Properties

Label 30.3.b
Level $30$
Weight $3$
Character orbit 30.b
Rep. character $\chi_{30}(29,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $1$
Sturm bound $18$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 30.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(18\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(30, [\chi])\).

Total New Old
Modular forms 16 4 12
Cusp forms 8 4 4
Eisenstein series 8 0 8

Trace form

\( 4 q + 8 q^{4} - 4 q^{6} - 32 q^{9} + O(q^{10}) \) \( 4 q + 8 q^{4} - 4 q^{6} - 32 q^{9} - 16 q^{10} + 8 q^{15} + 16 q^{16} + 48 q^{19} + 68 q^{21} - 8 q^{24} - 36 q^{25} + 68 q^{30} - 128 q^{31} - 64 q^{34} - 64 q^{36} - 32 q^{40} - 68 q^{45} + 136 q^{46} + 60 q^{49} + 32 q^{51} + 100 q^{54} + 272 q^{55} + 16 q^{60} - 64 q^{61} + 32 q^{64} - 272 q^{66} - 68 q^{69} - 136 q^{70} - 272 q^{75} + 96 q^{76} - 288 q^{79} + 188 q^{81} + 136 q^{84} + 128 q^{85} + 128 q^{90} - 200 q^{94} - 16 q^{96} + 272 q^{99} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(30, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
30.3.b.a 30.b 15.d $4$ $0.817$ \(\Q(\sqrt{2}, \sqrt{-17})\) None 30.3.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}+(-\beta _{1}-\beta _{2})q^{3}+2q^{4}+(-2\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(30, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(30, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)