Properties

Label 3.38.a.b.1.4
Level 3
Weight 38
Character 3.1
Self dual Yes
Analytic conductor 26.014
Analytic rank 0
Dimension 4
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 3 \)
Weight: \( k \) = \( 38 \)
Character orbit: \([\chi]\) = 3.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(26.0142114374\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{15}\cdot 3^{10}\cdot 5\cdot 7 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-101317.\)
Character \(\chi\) = 3.1

$q$-expansion

\(f(q)\) \(=\) \(q+717293. q^{2} +3.87420e8 q^{3} +3.77070e11 q^{4} -9.63758e12 q^{5} +2.77894e14 q^{6} +1.74370e15 q^{7} +1.71886e17 q^{8} +1.50095e17 q^{9} +O(q^{10})\) \(q+717293. q^{2} +3.87420e8 q^{3} +3.77070e11 q^{4} -9.63758e12 q^{5} +2.77894e14 q^{6} +1.74370e15 q^{7} +1.71886e17 q^{8} +1.50095e17 q^{9} -6.91297e18 q^{10} +2.16917e19 q^{11} +1.46085e20 q^{12} +4.06617e20 q^{13} +1.25074e21 q^{14} -3.73380e21 q^{15} +7.14682e22 q^{16} +4.16602e21 q^{17} +1.07662e23 q^{18} -4.03822e23 q^{19} -3.63404e24 q^{20} +6.75545e23 q^{21} +1.55593e25 q^{22} -3.07818e25 q^{23} +6.65920e25 q^{24} +2.01235e25 q^{25} +2.91664e26 q^{26} +5.81497e25 q^{27} +6.57497e26 q^{28} -3.72833e26 q^{29} -2.67823e27 q^{30} -1.69414e27 q^{31} +2.76399e28 q^{32} +8.40380e27 q^{33} +2.98826e27 q^{34} -1.68050e28 q^{35} +5.65962e28 q^{36} +3.17528e28 q^{37} -2.89659e29 q^{38} +1.57532e29 q^{39} -1.65656e30 q^{40} -1.14320e29 q^{41} +4.84563e29 q^{42} +7.17875e29 q^{43} +8.17928e30 q^{44} -1.44655e30 q^{45} -2.20796e31 q^{46} +3.03496e29 q^{47} +2.76883e31 q^{48} -1.55216e31 q^{49} +1.44344e31 q^{50} +1.61400e30 q^{51} +1.53323e32 q^{52} -6.59860e31 q^{53} +4.17104e31 q^{54} -2.09055e32 q^{55} +2.99717e32 q^{56} -1.56449e32 q^{57} -2.67431e32 q^{58} -8.50758e32 q^{59} -1.40790e33 q^{60} +6.05924e32 q^{61} -1.21519e33 q^{62} +2.61720e32 q^{63} +1.00034e34 q^{64} -3.91881e33 q^{65} +6.02799e33 q^{66} -2.62114e33 q^{67} +1.57088e33 q^{68} -1.19255e34 q^{69} -1.20541e34 q^{70} +1.38853e34 q^{71} +2.57991e34 q^{72} -1.07813e34 q^{73} +2.27761e34 q^{74} +7.79624e33 q^{75} -1.52269e35 q^{76} +3.78238e34 q^{77} +1.12997e35 q^{78} +2.43825e35 q^{79} -6.88781e35 q^{80} +2.25284e34 q^{81} -8.20011e34 q^{82} -3.57499e34 q^{83} +2.54728e35 q^{84} -4.01504e34 q^{85} +5.14927e35 q^{86} -1.44443e35 q^{87} +3.72849e36 q^{88} +1.28259e36 q^{89} -1.03760e36 q^{90} +7.09018e35 q^{91} -1.16069e37 q^{92} -6.56345e35 q^{93} +2.17695e35 q^{94} +3.89187e36 q^{95} +1.07082e37 