Properties

Label 30.3.b.a.29.2
Level $30$
Weight $3$
Character 30.29
Analytic conductor $0.817$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [30,3,Mod(29,30)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(30, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("30.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 30.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.817440793081\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 16x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 29.2
Root \(0.707107 - 2.91548i\) of defining polynomial
Character \(\chi\) \(=\) 30.29
Dual form 30.3.b.a.29.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{2} +(0.707107 + 2.91548i) q^{3} +2.00000 q^{4} +(2.82843 + 4.12311i) q^{5} +(-1.00000 - 4.12311i) q^{6} -5.83095i q^{7} -2.82843 q^{8} +(-8.00000 + 4.12311i) q^{9} +O(q^{10})\) \(q-1.41421 q^{2} +(0.707107 + 2.91548i) q^{3} +2.00000 q^{4} +(2.82843 + 4.12311i) q^{5} +(-1.00000 - 4.12311i) q^{6} -5.83095i q^{7} -2.82843 q^{8} +(-8.00000 + 4.12311i) q^{9} +(-4.00000 - 5.83095i) q^{10} -16.4924i q^{11} +(1.41421 + 5.83095i) q^{12} +8.24621i q^{14} +(-10.0208 + 11.1617i) q^{15} +4.00000 q^{16} +11.3137 q^{17} +(11.3137 - 5.83095i) q^{18} +12.0000 q^{19} +(5.65685 + 8.24621i) q^{20} +(17.0000 - 4.12311i) q^{21} +23.3238i q^{22} -24.0416 q^{23} +(-2.00000 - 8.24621i) q^{24} +(-9.00000 + 23.3238i) q^{25} +(-17.6777 - 20.4083i) q^{27} -11.6619i q^{28} +(14.1716 - 15.7850i) q^{30} -32.0000 q^{31} -5.65685 q^{32} +(48.0833 - 11.6619i) q^{33} -16.0000 q^{34} +(24.0416 - 16.4924i) q^{35} +(-16.0000 + 8.24621i) q^{36} -23.3238i q^{37} -16.9706 q^{38} +(-8.00000 - 11.6619i) q^{40} +57.7235i q^{41} +(-24.0416 + 5.83095i) q^{42} +40.8167i q^{43} -32.9848i q^{44} +(-39.6274 - 21.3229i) q^{45} +34.0000 q^{46} +35.3553 q^{47} +(2.82843 + 11.6619i) q^{48} +15.0000 q^{49} +(12.7279 - 32.9848i) q^{50} +(8.00000 + 32.9848i) q^{51} -67.8823 q^{53} +(25.0000 + 28.8617i) q^{54} +(68.0000 - 46.6476i) q^{55} +16.4924i q^{56} +(8.48528 + 34.9857i) q^{57} -16.4924i q^{59} +(-20.0416 + 22.3234i) q^{60} -16.0000 q^{61} +45.2548 q^{62} +(24.0416 + 46.6476i) q^{63} +8.00000 q^{64} +(-68.0000 + 16.4924i) q^{66} +5.83095i q^{67} +22.6274 q^{68} +(-17.0000 - 70.0928i) q^{69} +(-34.0000 + 23.3238i) q^{70} +(22.6274 - 11.6619i) q^{72} -116.619i q^{73} +32.9848i q^{74} +(-74.3640 - 9.74686i) q^{75} +24.0000 q^{76} -96.1665 q^{77} -72.0000 q^{79} +(11.3137 + 16.4924i) q^{80} +(47.0000 - 65.9697i) q^{81} -81.6333i q^{82} +43.8406 q^{83} +(34.0000 - 8.24621i) q^{84} +(32.0000 + 46.6476i) q^{85} -57.7235i q^{86} +46.6476i q^{88} +65.9697i q^{89} +(56.0416 + 30.1552i) q^{90} -48.0833 q^{92} +(-22.6274 - 93.2952i) q^{93} -50.0000 q^{94} +(33.9411 + 49.4773i) q^{95} +(-4.00000 - 16.4924i) q^{96} +163.267i q^{97} -21.2132 q^{98} +(68.0000 + 131.939i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{4} - 4 q^{6} - 32 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 8 q^{4} - 4 q^{6} - 32 q^{9} - 16 q^{10} + 8 q^{15} + 16 q^{16} + 48 q^{19} + 68 q^{21} - 8 q^{24} - 36 q^{25} + 68 q^{30} - 128 q^{31} - 64 q^{34} - 64 q^{36} - 32 q^{40} - 68 q^{45} + 136 q^{46} + 60 q^{49} + 32 q^{51} + 100 q^{54} + 272 q^{55} + 16 q^{60} - 64 q^{61} + 32 q^{64} - 272 q^{66} - 68 q^{69} - 136 q^{70} - 272 q^{75} + 96 q^{76} - 288 q^{79} + 188 q^{81} + 136 q^{84} + 128 q^{85} + 128 q^{90} - 200 q^{94} - 16 q^{96} + 272 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/30\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(11\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 −0.707107
\(3\) 0.707107 + 2.91548i 0.235702 + 0.971825i
\(4\) 2.00000 0.500000
\(5\) 2.82843 + 4.12311i 0.565685 + 0.824621i
\(6\) −1.00000 4.12311i −0.166667 0.687184i
\(7\) 5.83095i 0.832993i −0.909137 0.416497i \(-0.863258\pi\)
0.909137 0.416497i \(-0.136742\pi\)
\(8\) −2.82843 −0.353553
\(9\) −8.00000 + 4.12311i −0.888889 + 0.458123i
\(10\) −4.00000 5.83095i −0.400000 0.583095i
\(11\) 16.4924i 1.49931i −0.661828 0.749656i \(-0.730219\pi\)
0.661828 0.749656i \(-0.269781\pi\)
\(12\) 1.41421 + 5.83095i 0.117851 + 0.485913i
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 8.24621i 0.589015i
\(15\) −10.0208 + 11.1617i −0.668054 + 0.744112i
\(16\) 4.00000 0.250000
\(17\) 11.3137 0.665512 0.332756 0.943013i \(-0.392021\pi\)
0.332756 + 0.943013i \(0.392021\pi\)
\(18\) 11.3137 5.83095i 0.628539 0.323942i
\(19\) 12.0000 0.631579 0.315789 0.948829i \(-0.397731\pi\)
0.315789 + 0.948829i \(0.397731\pi\)
\(20\) 5.65685 + 8.24621i 0.282843 + 0.412311i
\(21\) 17.0000 4.12311i 0.809524 0.196338i
\(22\) 23.3238i 1.06017i
\(23\) −24.0416 −1.04529 −0.522644 0.852551i \(-0.675054\pi\)
−0.522644 + 0.852551i \(0.675054\pi\)
\(24\) −2.00000 8.24621i −0.0833333 0.343592i
\(25\) −9.00000 + 23.3238i −0.360000 + 0.932952i
\(26\) 0 0
\(27\) −17.6777 20.4083i −0.654729 0.755864i
