Properties

Label 3.6.a.a
Level $3$
Weight $6$
Character orbit 3.a
Self dual yes
Analytic conductor $0.481$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3,6,Mod(1,3)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 3 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 3.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.481151459439\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 6 q^{2} + 9 q^{3} + 4 q^{4} + 6 q^{5} - 54 q^{6} - 40 q^{7} + 168 q^{8} + 81 q^{9} - 36 q^{10} - 564 q^{11} + 36 q^{12} + 638 q^{13} + 240 q^{14} + 54 q^{15} - 1136 q^{16} + 882 q^{17} - 486 q^{18}+ \cdots - 45684 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Expression as an eta quotient

\(f(z) = \eta(z)^{6}\eta(3z)^{6}=q\prod_{n=1}^\infty(1 - q^{n})^{6}(1 - q^{3n})^{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−6.00000 9.00000 4.00000 6.00000 −54.0000 −40.0000 168.000 81.0000 −36.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3.6.a.a 1
3.b odd 2 1 9.6.a.a 1
4.b odd 2 1 48.6.a.a 1
5.b even 2 1 75.6.a.e 1
5.c odd 4 2 75.6.b.b 2
7.b odd 2 1 147.6.a.a 1
7.c even 3 2 147.6.e.h 2
7.d odd 6 2 147.6.e.k 2
8.b even 2 1 192.6.a.d 1
8.d odd 2 1 192.6.a.l 1
9.c even 3 2 81.6.c.c 2
9.d odd 6 2 81.6.c.a 2
11.b odd 2 1 363.6.a.d 1
12.b even 2 1 144.6.a.f 1
13.b even 2 1 507.6.a.b 1
15.d odd 2 1 225.6.a.a 1
15.e even 4 2 225.6.b.b 2
16.e even 4 2 768.6.d.k 2
16.f odd 4 2 768.6.d.h 2
17.b even 2 1 867.6.a.a 1
19.b odd 2 1 1083.6.a.c 1
21.c even 2 1 441.6.a.i 1
24.f even 2 1 576.6.a.t 1
24.h odd 2 1 576.6.a.s 1
33.d even 2 1 1089.6.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3.6.a.a 1 1.a even 1 1 trivial
9.6.a.a 1 3.b odd 2 1
48.6.a.a 1 4.b odd 2 1
75.6.a.e 1 5.b even 2 1
75.6.b.b 2 5.c odd 4 2
81.6.c.a 2 9.d odd 6 2
81.6.c.c 2 9.c even 3 2
144.6.a.f 1 12.b even 2 1
147.6.a.a 1 7.b odd 2 1
147.6.e.h 2 7.c even 3 2
147.6.e.k 2 7.d odd 6 2
192.6.a.d 1 8.b even 2 1
192.6.a.l 1 8.d odd 2 1
225.6.a.a 1 15.d odd 2 1
225.6.b.b 2 15.e even 4 2
363.6.a.d 1 11.b odd 2 1
441.6.a.i 1 21.c even 2 1
507.6.a.b 1 13.b even 2 1
576.6.a.s 1 24.h odd 2 1
576.6.a.t 1 24.f even 2 1
768.6.d.h 2 16.f odd 4 2
768.6.d.k 2 16.e even 4 2
867.6.a.a 1 17.b even 2 1
1083.6.a.c 1 19.b odd 2 1
1089.6.a.b 1 33.d even 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 6 \) Copy content Toggle raw display
$3$ \( T - 9 \) Copy content Toggle raw display
$5$ \( T - 6 \) Copy content Toggle raw display
$7$ \( T + 40 \) Copy content Toggle raw display
$11$ \( T + 564 \) Copy content Toggle raw display
$13$ \( T - 638 \) Copy content Toggle raw display
$17$ \( T - 882 \) Copy content Toggle raw display
$19$ \( T + 556 \) Copy content Toggle raw display
$23$ \( T + 840 \) Copy content Toggle raw display
$29$ \( T - 4638 \) Copy content Toggle raw display
$31$ \( T - 4400 \) Copy content Toggle raw display
$37$ \( T + 2410 \) Copy content Toggle raw display
$41$ \( T + 6870 \) Copy content Toggle raw display
$43$ \( T - 9644 \) Copy content Toggle raw display
$47$ \( T + 18672 \) Copy content Toggle raw display
$53$ \( T - 33750 \) Copy content Toggle raw display
$59$ \( T + 18084 \) Copy content Toggle raw display
$61$ \( T - 39758 \) Copy content Toggle raw display
$67$ \( T + 23068 \) Copy content Toggle raw display
$71$ \( T + 4248 \) Copy content Toggle raw display
$73$ \( T + 41110 \) Copy content Toggle raw display
$79$ \( T - 21920 \) Copy content Toggle raw display
$83$ \( T - 82452 \) Copy content Toggle raw display
$89$ \( T + 94086 \) Copy content Toggle raw display
$97$ \( T - 49442 \) Copy content Toggle raw display
show more
show less