i \(-0.818750\pi\)
0.842217 0.539139i \(-0.181250\pi\)
\(548\) −12.6670 + 10.5616i −0.541109 + 0.451167i
\(549\) 13.1231 8.00000i 0.560080 0.341432i
\(550\) 0 0
\(551\) −21.8836 −0.932275
\(552\) 18.8656 + 32.1368i 0.802972 + 1.36783i
\(553\) 8.49242 0.361135
\(554\) −0.821147 + 1.75379i −0.0348872 + 0.0745113i
\(555\) 0 0
\(556\) −21.3002 + 17.7597i −0.903329 + 0.753180i
\(557\) 19.7538i 0.836995i −0.908218 0.418497i \(-0.862557\pi\)
0.908218 0.418497i \(-0.137443\pi\)
\(558\) −10.1158 + 1.11275i −0.428237 + 0.0471066i
\(559\) 4.56685i 0.193157i
\(560\) 0 0
\(561\) 14.2462 4.00000i 0.601476 0.168880i
\(562\) 35.3693 + 16.5604i 1.49196 + 0.698558i
\(563\) 36.1606 1.52399 0.761994 0.647584i \(-0.224221\pi\)
0.761994 + 0.647584i \(0.224221\pi\)
\(564\) −1.83715 + 2.67350i −0.0773581 + 0.112575i
\(565\) 0 0
\(566\) 5.61856 + 2.63068i 0.236166 + 0.110576i
\(567\) −7.49141 3.86098i −0.314610 0.162146i
\(568\) 18.2462 4.79741i 0.765594 0.201295i
\(569\) 4.87689i 0.204450i −0.994761 0.102225i \(-0.967404\pi\)
0.994761 0.102225i \(-0.0325962\pi\)
\(570\) 0 0
\(571\) 16.7909i 0.702679i 0.936248 + 0.351339i \(0.114274\pi\)
−0.936248 + 0.351339i \(0.885726\pi\)
\(572\) −17.0862 20.4924i −0.714411 0.856831i
\(573\) 3.61553 + 12.8769i 0.151041 + 0.537940i
\(574\) −4.00000 + 8.54312i −0.166957 + 0.356583i
\(575\) 0 0
\(576\) −11.6979 + 20.9561i −0.487413 + 0.873171i
\(577\) 15.7538 0.655839 0.327919 0.944706i \(-0.393653\pi\)
0.327919 + 0.944706i \(0.393653\pi\)
\(578\) −7.79579 + 16.6501i −0.324262 + 0.692553i
\(579\) 7.60669 + 27.0916i 0.316123 + 1.12589i
\(580\) 0 0
\(581\) 4.38447i 0.181899i
\(582\) 14.4993 + 2.40194i 0.601017 + 0.0995637i
\(583\) 18.1379i 0.751197i
\(584\) 22.5571 5.93087i 0.933421 0.245421i
\(585\) 0 0
\(586\) −39.0540 18.2856i −1.61330 0.755371i
\(587\) −38.0335 −1.56981 −0.784904 0.619617i \(-0.787288\pi\)
−0.784904 + 0.619617i \(0.787288\pi\)
\(588\) −12.0128 + 17.4815i −0.495399 + 0.720924i
\(589\) −10.2462 −0.422188
\(590\) 0 0
\(591\) 20.4214 5.73384i 0.840023 0.235859i
\(592\) −2.24621 + 12.2888i −0.0923187 + 0.505067i
\(593\) 8.24621i 0.338631i 0.985562 + 0.169316i \(0.0541557\pi\)
−0.985562 + 0.169316i \(0.945844\pi\)
\(594\) 29.1118 11.7388i 1.19447 0.481649i
\(595\) 0 0
\(596\) −21.5054 + 17.9309i −0.880897 + 0.734477i
\(597\) 29.3693 8.24621i 1.20201 0.337495i
\(598\) −14.2462 + 30.4268i −0.582571 + 1.24424i
\(599\) 36.8665 1.50632 0.753162 0.657836i \(-0.228528\pi\)
0.753162 + 0.657836i \(0.228528\pi\)
\(600\) 0 0
\(601\) 14.8769 0.606841 0.303421 0.952857i \(-0.401871\pi\)
0.303421 + 0.952857i \(0.401871\pi\)
\(602\) 0.821147 1.75379i 0.0334675 0.0714791i
\(603\) 8.13254 + 13.3405i 0.331183 + 0.543268i
\(604\) 9.43845 7.86962i 0.384045 0.320210i
\(605\) 0 0