\(28\) 11.6619i 0.416497i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 14.1716 15.7850i 0.472386 0.526167i
\(31\) −32.0000 −1.03226 −0.516129 0.856511i \(-0.672628\pi\)
−0.516129 + 0.856511i \(0.672628\pi\)
\(32\) −5.65685 −0.176777
\(33\) 48.0833 11.6619i 1.45707 0.353391i
\(34\) −16.0000 −0.470588
\(35\) 24.0416 16.4924i 0.686904 0.471212i
\(36\) −16.0000 + 8.24621i −0.444444 + 0.229061i
\(37\) 23.3238i 0.630373i −0.949030 0.315187i \(-0.897933\pi\)
0.949030 0.315187i \(-0.102067\pi\)
\(38\) −16.9706 −0.446594
\(39\) 0 0
\(40\) −8.00000 11.6619i −0.200000 0.291548i
\(41\) 57.7235i 1.40789i 0.710255 + 0.703945i \(0.248580\pi\)
−0.710255 + 0.703945i \(0.751420\pi\)
\(42\) −24.0416 + 5.83095i −0.572420 + 0.138832i
\(43\) 40.8167i 0.949225i 0.880195 + 0.474612i \(0.157412\pi\)
−0.880195 + 0.474612i \(0.842588\pi\)
\(44\) 32.9848i 0.749656i
\(45\) −39.6274 21.3229i −0.880609 0.473843i
\(46\) 34.0000 0.739130
\(47\) 35.3553 0.752241 0.376121 0.926571i \(-0.377258\pi\)
0.376121 + 0.926571i \(0.377258\pi\)
\(48\) 2.82843 + 11.6619i 0.0589256 + 0.242956i
\(49\) 15.0000 0.306122
\(50\) 12.7279 32.9848i 0.254558 0.659697i
\(51\) 8.00000 + 32.9848i 0.156863 + 0.646762i
\(52\) 0 0
\(53\) −67.8823 −1.28080 −0.640399 0.768043i \(-0.721231\pi\)
−0.640399 + 0.768043i \(0.721231\pi\)
\(54\) 25.0000 + 28.8617i 0.462963 + 0.534477i
\(55\) 68.0000 46.6476i 1.23636 0.848138i
\(56\) 16.4924i 0.294508i
\(57\) 8.48528 + 34.9857i 0.148865 + 0.613784i
\(58\) 0 0
\(59\) 16.4924i 0.279533i −0.990185 0.139766i \(-0.955365\pi\)
0.990185 0.139766i \(-0.0446351\pi\)
\(60\) −20.0416 + 22.3234i −0.334027 + 0.372056i
\(61\) −16.0000 −0.262295 −0.131148 0.991363i \(-0.541866\pi\)
−0.131148 + 0.991363i \(0.541866\pi\)
\(62\) 45.2548 0.729917
\(63\) 24.0416 + 46.6476i 0.381613 + 0.740438i
\(64\) 8.00000 0.125000
\(65\) 0 0
\(66\) −68.0000 + 16.4924i −1.03030 + 0.249885i
\(67\) 5.83095i 0.0870291i 0.999053 + 0.0435146i \(0.0138555\pi\)
−0.999053 + 0.0435146i \(0.986145\pi\)
\(68\) 22.6274 0.332756
\(69\) −17.0000 70.0928i −0.246377 1.01584i
\(70\) −34.0000 + 23.3238i −0.485714 + 0.333197i
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 22.6274 11.6619i 0.314270 0.161971i
\(73\) 116.619i 1.59752i −0.601649 0.798761i \(-0.705489\pi\)
0.601649 0.798761i \(-0.294511\pi\)
\(74\) 32.9848i 0.445741i
\(75\) −74.3640 9.74686i −0.991519 0.129958i
\(76\) 24.0000 0.315789
\(77\) −96.1665 −1.24892
\(78\) 0 0
\(79\) −72.0000 −0.911392 −0.455696 0.890135i \(-0.650610\pi\)
−0.455696 + 0.890135i \(0.650610\pi\)
\(80\) 11.3137 + 16.4924i 0.141421 + 0.206155i
\(81\) 47.0000 65.9697i 0.580247 0.814441i
\(82\) 81.6333i 0.995528i
\(83\) 43.8406 0.528200 0.264100 0.964495i \(-0.414925\pi\)
0.264100 + 0.964495i \(0.414925\pi\)
\(84\) 34.0000 8.24621i 0.404762 0.0981692i
\(85\) 32.0000 + 46.6476i 0.376471 + 0.548795i
\(86\) 57.7235i 0.671203i
\(87\) 0 0
\(88\) 46.6476i 0.530087i
\(89\) 65.9697i 0.741232i 0.928786 + 0.370616i \(0.120853\pi\)
−0.928786 + 0.370616i \(0.879147\pi\)
\(90\) 56.0416 + 30.1552i 0.622685 + 0.335058i
\(91\) 0 0
\(92\) −48.0833 −0.522644
\(93\) −22.6274 93.2952i −0.243306 1.00317i
\(94\) −50.0000 −0.531915
\(95\) 33.9411 + 49.4773i 0.357275 + 0.520813i
\(96\) −4.00000 16.4924i −0.0416667 0.171796i
\(97\) 163.267i 1.68316i 0.540131 + 0.841581i \(0.318375\pi\)
−0.540131 + 0.841581i \(0.681625\pi\)
\(98\) −21.2132 −0.216461
\(99\) 68.0000 + 131.939i 0.686869 + 1.33272i
\(100\) −18.0000 + 46.6476i −0.180000 + 0.466476i
\(101\) 131.939i 1.30633i −0.757215 0.653165i \(-0.773441\pi\)
0.757215 0.653165i \(-0.226559\pi\)
\(102\) −11.3137 46.6476i −0.110919 0.457330i
\(103\) 99.1262i 0.962390i 0.876614 + 0.481195i \(0.159797\pi\)
−0.876614 + 0.481195i \(0.840203\pi\)
\(104\) 0 0
\(105\) 65.0833 + 58.4309i 0.619841 + 0.556485i
\(106\) 96.0000 0.905660
\(107\) 55.1543 0.515461 0.257731 0.966217i \(-0.417025\pi\)
0.257731 + 0.966217i \(0.417025\pi\)
\(108\) −35.3553 40.8167i −0.327364 0.377932i
\(109\) 80.0000 0.733945 0.366972 0.930232i \(-0.380394\pi\)
0.366972 + 0.930232i \(0.380394\pi\)
\(110\) −96.1665 + 65.9697i −0.874241 + 0.599724i
\(111\) 68.0000 16.4924i 0.612613 0.148580i
\(112\) 23.3238i 0.208248i
\(113\) 152.735 1.35164 0.675819 0.737068i \(-0.263790\pi\)
0.675819 + 0.737068i \(0.263790\pi\)
\(114\) −12.0000 49.4773i −0.105263 0.434011i
\(115\) −68.0000 99.1262i −0.591304 0.861967i
\(116\) 0 0
\(117\) 0 0
\(118\) 23.3238i 0.197659i
\(119\) 65.9697i 0.554367i
\(120\) 28.3431 31.5700i 0.236193 0.263083i
\(121\) −151.000 −1.24793
\(122\) 22.6274 0.185471
\(123\) −168.291 + 40.8167i −1.36822 + 0.331843i
\(124\) −64.0000 −0.516129
\(125\) −121.622 + 28.8617i −0.972979 + 0.230894i
\(126\) −34.0000 65.9697i −0.269841 0.523569i
\(127\) 40.8167i 0.321391i −0.987004 0.160696i \(-0.948626\pi\)
0.987004 0.160696i \(-0.0513737\pi\)
\(128\) −11.3137 −0.0883883
\(129\) −119.000 + 28.8617i −0.922481 + 0.223734i
\(130\) 0 0
\(131\) 49.4773i 0.377689i −0.982007 0.188845i \(-0.939526\pi\)