q^{96} -8.70371e36 q^{97} -1.11336e37 q^{98} +3.25581e36 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 437562q^{2} + 1549681956q^{3} + 346098955492q^{4} - 4099829756904q^{5} + 169520484007818q^{6} + 6605809948153184q^{7} + 140484113342159976q^{8} + 600378541187996484q^{9} + O(q^{10}) \) \( 4q + 437562q^{2} + 1549681956q^{3} + 346098955492q^{4} - 4099829756904q^{5} + 169520484007818q^{6} + 6605809948153184q^{7} + 140484113342159976q^{8} + 600378541187996484q^{9} - 21511023001649316q^{10} + 20953708852195292976q^{11} + \)\(13\!\cdots\!88\)\(q^{12} + 51830892788989874168q^{13} - \)\(18\!\cdots\!12\)\(q^{14} - \)\(15\!\cdots\!56\)\(q^{15} + \)\(55\!\cdots\!40\)\(q^{16} + \)\(81\!\cdots\!28\)\(q^{17} + \)\(65\!\cdots\!02\)\(q^{18} - \)\(54\!\cdots\!32\)\(q^{19} - \)\(35\!\cdots\!76\)\(q^{20} + \)\(25\!\cdots\!76\)\(q^{21} + \)\(23\!\cdots\!76\)\(q^{22} - \)\(61\!\cdots\!88\)\(q^{23} + \)\(54\!\cdots\!64\)\(q^{24} + \)\(95\!\cdots\!16\)\(q^{25} + \)\(42\!\cdots\!88\)\(q^{26} + \)\(23\!\cdots\!76\)\(q^{27} + \)\(24\!\cdots\!48\)\(q^{28} + \)\(41\!\cdots\!36\)\(q^{29} - \)\(83\!\cdots\!24\)\(q^{30} + \)\(89\!\cdots\!64\)\(q^{31} + \)\(36\!\cdots\!84\)\(q^{32} + \)\(81\!\cdots\!64\)\(q^{33} + \)\(31\!\cdots\!24\)\(q^{34} + \)\(42\!\cdots\!40\)\(q^{35} + \)\(51\!\cdots\!32\)\(q^{36} + \)\(55\!\cdots\!24\)\(q^{37} - \)\(73\!\cdots\!68\)\(q^{38} + \)\(20\!\cdots\!52\)\(q^{39} - \)\(26\!\cdots\!52\)\(q^{40} - \)\(86\!\cdots\!76\)\(q^{41} - \)\(70\!\cdots\!68\)\(q^{42} - \)\(50\!\cdots\!80\)\(q^{43} + \)\(28\!\cdots\!36\)\(q^{44} - \)\(61\!\cdots\!84\)\(q^{45} - \)\(14\!\cdots\!96\)\(q^{46} + \)\(42\!\cdots\!20\)\(q^{47} + \)\(21\!\cdots\!60\)\(q^{48} + \)\(40\!\cdots\!20\)\(q^{49} + \)\(10\!\cdots\!14\)\(q^{50} + \)\(31\!\cdots\!92\)\(q^{51} + \)\(18\!\cdots\!68\)\(q^{52} - \)\(12\!\cdots\!88\)\(q^{53} + \)\(25\!\cdots\!78\)\(q^{54} - \)\(32\!\cdots\!24\)\(q^{55} + \)\(49\!\cdots\!80\)\(q^{56} - \)\(21\!\cdots\!48\)\(q^{57} - \)\(75\!\cdots\!56\)\(q^{58} - \)\(13\!\cdots\!88\)\(q^{59} - \)\(13\!\cdots\!64\)\(q^{60} - \)\(12\!\cdots\!60\)\(q^{61} - \)\(37\!\cdots\!92\)\(q^{62} + \)\(99\!\cdots\!64\)\(q^{63} + \)\(85\!\cdots\!28\)\(q^{64} + \)\(15\!\cdots\!68\)\(q^{65} + \)\(92\!\cdots\!64\)\(q^{66} + \)\(16\!\cdots\!48\)\(q^{67} + \)\(63\!\cdots\!84\)\(q^{68} - \)\(23\!\cdots\!32\)\(q^{69} + \)\(82\!\cdots\!60\)\(q^{70} + \)\(10\!\cdots\!88\)\(q^{71} + \)\(21\!\cdots\!96\)\(q^{72} - \)\(19\!\cdots\!48\)\(q^{73} - \)\(89\!