\(606\) 3.65219 22.0465i 0.148360 0.895578i
\(607\) 29.4903i 1.19698i −0.801132 0.598488i \(-0.795768\pi\)
0.801132 0.598488i \(-0.204232\pi\)
\(608\) −14.0140 + 19.6847i −0.568344 + 0.798318i
\(609\) 2.24621 + 8.00000i 0.0910211 + 0.324176i
\(610\) 0 0
\(611\) −2.92456 −0.118315
\(612\) 3.86962 11.3590i 0.156420 0.459159i
\(613\) −0.876894 −0.0354174 −0.0177087 0.999843i \(-0.505637\pi\)
−0.0177087 + 0.999843i \(0.505637\pi\)
\(614\) 10.4160 + 4.87689i 0.420354 + 0.196815i
\(615\) 0 0
\(616\) 2.87689 + 10.9418i 0.115913 + 0.440859i
\(617\) 14.0000i 0.563619i 0.959470 + 0.281809i \(0.0909346\pi\)
−0.959470 + 0.281809i \(0.909065\pi\)
\(618\) −4.96565 + 29.9752i −0.199748 + 1.20578i
\(619\) 20.3061i 0.816171i 0.912944 + 0.408085i \(0.133803\pi\)
−0.912944 + 0.408085i \(0.866197\pi\)
\(620\) 0 0
\(621\) −28.9309 26.9309i −1.16096 1.08070i
\(622\) 8.49242 18.1379i 0.340515 0.727265i
\(623\) −5.84912 −0.234340
\(624\) −21.5441 + 2.00808i −0.862455 + 0.0803877i
\(625\) 0 0
\(626\) 6.29206 13.4384i 0.251481 0.537108i
\(627\) 30.4268 8.54312i 1.21513 0.341179i
\(628\) 27.3693 + 32.8255i 1.09215 + 1.30988i
\(629\) 6.24621i 0.249053i
\(630\) 0 0
\(631\) 30.1315i 1.19951i 0.800182 + 0.599757i \(0.204736\pi\)
−0.800182 + 0.599757i \(0.795264\pi\)
\(632\) 6.52262 + 24.8078i 0.259456 + 0.986800i
\(633\) 2.24621 0.630683i 0.0892789 0.0250674i
\(634\) 41.9309 + 19.6326i 1.66529 + 0.779710i
\(635\) 0 0
\(636\) 12.1229 + 8.33054i 0.480706 + 0.330327i
\(637\) −19.1231 −0.757685
\(638\) −28.0281 13.1231i −1.10964 0.519549i
\(639\) −17.0862 + 10.4160i −0.675921 + 0.412049i
\(640\) 0 0
\(641\) 47.6155i 1.88070i −0.340208 0.940350i \(-0.610498\pi\)
0.340208 0.940350i \(-0.389502\pi\)
\(642\) −2.26293 0.374874i −0.0893106 0.0147951i
\(643\) 20.4214i 0.805340i 0.915345 + 0.402670i \(0.131918\pi\)
−0.915345 + 0.402670i \(0.868082\pi\)
\(644\) 10.9418 9.12311i 0.431168 0.359501i
\(645\) 0 0
\(646\) 5.12311 10.9418i 0.201566 0.430500i
\(647\) −3.63043 −0.142727 −0.0713634 0.997450i \(-0.522735\pi\)
−0.0713634 + 0.997450i \(0.522735\pi\)
\(648\) 5.52478 24.8491i 0.217034 0.976164i
\(649\) 30.7386 1.20660
\(650\) 0 0
\(651\) 1.05171 + 3.74571i 0.0412196 + 0.146806i
\(652\) −37.1231 + 30.9526i −1.45385 + 1.21220i
\(653\) 26.9848i 1.05600i −0.849245 0.527999i \(-0.822942\pi\)
0.849245 0.527999i \(-0.177058\pi\)
\(654\) −22.0465 3.65219i −0.862086 0.142812i
\(655\) 0 0
\(656\) −28.0281 5.12311i −1.09431 0.200024i
\(657\) −21.1231 + 12.8769i −0.824091 + 0.502375i
\(658\) 1.12311 + 0.525853i 0.0437832 + 0.0204999i
\(659\) −26.9764 −1.05085 −0.525425 0.850840i \(-0.676094\pi\)
−0.525425 + 0.850840i \(0.676094\pi\)
\(660\) 0 0
\(661\) −46.1080 −1.79339 −0.896696 0.442647i \(-0.854039\pi\)
−0.896696 + 0.442647i \(0.854039\pi\)