0.982007 0.188845i \(-0.0604742\pi\)
\(132\) 96.1665 23.3238i 0.728534 0.176696i
\(133\) 69.9714i 0.526101i
\(134\) 8.24621i 0.0615389i
\(135\) 34.1457 130.610i 0.252931 0.967484i
\(136\) −32.0000 −0.235294
\(137\) 50.9117 0.371618 0.185809 0.982586i \(-0.440509\pi\)
0.185809 + 0.982586i \(0.440509\pi\)
\(138\) 24.0416 + 99.1262i 0.174215 + 0.718306i
\(139\) 44.0000 0.316547 0.158273 0.987395i \(-0.449407\pi\)
0.158273 + 0.987395i \(0.449407\pi\)
\(140\) 48.0833 32.9848i 0.343452 0.235606i
\(141\) 25.0000 + 103.078i 0.177305 + 0.731047i
\(142\) 0 0
\(143\) 0 0
\(144\) −32.0000 + 16.4924i −0.222222 + 0.114531i
\(145\) 0 0
\(146\) 164.924i 1.12962i
\(147\) 10.6066 + 43.7321i 0.0721538 + 0.297498i
\(148\) 46.6476i 0.315187i
\(149\) 8.24621i 0.0553437i 0.999617 + 0.0276718i \(0.00880935\pi\)
−0.999617 + 0.0276718i \(0.991191\pi\)
\(150\) 105.167 + 13.7841i 0.701110 + 0.0918943i
\(151\) 136.000 0.900662 0.450331 0.892862i \(-0.351306\pi\)
0.450331 + 0.892862i \(0.351306\pi\)
\(152\) −33.9411 −0.223297
\(153\) −90.5097 + 46.6476i −0.591566 + 0.304886i
\(154\) 136.000 0.883117
\(155\) −90.5097 131.939i −0.583933 0.851222i
\(156\) 0 0
\(157\) 116.619i 0.742796i −0.928474 0.371398i \(-0.878878\pi\)
0.928474 0.371398i \(-0.121122\pi\)
\(158\) 101.823 0.644452
\(159\) −48.0000 197.909i −0.301887 1.24471i
\(160\) −16.0000 23.3238i −0.100000 0.145774i
\(161\) 140.186i 0.870718i
\(162\) −66.4680 + 93.2952i −0.410297 + 0.575896i
\(163\) 99.1262i 0.608136i 0.952650 + 0.304068i \(0.0983450\pi\)
−0.952650 + 0.304068i \(0.901655\pi\)
\(164\) 115.447i 0.703945i
\(165\) 184.083 + 165.268i 1.11566 + 1.00162i
\(166\) −62.0000 −0.373494
\(167\) −292.742 −1.75295 −0.876474 0.481450i \(-0.840110\pi\)
−0.876474 + 0.481450i \(0.840110\pi\)
\(168\) −48.0833 + 11.6619i −0.286210 + 0.0694161i
\(169\) 169.000 1.00000
\(170\) −45.2548 65.9697i −0.266205 0.388057i
\(171\) −96.0000 + 49.4773i −0.561404 + 0.289341i
\(172\) 81.6333i 0.474612i
\(173\) 164.049 0.948259 0.474129 0.880455i \(-0.342763\pi\)
0.474129 + 0.880455i \(0.342763\pi\)
\(174\) 0 0
\(175\) 136.000 + 52.4786i 0.777143 + 0.299878i
\(176\) 65.9697i 0.374828i
\(177\) 48.0833 11.6619i 0.271657 0.0658865i
\(178\) 93.2952i 0.524131i
\(179\) 16.4924i 0.0921364i −0.998938 0.0460682i \(-0.985331\pi\)
0.998938 0.0460682i \(-0.0146692\pi\)
\(180\) −79.2548 42.6459i −0.440305 0.236922i
\(181\) −82.0000 −0.453039 −0.226519 0.974007i \(-0.572735\pi\)
−0.226519 + 0.974007i \(0.572735\pi\)
\(182\) 0 0
\(183\) −11.3137 46.6476i −0.0618235 0.254905i
\(184\) 68.0000 0.369565
\(185\) 96.1665 65.9697i 0.519819 0.356593i
\(186\) 32.0000 + 131.939i 0.172043 + 0.709352i
\(187\) 186.590i 0.997810i
\(188\) 70.7107 0.376121
\(189\) −119.000 + 103.078i −0.629630 + 0.545384i
\(190\) −48.0000 69.9714i −0.252632 0.368271i
\(191\) 296.864i 1.55426i 0.629340 + 0.777130i \(0.283325\pi\)
−0.629340 + 0.777130i \(0.716675\pi\)
\(192\) 5.65685 + 23.3238i 0.0294628 + 0.121478i
\(193\) 116.619i 0.604244i −0.953269 0.302122i \(-0.902305\pi\)
0.953269 0.302122i \(-0.0976950\pi\)
\(194\) 230.894i 1.19017i
\(195\) 0 0
\(196\) 30.0000 0.153061
\(197\) 192.333 0.976310 0.488155 0.872757i \(-0.337670\pi\)
0.488155 + 0.872757i \(0.337670\pi\)
\(198\) −96.1665 186.590i −0.485690 0.942376i
\(199\) −312.000 −1.56784 −0.783920 0.620862i \(-0.786783\pi\)
−0.783920 + 0.620862i \(0.786783\pi\)
\(200\) 25.4558 65.9697i 0.127279 0.329848i
\(201\) −17.0000 + 4.12311i −0.0845771 + 0.0205130i
\(202\) 186.590i 0.923715i
\(203\) 0 0
\(204\) 16.0000 + 65.9697i 0.0784314 + 0.323381i
\(205\) −238.000 + 163.267i −1.16098 + 0.796423i
\(206\) 140.186i 0.680513i
\(207\) 192.333 99.1262i 0.929145 0.478870i
\(208\) 0 0
\(209\) 197.909i 0.946933i
\(210\) −92.0416 82.6338i −0.438293 0.393494i
\(211\) −12.0000 −0.0568720 −0.0284360 0.999596i \(-0.509053\pi\)
−0.0284360 + 0.999596i \(0.509053\pi\)
\(212\) −135.765 −0.640399
\(213\) 0 0
\(214\) −78.0000 −0.364486
\(215\) −168.291 + 115.447i −0.782751 + 0.536963i
\(216\) 50.0000 + 57.7235i 0.231481 + 0.267238i
\(217\) 186.590i 0.859864i
\(218\) −113.137 −0.518977
\(219\) 340.000 82.4621i 1.55251 0.376539i
\(220\) 136.000 93.2952i 0.618182 0.424069i
\(221\) 0 0
\(222\) −96.1665 + 23.3238i −0.433183 + 0.105062i
\(223\) 40.8167i 0.183034i 0.995803 + 0.0915172i \(0.0291716\pi\)
−0.995803 + 0.0915172i \(0.970828\pi\)
\(224\) 32.9848i 0.147254i
\(225\) −24.1665 223.698i −0.107407 0.994215i
\(226\) −216.000 −0.955752
\(227\) 159.806 0.703992 0.351996 0.936002i \(-0.385503\pi\)
0.351996 + 0.936002i \(0.385503\pi\)
\(228\) 16.9706 + 69.9714i 0.0744323 + 0.306892i
\(229\) 82.0000 0.358079 0.179039 0.983842i \(-0.442701\pi\)
0.179039 + 0.983842i \(0.442701\pi\)
\(230\) 96.1665 + 140.186i 0.418115 + 0.609503i
\(231\) −68.0000 280.371i −0.294372 1.21373i
\(232\) 0 0
\(233\) −192.333 −0.825464 −0.412732 0.910853i \(-0.635425\pi\)
−0.412732 + 0.910853i \(0.635425\pi\)
\(234\) 0 0
