Properties

Label 30.8.a.e
Level $30$
Weight $8$
Character orbit 30.a
Self dual yes
Analytic conductor $9.372$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [30,8,Mod(1,30)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("30.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 30.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,8,-27,64,125] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.37155076452\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 8 q^{2} - 27 q^{3} + 64 q^{4} + 125 q^{5} - 216 q^{6} + 512 q^{7} + 512 q^{8} + 729 q^{9} + 1000 q^{10} + 5460 q^{11} - 1728 q^{12} + 10166 q^{13} + 4096 q^{14} - 3375 q^{15} + 4096 q^{16} - 9918 q^{17}+ \cdots + 3980340 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
8.00000 −27.0000 64.0000 125.000 −216.000 512.000 512.000 729.000 1000.00
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 30.8.a.e 1
3.b odd 2 1 90.8.a.b 1
4.b odd 2 1 240.8.a.l 1
5.b even 2 1 150.8.a.g 1
5.c odd 4 2 150.8.c.e 2
15.d odd 2 1 450.8.a.r 1
15.e even 4 2 450.8.c.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.8.a.e 1 1.a even 1 1 trivial
90.8.a.b 1 3.b odd 2 1
150.8.a.g 1 5.b even 2 1
150.8.c.e 2 5.c odd 4 2
240.8.a.l 1 4.b odd 2 1
450.8.a.r 1 15.d odd 2 1
450.8.c.c 2 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} - 512 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(30))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 8 \) Copy content Toggle raw display
$3$ \( T + 27 \) Copy content Toggle raw display
$5$ \( T - 125 \) Copy content Toggle raw display
$7$ \( T - 512 \) Copy content Toggle raw display
$11$ \( T - 5460 \) Copy content Toggle raw display
$13$ \( T - 10166 \) Copy content Toggle raw display
$17$ \( T + 9918 \) Copy content Toggle raw display
$19$ \( T + 12436 \) Copy content Toggle raw display
$23$ \( T - 33600 \) Copy content Toggle raw display
$29$ \( T + 187914 \) Copy content Toggle raw display
$31$ \( T + 42592 \) Copy content Toggle raw display
$37$ \( T + 544066 \) Copy content Toggle raw display
$41$ \( T - 374394 \) Copy content Toggle raw display
$43$ \( T + 540532 \) Copy content Toggle raw display
$47$ \( T - 1338360 \) Copy content Toggle raw display
$53$ \( T - 1308222 \) Copy content Toggle raw display
$59$ \( T - 262740 \) Copy content Toggle raw display
$61$ \( T + 976330 \) Copy content Toggle raw display
$67$ \( T - 3559172 \) Copy content Toggle raw display
$71$ \( T + 2673720 \) Copy content Toggle raw display
$73$ \( T + 3032134 \) Copy content Toggle raw display
$79$ \( T + 5475808 \) Copy content Toggle raw display
$83$ \( T - 2231556 \) Copy content Toggle raw display
$89$ \( T + 10050678 \) Copy content Toggle raw display
$97$ \( T - 5727554 \) Copy content Toggle raw display
show more
show less