Defining parameters
Level: | \( N \) | \(=\) | \( 30 = 2 \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 30.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(30))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 22 | 2 | 20 |
Cusp forms | 14 | 2 | 12 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(-\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(1\) |
Plus space | \(+\) | \(2\) | ||
Minus space | \(-\) | \(0\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(30))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 5 | |||||||
30.4.a.a | $1$ | $1.770$ | \(\Q\) | None | \(-2\) | \(3\) | \(5\) | \(32\) | $+$ | $-$ | $-$ | \(q-2q^{2}+3q^{3}+4q^{4}+5q^{5}-6q^{6}+\cdots\) | |
30.4.a.b | $1$ | $1.770$ | \(\Q\) | None | \(2\) | \(3\) | \(-5\) | \(-4\) | $-$ | $-$ | $+$ | \(q+2q^{2}+3q^{3}+4q^{4}-5q^{5}+6q^{6}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(30))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(30)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)