\(235\) 100.000 + 145.774i 0.425532 + 0.620314i
\(236\) 32.9848i 0.139766i
\(237\) −50.9117 209.914i −0.214817 0.885714i
\(238\) 93.2952i 0.391997i
\(239\) 461.788i 1.93217i 0.258231 + 0.966083i \(0.416861\pi\)
−0.258231 + 0.966083i \(0.583139\pi\)
\(240\) −40.0833 + 44.6467i −0.167014 + 0.186028i
\(241\) 304.000 1.26141 0.630705 0.776022i \(-0.282766\pi\)
0.630705 + 0.776022i \(0.282766\pi\)
\(242\) 213.546 0.882423
\(243\) 225.567 + 90.3798i 0.928260 + 0.371933i
\(244\) −32.0000 −0.131148
\(245\) 42.4264 + 61.8466i 0.173169 + 0.252435i
\(246\) 238.000 57.7235i 0.967480 0.234648i
\(247\) 0 0
\(248\) 90.5097 0.364958
\(249\) 31.0000 + 127.816i 0.124498 + 0.513318i
\(250\) 172.000 40.8167i 0.688000 0.163267i
\(251\) 346.341i 1.37984i −0.723884 0.689922i \(-0.757645\pi\)
0.723884 0.689922i \(-0.242355\pi\)
\(252\) 48.0833 + 93.2952i 0.190807 + 0.370219i
\(253\) 396.505i 1.56721i
\(254\) 57.7235i 0.227258i
\(255\) −113.373 + 126.280i −0.444598 + 0.495216i
\(256\) 16.0000 0.0625000
\(257\) −390.323 −1.51877 −0.759383 0.650644i \(-0.774499\pi\)
−0.759383 + 0.650644i \(0.774499\pi\)
\(258\) 168.291 40.8167i 0.652292 0.158204i
\(259\) −136.000 −0.525097
\(260\) 0 0
\(261\) 0 0
\(262\) 69.9714i 0.267066i
\(263\) −295.571 −1.12384 −0.561921 0.827191i \(-0.689938\pi\)
−0.561921 + 0.827191i \(0.689938\pi\)
\(264\) −136.000 + 32.9848i −0.515152 + 0.124943i
\(265\) −192.000 279.886i −0.724528 1.05617i
\(266\) 98.9545i 0.372010i
\(267\) −192.333 + 46.6476i −0.720348 + 0.174710i
\(268\) 11.6619i 0.0435146i
\(269\) 74.2159i 0.275896i −0.990440 0.137948i \(-0.955949\pi\)
0.990440 0.137948i \(-0.0440506\pi\)
\(270\) −48.2893 + 184.711i −0.178849 + 0.684115i
\(271\) 40.0000 0.147601 0.0738007 0.997273i \(-0.476487\pi\)
0.0738007 + 0.997273i \(0.476487\pi\)
\(272\) 45.2548 0.166378
\(273\) 0 0
\(274\) −72.0000 −0.262774
\(275\) 384.666 + 148.432i 1.39879 + 0.539752i
\(276\) −34.0000 140.186i −0.123188 0.507919i
\(277\) 443.152i 1.59983i −0.600115 0.799914i \(-0.704878\pi\)
0.600115 0.799914i \(-0.295122\pi\)
\(278\) −62.2254 −0.223832
\(279\) 256.000 131.939i 0.917563 0.472901i
\(280\) −68.0000 + 46.6476i −0.242857 + 0.166599i
\(281\) 519.511i 1.84879i −0.381431 0.924397i \(-0.624569\pi\)
0.381431 0.924397i \(-0.375431\pi\)
\(282\) −35.3553 145.774i −0.125374 0.516928i
\(283\) 320.702i 1.13322i −0.823985 0.566612i \(-0.808254\pi\)
0.823985 0.566612i \(-0.191746\pi\)
\(284\) 0 0
\(285\) −120.250 + 133.940i −0.421929 + 0.469966i
\(286\) 0 0
\(287\) 336.583 1.17276
\(288\) 45.2548 23.3238i 0.157135 0.0809854i
\(289\) −161.000 −0.557093
\(290\) 0 0
\(291\) −476.000 + 115.447i −1.63574 + 0.396725i
\(292\) 233.238i 0.798761i
\(293\) −84.8528 −0.289600 −0.144800 0.989461i \(-0.546254\pi\)
−0.144800 + 0.989461i \(0.546254\pi\)
\(294\) −15.0000 61.8466i −0.0510204 0.210363i
\(295\) 68.0000 46.6476i 0.230508 0.158128i
\(296\) 65.9697i 0.222871i
\(297\) −336.583 + 291.548i −1.13328 + 0.981642i
\(298\) 11.6619i 0.0391339i
\(299\) 0 0
\(300\) −148.728 19.4937i −0.495760 0.0649791i
\(301\) 238.000 0.790698
\(302\) −192.333 −0.636864
\(303\) 384.666 93.2952i 1.26953 0.307905i
\(304\) 48.0000 0.157895
\(305\) −45.2548 65.9697i −0.148377 0.216294i
\(306\) 128.000 65.9697i 0.418301 0.215587i
\(307\) 367.350i 1.19658i 0.801280 + 0.598290i \(0.204153\pi\)
−0.801280 + 0.598290i \(0.795847\pi\)
\(308\) −192.333 −0.624458
\(309\) −289.000 + 70.0928i −0.935275 + 0.226838i
\(310\) 128.000 + 186.590i 0.412903 + 0.601905i
\(311\) 98.9545i 0.318182i 0.987264 + 0.159091i \(0.0508563\pi\)
−0.987264 + 0.159091i \(0.949144\pi\)
\(312\) 0 0
\(313\) 186.590i 0.596136i −0.954545 0.298068i \(-0.903658\pi\)
0.954545 0.298068i \(-0.0963422\pi\)
\(314\) 164.924i 0.525236i
\(315\) −124.333 + 231.066i −0.394708 + 0.733541i
\(316\) −144.000 −0.455696
\(317\) 520.431 1.64174 0.820868 0.571117i \(-0.193490\pi\)
0.820868 + 0.571117i \(0.193490\pi\)
\(318\) 67.8823 + 279.886i 0.213466 + 0.880144i
\(319\) 0 0
\(320\) 22.6274 + 32.9848i 0.0707107 + 0.103078i
\(321\) 39.0000 + 160.801i 0.121495 + 0.500938i
\(322\) 198.252i 0.615691i
\(323\) 135.765 0.420324
\(324\) 94.0000 131.939i 0.290123 0.407220i
\(325\) 0 0
\(326\) 140.186i 0.430017i
\(327\) 56.5685 + 233.238i 0.172992 + 0.713266i
\(328\) 163.267i 0.497764i
\(329\) 206.155i 0.626612i
\(330\) −260.333 233.724i −0.788888 0.708253i
\(331\) 292.000 0.882175 0.441088 0.897464i \(-0.354593\pi\)
0.441088 + 0.897464i \(0.354593\pi\)
\(332\) 87.6812 0.264100
\(333\) 96.1665 + 186.590i 0.288788 + 0.560332i
\(334\) 414.000 1.23952
\(335\) −24.0416 + 16.4924i −0.0717661 + 0.0492311i
\(336\) 68.0000 16.4924i 0.202381 0.0490846i
\(337\) 326.533i 0.968942i 0.874807 + 0.484471i \(0.160988\pi\)
−0.874807 + 0.484471i \(0.839012\pi\)
\(338\) −239.002 −0.707107
\(339\) 108.000 + 445.295i 0.318584 + 1.31356i
\(340\) 64.0000 + 93.2952i 0.188235 + 0.274398i
\(341\) 527.758i 1.54768i
\(342\) 135.765 69.9714i 0.396972 0.204595i
\(343\) 373.181i 1.08799i
