Properties

Label 3.8.a
Level $3$
Weight $8$
Character orbit 3.a
Rep. character $\chi_{3}(1,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $2$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 3.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(2\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(3))\).

Total New Old
Modular forms 3 1 2
Cusp forms 1 1 0
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)Dim
\(+\)\(1\)

Trace form

\( q + 6 q^{2} - 27 q^{3} - 92 q^{4} + 390 q^{5} - 162 q^{6} - 64 q^{7} - 1320 q^{8} + 729 q^{9} + 2340 q^{10} - 948 q^{11} + 2484 q^{12} - 5098 q^{13} - 384 q^{14} - 10530 q^{15} + 3856 q^{16} + 28386 q^{17}+ \cdots - 691092 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(3))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3
3.8.a.a 3.a 1.a $1$ $0.937$ \(\Q\) None 3.8.a.a \(6\) \(-27\) \(390\) \(-64\) $+$ $\mathrm{SU}(2)$ \(q+6q^{2}-3^{3}q^{3}-92q^{4}+390q^{5}+\cdots\)