\cdots\!12\)\(q^{74} + \)\(36\!\cdots\!24\)\(q^{75} - \)\(95\!\cdots\!68\)\(q^{76} - \)\(25\!\cdots\!92\)\(q^{77} + \)\(16\!\cdots\!32\)\(q^{78} + \)\(42\!\cdots\!20\)\(q^{79} - \)\(95\!\cdots\!36\)\(q^{80} + \)\(90\!\cdots\!64\)\(q^{81} + \)\(33\!\cdots\!48\)\(q^{82} - \)\(46\!\cdots\!24\)\(q^{83} + \)\(95\!\cdots\!72\)\(q^{84} + \)\(18\!\cdots\!12\)\(q^{85} - \)\(36\!\cdots\!04\)\(q^{86} + \)\(16\!\cdots\!04\)\(q^{87} + \)\(42\!\cdots\!56\)\(q^{88} - \)\(31\!\cdots\!52\)\(q^{89} - \)\(32\!\cdots\!36\)\(q^{90} + \)\(26\!\cdots\!24\)\(q^{91} - \)\(16\!\cdots\!16\)\(q^{92} + \)\(34\!\cdots\!96\)\(q^{93} - \)\(57\!\cdots\!48\)\(q^{94} - \)\(89\!\cdots\!56\)\(q^{95} + \)\(14\!\cdots\!76\)\(q^{96} + \)\(44\!\cdots\!48\)\(q^{97} - \)\(43\!\cdots\!78\)\(q^{98} + \)\(31\!\cdots\!96\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 717293. 1.93482 0.967412 0.253207i \(-0.0814853\pi\)
0.967412 + 0.253207i \(0.0814853\pi\)
\(3\) 3.87420e8 0.577350
\(4\) 3.77070e11 2.74355
\(5\) −9.63758e12 −1.12986 −0.564928 0.825140i \(-0.691096\pi\)
−0.564928 + 0.825140i \(0.691096\pi\)
\(6\) 2.77894e14 1.11707
\(7\) 1.74370e15 0.404723 0.202361 0.979311i \(-0.435138\pi\)
0.202361 + 0.979311i \(0.435138\pi\)
\(8\) 1.71886e17 3.37345
\(9\) 1.50095e17 0.333333
\(10\) −6.91297e18 −2.18607
\(11\) 2.16917e19 1.17633 0.588164 0.808742i \(-0.299851\pi\)
0.588164 + 0.808742i \(0.299851\pi\)
\(12\) 1.46085e20 1.58399
\(13\) 4.06617e20 1.00285 0.501423 0.865202i \(-0.332810\pi\)
0.501423 + 0.865202i \(0.332810\pi\)
\(14\) 1.25074e21 0.783068
\(15\) −3.73380e21 −0.652323
\(16\) 7.14682e22 3.78350
\(17\) 4.16602e21 0.0718483 0.0359241 0.999355i \(-0.488563\pi\)
0.0359241 + 0.999355i \(0.488563\pi\)
\(18\) 1.07662e23 0.644941
\(19\) −4.03822e23 −0.889710 −0.444855 0.895603i \(-0.646745\pi\)
−0.444855 + 0.895603i \(0.646745\pi\)
\(20\) −3.63404e24 −3.09981
\(21\) 6.75545e23 0.233667
\(22\) 1.55593e25 2.27599
\(23\) −3.07818e25 −1.97847 −0.989234 0.146344i \(-0.953249\pi\)
−0.989234 + 0.146344i \(0.953249\pi\)
\(24\) 6.65920e25 1.94766
\(25\) 2.01235e25 0.276575
\(26\) 2.91664e26 1.94033
\(27\) 5.81497e25 0.192450
\(28\) 6.57497e26 1.11038
\(29\) −3.72833e26 −0.328967 −0.164483 0.986380i \(-0.552596\pi\)
−0.164483 + 0.986380i \(0.552596\pi\)
\(30\) −2.67823e27 −1.26213
\(31\) −1.69414e27 −0.435269 −0.217635 0.976030i \(-0.569834\pi\)
−0.217635 + 0.976030i \(0.569834\pi\)
\(32\) 2.76399e28 3.94695
\(33\) 8.40380e27 0.679153
\(34\) 2.98826e27 0.139014