\(344\) 115.447i 0.335602i
\(345\) 240.917 268.345i 0.698309 0.777812i
\(346\) −232.000 −0.670520
\(347\) −394.566 −1.13708 −0.568538 0.822657i \(-0.692491\pi\)
−0.568538 + 0.822657i \(0.692491\pi\)
\(348\) 0 0
\(349\) 254.000 0.727794 0.363897 0.931439i \(-0.381446\pi\)
0.363897 + 0.931439i \(0.381446\pi\)
\(350\) −192.333 74.2159i −0.549523 0.212045i
\(351\) 0 0
\(352\) 93.2952i 0.265043i
\(353\) −345.068 −0.977530 −0.488765 0.872415i \(-0.662552\pi\)
−0.488765 + 0.872415i \(0.662552\pi\)
\(354\) −68.0000 + 16.4924i −0.192090 + 0.0465888i
\(355\) 0 0
\(356\) 131.939i 0.370616i
\(357\) 192.333 46.6476i 0.538748 0.130666i
\(358\) 23.3238i 0.0651503i
\(359\) 395.818i 1.10256i −0.834321 0.551279i \(-0.814140\pi\)
0.834321 0.551279i \(-0.185860\pi\)
\(360\) 112.083 + 60.3104i 0.311342 + 0.167529i
\(361\) −217.000 −0.601108
\(362\) 115.966 0.320347
\(363\) −106.773 440.237i −0.294141 1.21277i
\(364\) 0 0
\(365\) 480.833 329.848i 1.31735 0.903694i
\(366\) 16.0000 + 65.9697i 0.0437158 + 0.180245i
\(367\) 413.998i 1.12806i 0.825755 + 0.564029i \(0.190750\pi\)
−0.825755 + 0.564029i \(0.809250\pi\)
\(368\) −96.1665 −0.261322
\(369\) −238.000 461.788i −0.644986 1.25146i
\(370\) −136.000 + 93.2952i −0.367568 + 0.252149i
\(371\) 395.818i 1.06690i
\(372\) −45.2548 186.590i −0.121653 0.501587i
\(373\) 629.743i 1.68832i 0.536092 + 0.844159i \(0.319900\pi\)
−0.536092 + 0.844159i \(0.680100\pi\)
\(374\) 263.879i 0.705558i
\(375\) −170.146 334.179i −0.453722 0.891143i
\(376\) −100.000 −0.265957
\(377\) 0 0
\(378\) 168.291 145.774i 0.445215 0.385645i
\(379\) −572.000 −1.50923 −0.754617 0.656165i \(-0.772178\pi\)
−0.754617 + 0.656165i \(0.772178\pi\)
\(380\) 67.8823 + 98.9545i 0.178638 + 0.260407i
\(381\) 119.000 28.8617i 0.312336 0.0757526i
\(382\) 419.829i 1.09903i
\(383\) 193.747 0.505868 0.252934 0.967484i \(-0.418605\pi\)
0.252934 + 0.967484i \(0.418605\pi\)
\(384\) −8.00000 32.9848i −0.0208333 0.0858980i
\(385\) −272.000 396.505i −0.706494 1.02988i
\(386\) 164.924i 0.427265i
\(387\) −168.291 326.533i −0.434862 0.843755i
\(388\) 326.533i 0.841581i
\(389\) 387.572i 0.996329i 0.867083 + 0.498164i \(0.165992\pi\)
−0.867083 + 0.498164i \(0.834008\pi\)
\(390\) 0 0
\(391\) −272.000 −0.695652
\(392\) −42.4264 −0.108231
\(393\) 144.250 34.9857i 0.367048 0.0890222i
\(394\) −272.000 −0.690355
\(395\) −203.647 296.864i −0.515561 0.751553i
\(396\) 136.000 + 263.879i 0.343434 + 0.666361i
\(397\) 513.124i 1.29250i −0.763124 0.646252i \(-0.776336\pi\)
0.763124 0.646252i \(-0.223664\pi\)
\(398\) 441.235 1.10863
\(399\) 204.000 49.4773i 0.511278 0.124003i
\(400\) −36.0000 + 93.2952i −0.0900000 + 0.233238i
\(401\) 65.9697i 0.164513i 0.996611 + 0.0822565i \(0.0262127\pi\)
−0.996611 + 0.0822565i \(0.973787\pi\)
\(402\) 24.0416 5.83095i 0.0598051 0.0145049i
\(403\) 0 0
\(404\) 263.879i 0.653165i
\(405\) 404.936 + 7.19550i 0.999842 + 0.0177667i
\(406\) 0 0
\(407\) −384.666 −0.945126
\(408\) −22.6274 93.2952i −0.0554594 0.228665i
\(409\) 640.000 1.56479 0.782396 0.622781i \(-0.213997\pi\)
0.782396 + 0.622781i \(0.213997\pi\)
\(410\) 336.583 230.894i 0.820934 0.563156i
\(411\) 36.0000 + 148.432i 0.0875912 + 0.361148i
\(412\) 198.252i 0.481195i
\(413\) −96.1665 −0.232849
\(414\) −272.000 + 140.186i −0.657005 + 0.338613i
\(415\) 124.000 + 180.760i 0.298795 + 0.435565i
\(416\) 0 0
\(417\) 31.1127 + 128.281i 0.0746108 + 0.307628i
\(418\) 279.886i 0.669583i
\(419\) 577.235i 1.37765i −0.724928 0.688824i \(-0.758127\pi\)
0.724928 0.688824i \(-0.241873\pi\)
\(420\) 130.167 + 116.862i 0.309920 + 0.278242i
\(421\) −656.000 −1.55819 −0.779097 0.626903i \(-0.784322\pi\)
−0.779097 + 0.626903i \(0.784322\pi\)
\(422\) 16.9706 0.0402146
\(423\) −282.843 + 145.774i −0.668659 + 0.344619i
\(424\) 192.000 0.452830
\(425\) −101.823 + 263.879i −0.239584 + 0.620891i
\(426\) 0 0
\(427\) 93.2952i 0.218490i
\(428\) 110.309 0.257731
\(429\) 0 0
\(430\) 238.000 163.267i 0.553488 0.379690i
\(431\) 362.833i 0.841841i −0.907098 0.420920i \(-0.861707\pi\)
0.907098 0.420920i \(-0.138293\pi\)
\(432\) −70.7107 81.6333i −0.163682 0.188966i
\(433\) 163.267i 0.377059i 0.982068 + 0.188530i \(0.0603722\pi\)
−0.982068 + 0.188530i \(0.939628\pi\)
\(434\) 263.879i 0.608016i
\(435\) 0 0
\(436\) 160.000 0.366972
\(437\) −288.500 −0.660182
\(438\) −480.833 + 116.619i −1.09779 + 0.266254i
\(439\) 432.000 0.984055 0.492027 0.870580i \(-0.336256\pi\)
0.492027 + 0.870580i \(0.336256\pi\)
\(440\) −192.333 + 131.939i −0.437121 + 0.299862i
\(441\) −120.000 + 61.8466i −0.272109 + 0.140242i
\(442\) 0 0
\(443\) −123.037 −0.277735 −0.138867 0.990311i \(-0.544346\pi\)
−0.138867 + 0.990311i \(0.544346\pi\)
\(444\) 136.000 32.9848i 0.306306 0.0742902i
\(445\) −272.000 + 186.590i −0.611236 + 0.419304i
\(446\) 57.7235i 0.129425i
\(447\) −24.0416 + 5.83095i −0.0537844 + 0.0130446i
\(448\) 46.6476i 0.104124i
\(449\) 865.852i 1.92840i 0.265174 + 0.964201i \(0.414571\pi\)
−0.265174 + 0.964201i \(0.585429\pi\)
