Properties

Label 30.4.a
Level $30$
Weight $4$
Character orbit 30.a
Rep. character $\chi_{30}(1,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $2$
Sturm bound $24$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 30.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(24\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(30))\).

Total New Old
Modular forms 22 2 20
Cusp forms 14 2 12
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(4\)\(0\)\(4\)\(3\)\(0\)\(3\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(2\)\(0\)\(2\)\(1\)\(0\)\(1\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(2\)\(0\)\(2\)\(1\)\(0\)\(1\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(3\)\(1\)\(2\)\(2\)\(1\)\(1\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(3\)\(0\)\(3\)\(2\)\(0\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(2\)\(0\)\(2\)\(1\)\(0\)\(1\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(3\)\(1\)\(2\)\(2\)\(1\)\(1\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(3\)\(0\)\(3\)\(2\)\(0\)\(2\)\(1\)\(0\)\(1\)
Plus space\(+\)\(12\)\(2\)\(10\)\(8\)\(2\)\(6\)\(4\)\(0\)\(4\)
Minus space\(-\)\(10\)\(0\)\(10\)\(6\)\(0\)\(6\)\(4\)\(0\)\(4\)

Trace form

\( 2 q + 6 q^{3} + 8 q^{4} + 28 q^{7} + 18 q^{9} - 20 q^{10} - 108 q^{11} + 24 q^{12} - 32 q^{13} - 72 q^{14} + 32 q^{16} - 72 q^{17} + 64 q^{19} + 84 q^{21} + 24 q^{22} + 72 q^{23} + 50 q^{25} + 72 q^{26}+ \cdots - 972 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(30))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5
30.4.a.a 30.a 1.a $1$ $1.770$ \(\Q\) None 30.4.a.a \(-2\) \(3\) \(5\) \(32\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+3q^{3}+4q^{4}+5q^{5}-6q^{6}+\cdots\)
30.4.a.b 30.a 1.a $1$ $1.770$ \(\Q\) None 30.4.a.b \(2\) \(3\) \(-5\) \(-4\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+3q^{3}+4q^{4}-5q^{5}+6q^{6}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(30))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(30)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)