\(35\) −1.68050e28 −0.457279
\(36\) 5.65962e28 0.914515
\(37\) 3.17528e28 0.309066 0.154533 0.987988i \(-0.450613\pi\)
0.154533 + 0.987988i \(0.450613\pi\)
\(38\) −2.89659e29 −1.72143
\(39\) 1.57532e29 0.578993
\(40\) −1.65656e30 −3.81152
\(41\) −1.14320e29 −0.166580 −0.0832898 0.996525i \(-0.526543\pi\)
−0.0832898 + 0.996525i \(0.526543\pi\)
\(42\) 4.84563e29 0.452104
\(43\) 7.17875e29 0.433394 0.216697 0.976239i \(-0.430472\pi\)
0.216697 + 0.976239i \(0.430472\pi\)
\(44\) 8.17928e30 3.22731
\(45\) −1.44655e30 −0.376619
\(46\) −2.20796e31 −3.82799
\(47\) 3.03496e29 0.0353462 0.0176731 0.999844i \(-0.494374\pi\)
0.0176731 + 0.999844i \(0.494374\pi\)
\(48\) 2.76883e31 2.18440
\(49\) −1.55216e31 −0.836199
\(50\) 1.44344e31 0.535123
\(51\) 1.61400e30 0.0414816
\(52\) 1.53323e32 2.75135
\(53\) −6.59860e31 −0.832431 −0.416216 0.909266i \(-0.636644\pi\)
−0.416216 + 0.909266i \(0.636644\pi\)
\(54\) 4.17104e31 0.372357
\(55\) −2.09055e32 −1.32908
\(56\) 2.99717e32 1.36531
\(57\) −1.56449e32 −0.513674
\(58\) −2.67431e32 −0.636492
\(59\) −8.50758e32 −1.47586 −0.737928 0.674879i \(-0.764196\pi\)
−0.737928 + 0.674879i \(0.764196\pi\)
\(60\) −1.40790e33 −1.78968
\(61\) 6.05924e32 0.567304 0.283652 0.958927i \(-0.408454\pi\)
0.283652 + 0.958927i \(0.408454\pi\)
\(62\) −1.21519e33 −0.842170
\(63\) 2.61720e32 0.134908
\(64\) 1.00034e34 3.85315
\(65\) −3.91881e33 −1.13307
\(66\) 6.02799e33 1.31404
\(67\) −2.62114e33 −0.432619 −0.216310 0.976325i \(-0.569402\pi\)
−0.216310 + 0.976325i \(0.569402\pi\)
\(68\) 1.57088e33 0.197119
\(69\) −1.19255e34 −1.14227
\(70\) −1.20541e34 −0.884754
\(71\) 1.38853e34 0.783925 0.391963 0.919981i \(-0.371796\pi\)
0.391963 + 0.919981i \(0.371796\pi\)
\(72\) 2.57991e34 1.12448
\(73\) −1.07813e34 −0.364079 −0.182040 0.983291i \(-0.558270\pi\)
−0.182040 + 0.983291i \(0.558270\pi\)
\(74\) 2.27761e34 0.597987
\(75\) 7.79624e33 0.159680
\(76\) −1.52269e35 −2.44096
\(77\) 3.78238e34 0.476087
\(78\) 1.12997e35 1.12025
\(79\) 2.43825e35 1.90976 0.954878 0.297000i \(-0.0959860\pi\)
0.954878 + 0.297000i \(0.0959860\pi\)
\(80\) −6.88781e35 −4.27481
\(81\) 2.25284e34 0.111111
\(82\) −8.20011e34 −0.322302
\(83\) −3.57499e34 −0.112287 −0.0561436 0.998423i \(-0.517880\pi\)
−0.0561436 + 0.998423i \(0.517880\pi\)
\(84\) 2.54728e35 0.641076
\(85\) −4.01504e34 −0.0811782
\(86\) 5.14927e35 0.838541
\(87\) −1.44443e35 −0.189929
\(88\) 3.72849e36 3.96829
\(89\) 1.28259e36 1.10757 0.553785 0.832659i \(-0.313183\pi\)
0.553785 + 0.832659i \(0.313183\pi\)