\(450\) 34.1766 + 316.357i 0.0759481 + 0.703016i
\(451\) 952.000 2.11086
\(452\) 305.470 0.675819
\(453\) 96.1665 + 396.505i 0.212288 + 0.875286i
\(454\) −226.000 −0.497797
\(455\) 0 0
\(456\) −24.0000 98.9545i −0.0526316 0.217006i
\(457\) 466.476i 1.02074i 0.859956 + 0.510368i \(0.170491\pi\)
−0.859956 + 0.510368i \(0.829509\pi\)
\(458\) −115.966 −0.253200
\(459\) −200.000 230.894i −0.435730 0.503037i
\(460\) −136.000 198.252i −0.295652 0.430983i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 96.1665 + 396.505i 0.208153 + 0.858235i
\(463\) 612.250i 1.32235i −0.750230 0.661177i \(-0.770057\pi\)
0.750230 0.661177i \(-0.229943\pi\)
\(464\) 0 0
\(465\) 320.666 357.174i 0.689604 0.768116i
\(466\) 272.000 0.583691
\(467\) 767.918 1.64436 0.822182 0.569225i \(-0.192757\pi\)
0.822182 + 0.569225i \(0.192757\pi\)
\(468\) 0 0
\(469\) 34.0000 0.0724947
\(470\) −141.421 206.155i −0.300897 0.438628i
\(471\) 340.000 82.4621i 0.721868 0.175079i
\(472\) 46.6476i 0.0988297i
\(473\) 673.166 1.42318
\(474\) 72.0000 + 296.864i 0.151899 + 0.626295i
\(475\) −108.000 + 279.886i −0.227368 + 0.589233i
\(476\) 131.939i 0.277184i
\(477\) 543.058 279.886i 1.13849 0.586762i
\(478\) 653.067i 1.36625i
\(479\) 560.742i 1.17065i 0.810798 + 0.585326i \(0.199033\pi\)
−0.810798 + 0.585326i \(0.800967\pi\)
\(480\) 56.6863 63.1400i 0.118096 0.131542i
\(481\) 0 0
\(482\) −429.921 −0.891952
\(483\) −408.708 + 99.1262i −0.846186 + 0.205230i
\(484\) −302.000 −0.623967
\(485\) −673.166 + 461.788i −1.38797 + 0.952140i
\(486\) −319.000 127.816i −0.656379 0.262996i
\(487\) 647.236i 1.32903i −0.747277 0.664513i \(-0.768639\pi\)
0.747277 0.664513i \(-0.231361\pi\)
\(488\) 45.2548 0.0927353
\(489\) −289.000 + 70.0928i −0.591002 + 0.143339i
\(490\) −60.0000 87.4643i −0.122449 0.178499i
\(491\) 346.341i 0.705379i −0.935740 0.352689i \(-0.885267\pi\)
0.935740 0.352689i \(-0.114733\pi\)
\(492\) −336.583 + 81.6333i −0.684111 + 0.165921i
\(493\) 0 0
\(494\) 0 0
\(495\) −351.667 + 653.552i −0.710438 + 1.32031i
\(496\) −128.000 −0.258065
\(497\) 0 0
\(498\) −43.8406 180.760i −0.0880334 0.362971i
\(499\) −660.000 −1.32265 −0.661323 0.750102i \(-0.730005\pi\)
−0.661323 + 0.750102i \(0.730005\pi\)
\(500\) −243.245 + 57.7235i −0.486489 + 0.115447i
\(501\) −207.000 853.483i −0.413174 1.70356i
\(502\) 489.800i 0.975697i
\(503\) 182.434 0.362691 0.181345 0.983419i \(-0.441955\pi\)
0.181345 + 0.983419i \(0.441955\pi\)
\(504\) −68.0000 131.939i −0.134921 0.261784i
\(505\) 544.000 373.181i 1.07723 0.738972i
\(506\) 560.742i 1.10819i
\(507\) 119.501 + 492.715i 0.235702 + 0.971825i
\(508\) 81.6333i 0.160696i
\(509\) 395.818i 0.777639i −0.921314 0.388819i \(-0.872883\pi\)
0.921314 0.388819i \(-0.127117\pi\)
\(510\) 160.333 178.587i 0.314379 0.350171i
\(511\) −680.000 −1.33072
\(512\) −22.6274 −0.0441942
\(513\) −212.132 244.900i −0.413513 0.477388i
\(514\) 552.000 1.07393
\(515\) −408.708 + 280.371i −0.793607 + 0.544410i
\(516\) −238.000 + 57.7235i −0.461240 + 0.111867i
\(517\) 583.095i 1.12784i
\(518\) 192.333 0.371299
\(519\) 116.000 + 478.280i 0.223507 + 0.921542i
\(520\) 0 0
\(521\) 131.939i 0.253243i −0.991951 0.126621i \(-0.959587\pi\)
0.991951 0.126621i \(-0.0404133\pi\)
\(522\) 0 0
\(523\) 145.774i 0.278726i −0.990241 0.139363i \(-0.955494\pi\)
0.990241 0.139363i \(-0.0445055\pi\)
\(524\) 98.9545i 0.188845i
\(525\) −56.8335 + 433.613i −0.108254 + 0.825929i
\(526\) 418.000 0.794677
\(527\) −362.039 −0.686980
\(528\) 192.333 46.6476i 0.364267 0.0883478i
\(529\) 49.0000 0.0926276
\(530\) 271.529 + 395.818i 0.512319 + 0.746827i
\(531\) 68.0000 + 131.939i 0.128060 + 0.248473i
\(532\) 139.943i 0.263050i
\(533\) 0 0
\(534\) 272.000 65.9697i 0.509363 0.123539i
\(535\) 156.000 + 227.407i 0.291589 + 0.425060i
\(536\) 16.4924i 0.0307694i
\(537\) 48.0833 11.6619i 0.0895405 0.0217168i
\(538\) 104.957i 0.195088i
\(539\) 247.386i 0.458973i
\(540\) 68.2914 261.221i 0.126466 0.483742i
\(541\) 418.000 0.772643 0.386322 0.922364i \(-0.373745\pi\)
0.386322 + 0.922364i \(0.373745\pi\)
\(542\) −56.5685 −0.104370
\(543\) −57.9828 239.069i −0.106782 0.440274i
\(544\) −64.0000 −0.117647
\(545\) 226.274 + 329.848i 0.415182 + 0.605227i
\(546\) 0 0
\(547\) 285.717i 0.522334i −0.965294 0.261167i \(-0.915893\pi\)
0.965294 0.261167i \(-0.0841073\pi\)
\(548\) 101.823 0.185809
\(549\) 128.000 65.9697i 0.233151 0.120163i
\(550\) −544.000 209.914i −0.989091 0.381662i
\(551\) 0 0
\(552\) 48.0833 + 198.252i 0.0871074 + 0.359153i
\(553\) 419.829i 0.759184i
\(554\) 626.712i 1.13125i
\(555\) 260.333 + 233.724i 0.469069 + 0.421124i
\(556\) 88.0000 0.158273
\(557\) −424.264 −0.761695 −0.380847 0.924638i \(-0.624368\pi\)
−0.380847 + 0.924638i \(0.624368\pi\)
\(558\) −362.039 + 186.590i −0.648815 + 0.334392i
\(559\) 0 0
\(560\) 96.1665 65.9697i 0.171726 0.117803i
\(561\) 544.000 131.939i 0.969697 0.235186i
\(562\) 734.700i 1.30730i
\(563\) 813.173 1.44436 0.722178 0.691707i \(-0.243141\pi\)