\(662\) −35.8977 16.8078i −1.39520 0.653252i
\(663\) 10.4160 2.92456i 0.404523 0.113580i
\(664\) 12.8078 3.36750i 0.497038 0.130684i
\(665\) 0 0
\(666\) −1.44880 13.1708i −0.0561399 0.510357i
\(667\) 38.9699i 1.50892i
\(668\) 3.59806 + 4.31534i 0.139213 + 0.166966i
\(669\) 30.0540 8.43845i 1.16195 0.326249i
\(670\) 0 0
\(671\) 21.8836 0.844809
\(672\) 8.63456 + 3.10261i 0.333086 + 0.119686i
\(673\) 10.4924 0.404453 0.202227 0.979339i \(-0.435182\pi\)
0.202227 + 0.979339i \(0.435182\pi\)
\(674\) −20.6843 + 44.1771i −0.796729 + 1.70164i
\(675\) 0 0
\(676\) 4.15767 + 4.98651i 0.159910 + 0.191789i
\(677\) 34.4924i 1.32565i −0.748774 0.662826i \(-0.769357\pi\)
0.748774 0.662826i \(-0.230643\pi\)
\(678\) 5.60453 33.8318i 0.215241 1.29930i
\(679\) 5.61856i 0.215620i
\(680\) 0 0
\(681\) 4.05398 + 14.4384i 0.155349 + 0.553282i
\(682\) −13.1231 6.14441i −0.502510 0.235282i
\(683\) −36.1606 −1.38365 −0.691823 0.722067i \(-0.743192\pi\)
−0.691823 + 0.722067i \(0.743192\pi\)
\(684\) 8.26465 24.2602i 0.316007 0.927613i
\(685\) 0 0
\(686\) 15.7392 + 7.36932i 0.600927 + 0.281362i
\(687\) −0.115279 0.410574i −0.00439818 0.0156644i
\(688\) 5.75379 + 1.05171i 0.219361 + 0.0400959i
\(689\) 13.2614i 0.505218i
\(690\) 0 0
\(691\) 29.0798i 1.10625i −0.833100 0.553123i \(-0.813436\pi\)
0.833100 0.553123i \(-0.186564\pi\)
\(692\) −3.07221 + 2.56155i −0.116788 + 0.0973756i
\(693\) −6.24621 10.2462i −0.237274 0.389221i
\(694\) −14.3153 + 30.5744i −0.543403 + 1.16059i
\(695\) 0 0
\(696\) −21.6441 + 12.7060i −0.820418 + 0.481618i
\(697\) 14.2462 0.539614
\(698\) 8.39547 17.9309i 0.317773 0.678693i
\(699\) 16.6757 4.68213i 0.630731 0.177094i
\(700\) 0 0
\(701\) 50.4924i 1.90707i 0.301278 + 0.953536i \(0.402587\pi\)
−0.301278 + 0.953536i \(0.597413\pi\)
\(702\) 21.2848 8.58270i 0.803342 0.323933i
\(703\) 13.3405i 0.503148i
\(704\) −29.7533 + 16.8078i −1.12137 + 0.633466i
\(705\) 0 0
\(706\) −4.80776 2.25106i −0.180943 0.0847197i
\(707\) −8.54312 −0.321297
\(708\) 14.1179 20.5449i 0.530583 0.772126i
\(709\) −26.4924 −0.994944 −0.497472 0.867480i \(-0.665738\pi\)
−0.497472 + 0.867480i \(0.665738\pi\)
\(710\) 0 0
\(711\) −14.1617 23.2306i −0.531104 0.871217i
\(712\) −4.49242 17.0862i −0.168361 0.640334i
\(713\) 18.2462i 0.683326i
\(714\) −4.52585 0.749747i −0.169376 0.0280586i
\(715\) 0 0
\(716\) −18.8114 22.5616i −0.703016 0.843165i
\(717\) 9.75379 + 34.7386i 0.364262 + 1.29734i
\(718\) −0.630683 + 1.34700i −0.0235369 + 0.0502696i
\(719\) −5.84912 −0.218135 −0.109068 0.994034i \(-0.534787\pi\)
−0.109068 + 0.994034i \(0.534787\pi\)
\(720\) 0 0
\(721\) 11.6155 0.432585
\(722\) −0.452029 + 0.965435i −0.0168228 + 0.0359298i
\(723\) 5.32326 + 18.9591i 0.197974 + 0.705096i
\(724\) −5.43845 6.52262i −0.202118 0.242411i
\(725\) 0 0
\(726\) 17.5109 + 2.90083i 0.649889 + 0.107660i
