Properties

Label 300.1.b
Level $300$
Weight $1$
Character orbit 300.b
Rep. character $\chi_{300}(149,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $60$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 300.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(60\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(300, [\chi])\).

Total New Old
Modular forms 20 2 18
Cusp forms 2 2 0
Eisenstein series 18 0 18

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2 q - 2 q^{9} + 2 q^{19} - 2 q^{21} - 2 q^{31} + 2 q^{39} - 2 q^{61} - 4 q^{79} + 2 q^{81} + 2 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(300, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
300.1.b.a 300.b 15.d $2$ $0.150$ \(\Q(\sqrt{-1}) \) $D_{3}$ \(\Q(\sqrt{-3}) \) None 300.1.g.a \(0\) \(0\) \(0\) \(0\) \(q-i q^{3}-i q^{7}-q^{9}+i q^{13}+q^{19}+\cdots\)