0.722178 + 0.691707i \(0.243141\pi\)
\(564\) 50.0000 + 206.155i 0.0886525 + 0.365524i
\(565\) 432.000 + 629.743i 0.764602 + 1.11459i
\(566\) 453.542i 0.801310i
\(567\) −384.666 274.055i −0.678423 0.483342i
\(568\) 0 0
\(569\) 453.542i 0.797085i −0.917150 0.398543i \(-0.869516\pi\)
0.917150 0.398543i \(-0.130484\pi\)
\(570\) 170.059 189.420i 0.298349 0.332316i
\(571\) 220.000 0.385289 0.192644 0.981269i \(-0.438294\pi\)
0.192644 + 0.981269i \(0.438294\pi\)
\(572\) 0 0
\(573\) −865.499 + 209.914i −1.51047 + 0.366343i
\(574\) −476.000 −0.829268
\(575\) 216.375 560.742i 0.376304 0.975204i
\(576\) −64.0000 + 32.9848i −0.111111 + 0.0572654i
\(577\) 46.6476i 0.0808451i 0.999183 + 0.0404225i \(0.0128704\pi\)
−0.999183 + 0.0404225i \(0.987130\pi\)
\(578\) 227.688 0.393925
\(579\) 340.000 82.4621i 0.587219 0.142422i
\(580\) 0 0
\(581\) 255.633i 0.439987i
\(582\) 673.166 163.267i 1.15664 0.280527i
\(583\) 1119.54i 1.92031i
\(584\) 329.848i 0.564809i
\(585\) 0 0
\(586\) 120.000 0.204778
\(587\) −55.1543 −0.0939597 −0.0469798 0.998896i \(-0.514960\pi\)
−0.0469798 + 0.998896i \(0.514960\pi\)
\(588\) 21.2132 + 87.4643i 0.0360769 + 0.148749i
\(589\) −384.000 −0.651952
\(590\) −96.1665 + 65.9697i −0.162994 + 0.111813i
\(591\) 136.000 + 560.742i 0.230118 + 0.948803i
\(592\) 93.2952i 0.157593i
\(593\) −390.323 −0.658217 −0.329109 0.944292i \(-0.606748\pi\)
−0.329109 + 0.944292i \(0.606748\pi\)
\(594\) 476.000 412.311i 0.801347 0.694126i
\(595\) 272.000 186.590i 0.457143 0.313597i
\(596\) 16.4924i 0.0276718i
\(597\) −220.617 909.628i −0.369543 1.52367i
\(598\) 0 0
\(599\) 98.9545i 0.165200i 0.996583 + 0.0825998i \(0.0263223\pi\)
−0.996583 + 0.0825998i \(0.973678\pi\)
\(600\) 210.333 + 27.5683i 0.350555 + 0.0459471i
\(601\) −880.000 −1.46423 −0.732113 0.681183i \(-0.761466\pi\)
−0.732113 + 0.681183i \(0.761466\pi\)
\(602\) −336.583 −0.559108
\(603\) −24.0416 46.6476i −0.0398700 0.0773592i
\(604\) 272.000 0.450331
\(605\) −427.092 622.589i −0.705938 1.02907i
\(606\) −544.000 + 131.939i −0.897690 + 0.217722i
\(607\) 425.659i 0.701251i 0.936516 + 0.350626i \(0.114031\pi\)
−0.936516 + 0.350626i \(0.885969\pi\)
\(608\) −67.8823 −0.111648
\(609\) 0 0
\(610\) 64.0000 + 93.2952i 0.104918 + 0.152943i
\(611\) 0 0
\(612\) −181.019 + 93.2952i −0.295783 + 0.152443i
\(613\) 606.419i 0.989264i −0.869102 0.494632i \(-0.835303\pi\)
0.869102 0.494632i \(-0.164697\pi\)
\(614\) 519.511i 0.846110i
\(615\) −644.291 578.436i −1.04763 0.940547i
\(616\) 272.000 0.441558
\(617\) 113.137 0.183366 0.0916832 0.995788i \(-0.470775\pi\)
0.0916832 + 0.995788i \(0.470775\pi\)
\(618\) 408.708 99.1262i 0.661339 0.160398i
\(619\) 52.0000 0.0840065 0.0420032 0.999117i \(-0.486626\pi\)
0.0420032 + 0.999117i \(0.486626\pi\)
\(620\) −181.019 263.879i −0.291967 0.425611i
\(621\) 425.000 + 490.650i 0.684380 + 0.790096i
\(622\) 139.943i 0.224988i
\(623\) 384.666 0.617442
\(624\) 0 0
\(625\) −463.000 419.829i −0.740800 0.671726i
\(626\) 263.879i 0.421532i
\(627\) 576.999 139.943i 0.920254 0.223194i
\(628\) 233.238i 0.371398i
\(629\) 263.879i 0.419521i
\(630\) 175.833 326.776i 0.279101 0.518692i
\(631\) −544.000 −0.862124 −0.431062 0.902322i \(-0.641861\pi\)
−0.431062 + 0.902322i \(0.641861\pi\)
\(632\) 203.647 0.322226
\(633\) −8.48528 34.9857i −0.0134049 0.0552697i
\(634\) −736.000 −1.16088
\(635\) 168.291 115.447i 0.265026 0.181806i
\(636\) −96.0000 395.818i −0.150943 0.622356i
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −32.0000 46.6476i −0.0500000 0.0728869i
\(641\) 849.360i 1.32505i 0.749038 + 0.662527i \(0.230516\pi\)
−0.749038 + 0.662527i \(0.769484\pi\)
\(642\) −55.1543 227.407i −0.0859102 0.354217i
\(643\) 367.350i 0.571306i 0.958333 + 0.285653i \(0.0922105\pi\)
−0.958333 + 0.285653i \(0.907789\pi\)
\(644\) 280.371i 0.435359i
\(645\) −455.583 409.016i −0.706330 0.634134i
\(646\) −192.000 −0.297214
\(647\) 971.565 1.50165 0.750823 0.660504i \(-0.229657\pi\)
0.750823 + 0.660504i \(0.229657\pi\)
\(648\) −132.936 + 186.590i −0.205148 + 0.287948i
\(649\) −272.000 −0.419106
\(650\) 0 0
\(651\) −544.000 + 131.939i −0.835637 + 0.202672i
\(652\) 198.252i 0.304068i
\(653\) −350.725 −0.537098 −0.268549 0.963266i \(-0.586544\pi\)
−0.268549 + 0.963266i \(0.586544\pi\)
\(654\) −80.0000 329.848i −0.122324 0.504355i
\(655\) 204.000 139.943i 0.311450 0.213653i
\(656\) 230.894i 0.351972i
\(657\) 480.833 + 932.952i 0.731861 + 1.42002i
\(658\) 291.548i 0.443081i
\(659\) 577.235i 0.875925i 0.898993 + 0.437963i \(0.144300\pi\)
−0.898993 + 0.437963i \(0.855700\pi\)
\(660\) 368.167 + 330.535i 0.557828 + 0.500811i
\(661\) 80.0000 0.121029 0.0605144 0.998167i \(-0.480726\pi\)
0.0605144 + 0.998167i \(0.480726\pi\)
\(662\) −412.950 −0.623792
\(663\) 0 0
\(664\) −124.000 −0.186747
\(665\) 288.500 197.909i 0.433834 0.297608i
\(666\) −136.000 263.879i −0.204204 0.396214i
\(667\) 0 0
\(668\) −585.484 −0.876474
\(669\) −119.000 + 28.8617i −0.177877 + 0.0431416i
