Properties

Label 30.3.d
Level $30$
Weight $3$
Character orbit 30.d
Rep. character $\chi_{30}(11,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $1$
Sturm bound $18$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 30.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(18\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(30, [\chi])\).

Total New Old
Modular forms 16 4 12
Cusp forms 8 4 4
Eisenstein series 8 0 8

Trace form

\( 4 q + 4 q^{3} - 8 q^{4} - 4 q^{6} + 8 q^{7} - 8 q^{9} - 8 q^{12} - 40 q^{13} + 20 q^{15} + 16 q^{16} + 32 q^{18} + 32 q^{19} - 52 q^{21} + 48 q^{22} + 8 q^{24} - 20 q^{25} + 28 q^{27} - 16 q^{28} - 20 q^{30}+ \cdots - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(30, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
30.3.d.a 30.d 3.b $4$ $0.817$ \(\Q(\sqrt{-2}, \sqrt{-5})\) None 30.3.d.a \(0\) \(4\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}+(1+\beta _{1}-\beta _{2}+\beta _{3})q^{3}-2q^{4}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(30, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(30, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)