\(727\) 26.5658i 0.985270i 0.870236 + 0.492635i \(0.163966\pi\)
−0.870236 + 0.492635i \(0.836034\pi\)
\(728\) 2.10341 + 8.00000i 0.0779576 + 0.296500i
\(729\) 1.93087 + 26.9309i 0.0715137 + 0.997440i
\(730\) 0 0
\(731\) −2.92456 −0.108169
\(732\) 10.0509 14.6265i 0.371492 0.540610i
\(733\) 35.1231 1.29730 0.648651 0.761086i \(-0.275334\pi\)
0.648651 + 0.761086i \(0.275334\pi\)
\(734\) 34.0248 + 15.9309i 1.25588 + 0.588019i
\(735\) 0 0
\(736\) 35.0540 + 24.9559i 1.29211 + 0.919885i
\(737\) 22.2462i 0.819450i
\(738\) 30.0396 3.30439i 1.10577 0.121636i
\(739\) 18.6638i 0.686559i 0.939233 + 0.343279i \(0.111538\pi\)
−0.939233 + 0.343279i \(0.888462\pi\)
\(740\) 0 0
\(741\) 22.2462 6.24621i 0.817235 0.229460i
\(742\) 2.38447 5.09271i 0.0875367 0.186959i
\(743\) 12.4041 0.455062 0.227531 0.973771i \(-0.426935\pi\)
0.227531 + 0.973771i \(0.426935\pi\)
\(744\) −10.1341 + 5.94910i −0.371533 + 0.218105i
\(745\) 0 0
\(746\) −0.525853 + 1.12311i −0.0192528 + 0.0411198i
\(747\) −11.9935 + 7.31140i −0.438820 + 0.267510i
\(748\) 13.1231 10.9418i 0.479828 0.400073i
\(749\) 0.876894i 0.0320410i
\(750\) 0 0
\(751\) 15.7392i 0.574333i −0.957881 0.287166i \(-0.907287\pi\)
0.957881 0.287166i \(-0.0927133\pi\)
\(752\) −0.673500 + 3.68466i −0.0245600 + 0.134366i
\(753\) 11.7538 + 41.8617i 0.428332 + 1.52553i
\(754\) −20.4924 9.59482i −0.746290 0.349423i
\(755\) 0 0
\(756\) −9.71712 0.531153i −0.353408 0.0193178i
\(757\) −19.1231 −0.695041 −0.347521 0.937672i \(-0.612976\pi\)
−0.347521 + 0.937672i \(0.612976\pi\)
\(758\) 32.1520 + 15.0540i 1.16781 + 0.546785i
\(759\) −15.2134 54.1833i −0.552211 1.96673i
\(760\) 0 0
\(761\) 51.2311i 1.85712i 0.371177 + 0.928562i \(0.378954\pi\)
−0.371177 + 0.928562i \(0.621046\pi\)
\(762\) −1.87437 + 11.3146i −0.0679012 + 0.409886i
\(763\) 8.54312i 0.309282i
\(764\) 9.89012 + 11.8617i 0.357812 + 0.429143i
\(765\) 0 0
\(766\) 2.80776 5.99676i 0.101449 0.216672i
\(767\) 22.4742 0.811498
\(768\) −2.43143 + 27.6059i −0.0877368 + 0.996144i
\(769\) −26.9848 −0.973098 −0.486549 0.873653i \(-0.661745\pi\)
−0.486549 + 0.873653i \(0.661745\pi\)
\(770\) 0 0
\(771\) 4.15628 1.16699i 0.149685 0.0420279i
\(772\) 20.8078 + 24.9559i 0.748888 + 0.898181i
\(773\) 16.2462i 0.584336i −0.956367 0.292168i \(-0.905623\pi\)
0.956367 0.292168i \(-0.0943766\pi\)
\(774\) −6.16673 + 0.678347i −0.221658 + 0.0243827i
\(775\) 0 0
\(776\) 16.4127 4.31534i 0.589183 0.154912i
\(777\) −4.87689 + 1.36932i −0.174958 + 0.0491240i
\(778\) −36.8078 17.2339i −1.31962 0.617865i
\(779\) 30.4268 1.09015
\(780\) 0 0
\(781\) −28.4924 −1.01954
\(782\) −19.4849 9.12311i −0.696780 0.326242i
\(783\) 18.1379 19.4849i 0.648197 0.696335i
\(784\) −4.40388 + 24.0932i −0.157282 + 0.860473i
\(785\) 0 0
\(786\) 42.5606 +