\(670\) 34.0000 23.3238i 0.0507463 0.0348117i
\(671\) 263.879i 0.393262i
\(672\) −96.1665 + 23.3238i −0.143105 + 0.0347080i
\(673\) 489.800i 0.727786i −0.931441 0.363893i \(-0.881447\pi\)
0.931441 0.363893i \(-0.118553\pi\)
\(674\) 461.788i 0.685145i
\(675\) 635.099 228.636i 0.940887 0.338719i
\(676\) 338.000 0.500000
\(677\) −192.333 −0.284096 −0.142048 0.989860i \(-0.545369\pi\)
−0.142048 + 0.989860i \(0.545369\pi\)
\(678\) −152.735 629.743i −0.225273 0.928824i
\(679\) 952.000 1.40206
\(680\) −90.5097 131.939i −0.133102 0.194029i
\(681\) 113.000 + 465.911i 0.165932 + 0.684157i
\(682\) 746.362i 1.09437i
\(683\) −236.174 −0.345789 −0.172894 0.984940i \(-0.555312\pi\)
−0.172894 + 0.984940i \(0.555312\pi\)
\(684\) −192.000 + 98.9545i −0.280702 + 0.144670i
\(685\) 144.000 + 209.914i 0.210219 + 0.306444i
\(686\) 527.758i 0.769326i
\(687\) 57.9828 + 239.069i 0.0843999 + 0.347990i
\(688\) 163.267i 0.237306i
\(689\) 0 0
\(690\) −340.708 + 379.497i −0.493779 + 0.549996i
\(691\) −548.000 −0.793054 −0.396527 0.918023i \(-0.629785\pi\)
−0.396527 + 0.918023i \(0.629785\pi\)
\(692\) 328.098 0.474129
\(693\) 769.332 396.505i 1.11015 0.572157i
\(694\) 558.000 0.804035
\(695\) 124.451 + 181.417i 0.179066 + 0.261031i
\(696\) 0 0
\(697\) 653.067i 0.936968i
\(698\) −359.210 −0.514628
\(699\) −136.000 560.742i −0.194564 0.802207i
\(700\) 272.000 + 104.957i 0.388571 + 0.149939i
\(701\) 57.7235i 0.0823445i 0.999152 + 0.0411722i \(0.0131092\pi\)
−0.999152 + 0.0411722i \(0.986891\pi\)
\(702\) 0 0
\(703\) 279.886i 0.398130i
\(704\) 131.939i 0.187414i
\(705\) −354.289 + 394.625i −0.502538 + 0.559752i
\(706\) 488.000 0.691218
\(707\) −769.332 −1.08816
\(708\) 96.1665 23.3238i 0.135828 0.0329432i
\(709\) 1230.00 1.73484 0.867419 0.497579i \(-0.165777\pi\)
0.867419 + 0.497579i \(0.165777\pi\)
\(710\) 0 0
\(711\) 576.000 296.864i 0.810127 0.417530i
\(712\) 186.590i 0.262065i
\(713\) 769.332 1.07901
\(714\) −272.000 + 65.9697i −0.380952 + 0.0923945i
\(715\) 0 0
\(716\) 32.9848i 0.0460682i
\(717\) −1346.33 + 326.533i −1.87773 + 0.455416i
\(718\) 559.771i 0.779626i
\(719\) 626.712i 0.871644i −0.900033 0.435822i \(-0.856458\pi\)
0.900033 0.435822i \(-0.143542\pi\)
\(720\) −158.510 85.2918i −0.220152 0.118461i
\(721\) 578.000 0.801664
\(722\) 306.884 0.425048
\(723\) 214.960 + 886.305i 0.297317 + 1.22587i
\(724\) −164.000 −0.226519
\(725\) 0 0
\(726\) 151.000 + 622.589i 0.207989 + 0.857561i
\(727\) 367.350i 0.505296i −0.967558 0.252648i \(-0.918699\pi\)
0.967558 0.252648i \(-0.0813014\pi\)
\(728\) 0 0
\(729\) −104.000 + 721.543i −0.142661 + 0.989772i
\(730\) −680.000 + 466.476i −0.931507 + 0.639008i
\(731\) 461.788i 0.631721i
\(732\) −22.6274 93.2952i −0.0309118 0.127453i
\(733\) 1002.92i 1.36825i −0.729367 0.684123i \(-0.760185\pi\)
0.729367 0.684123i \(-0.239815\pi\)
\(734\) 585.481i 0.797658i
\(735\) −150.312 + 167.425i −0.204506 + 0.227790i
\(736\) 136.000 0.184783
\(737\) 96.1665 0.130484
\(738\) 336.583 + 653.067i 0.456074 + 0.884914i
\(739\) −340.000 −0.460081 −0.230041 0.973181i \(-0.573886\pi\)
−0.230041 + 0.973181i \(0.573886\pi\)
\(740\) 192.333 131.939i 0.259910 0.178296i
\(741\) 0 0
\(742\) 559.771i 0.754409i
\(743\) −1243.09 −1.67307 −0.836537 0.547911i \(-0.815423\pi\)
−0.836537 + 0.547911i \(0.815423\pi\)
\(744\) 64.0000 + 263.879i 0.0860215 + 0.354676i
\(745\) −34.0000 + 23.3238i −0.0456376 + 0.0313071i
\(746\) 890.591i 1.19382i
\(747\) −350.725 + 180.760i −0.469511 + 0.241981i
\(748\) 373.181i 0.498905i
\(749\) 321.602i 0.429375i
\(750\) 240.622 + 472.600i 0.320830 + 0.630133i
\(751\) −520.000 −0.692410 −0.346205 0.938159i \(-0.612530\pi\)
−0.346205 + 0.938159i \(0.612530\pi\)
\(752\) 141.421 0.188060
\(753\) 1009.75 244.900i 1.34097 0.325232i
\(754\) 0 0
\(755\) 384.666 + 560.742i 0.509492 + 0.742705i
\(756\) −238.000 + 206.155i −0.314815 + 0.272692i
\(757\) 816.333i 1.07838i 0.842184 + 0.539190i \(0.181269\pi\)
−0.842184 + 0.539190i \(0.818731\pi\)
\(758\) 808.930 1.06719
\(759\) −1156.00 + 280.371i −1.52306 + 0.369395i
\(760\) −96.0000 139.943i −0.126316 0.184135i
\(761\) 395.818i 0.520129i −0.965591 0.260064i \(-0.916256\pi\)
0.965591 0.260064i \(-0.0837438\pi\)
\(762\) −168.291 + 40.8167i −0.220855 + 0.0535652i
\(763\) 466.476i 0.611371i
\(764\) 593.727i 0.777130i
\(765\) −448.333 241.242i −0.586056 0.315348i
\(766\) −274.000 −0.357702
\(767\) 0 0
\(768\) 11.3137 + 46.6476i 0.0147314 + 0.0607391i
\(769\) −306.000 −0.397919 −0.198960 0.980008i \(-0.563756\pi\)
−0.198960 + 0.980008i \(0.563756\pi\)
\(770\) 384.666 + 560.742i 0.499566 + 0.728237i
\(771\) −276.000 1137.98i −0.357977 1.47598i
\(772\) 233.238i 0.302122i
\(773\) −305.470 −0.395175 −0.197587 0.980285i \(-0.563311\pi\)
−0.197587 + 0.980285i \(0.563311\pi\)
\(774\) 238.000 + 461.788i 0.307494 + 0.596625i
\(775\) 288.000 746.362i 0.371613 0.963048i
\(776\) 461.788i 0.595087i
\(777\) −96.1665 396.505i −0.123766 0.510302i
\(778\) 548.109i 0.704511i