\(90\) −1.03760e36 −0.728691
\(91\) 7.09018e35 0.405875
\(92\) −1.16069e37 −5.42802
\(93\) −6.56345e35 −0.251303
\(94\) 2.17695e35 0.0683886
\(95\) 3.89187e36 1.00524
\(96\) 1.07082e37 2.27877
\(97\) −8.70371e36 −1.52907 −0.764535 0.644582i \(-0.777031\pi\)
−0.764535 + 0.644582i \(0.777031\pi\)
\(98\) −1.11336e37 −1.61790
\(99\) 3.25581e36 0.392109
\(100\) 7.58795e36 0.758795
\(101\) −1.10433e37 −0.918653 −0.459327 0.888267i \(-0.651909\pi\)
−0.459327 + 0.888267i \(0.651909\pi\)
\(102\) 1.15771e36 0.0802596
\(103\) −2.97966e36 −0.172456 −0.0862280 0.996275i \(-0.527481\pi\)
−0.0862280 + 0.996275i \(0.527481\pi\)
\(104\) 6.98917e37 3.38305
\(105\) −6.51062e36 −0.264010
\(106\) −4.73313e37 −1.61061
\(107\) 7.82998e36 0.223955 0.111978 0.993711i \(-0.464282\pi\)
0.111978 + 0.993711i \(0.464282\pi\)
\(108\) 2.19265e37 0.527996
\(109\) 1.17745e37 0.239085 0.119543 0.992829i \(-0.461857\pi\)
0.119543 + 0.992829i \(0.461857\pi\)
\(110\) −1.49954e38 −2.57154
\(111\) 1.23017e37 0.178439
\(112\) 1.24619e38 1.53127
\(113\) 1.31720e38 1.37310 0.686548 0.727085i \(-0.259125\pi\)
0.686548 + 0.727085i \(0.259125\pi\)
\(114\) −1.12220e38 −0.993869
\(115\) 2.96662e38 2.23538
\(116\) −1.40584e38 −0.902535
\(117\) 6.10311e37 0.334282
\(118\) −6.10243e38 −2.85552
\(119\) 7.26429e36 0.0290786
\(120\) −6.41786e38 −2.20058
\(121\) 1.30490e38 0.383748
\(122\) 4.34625e38 1.09763
\(123\) −4.42900e37 −0.0961747
\(124\) −6.38810e38 −1.19418
\(125\) 5.07285e38 0.817367
\(126\) 1.87730e38 0.261023
\(127\) 1.23543e39 1.48405 0.742026 0.670371i \(-0.233865\pi\)
0.742026 + 0.670371i \(0.233865\pi\)
\(128\) 3.37654e39 3.50823
\(129\) 2.78120e38 0.250220
\(130\) −2.81093e39 −2.19229
\(131\) −2.21862e39 −1.50163 −0.750816 0.660511i \(-0.770340\pi\)
−0.750816 + 0.660511i \(0.770340\pi\)
\(132\) 3.16882e39 1.86329
\(133\) −7.04144e38 −0.360086
\(134\) −1.88012e39 −0.837042
\(135\) −5.60423e38 −0.217441
\(136\) 7.16079e38 0.242377
\(137\) 1.86892e39 0.552408 0.276204 0.961099i \(-0.410923\pi\)
0.276204 + 0.961099i \(0.410923\pi\)
\(138\) −8.55407e39 −2.21009
\(139\) −3.65432e39 −0.826101 −0.413050 0.910708i \(-0.635537\pi\)
−0.413050 + 0.910708i \(0.635537\pi\)
\(140\) −6.33668e39 −1.25456
\(141\) 1.17580e38 0.0204071
\(142\) 9.95980e39 1.51676
\(143\) 8.82022e39 1.17968
\(144\) 1.07270e40 1.26117
\(145\) 3.59321e39 0.371685
\(146\) −7.73331e39 −0.704430
\(147\) −6.01340e39 −0.482780
\(148\) 1.19730e40 0.847935
\(149\) −2.36586e40 −1.47925 −0.739627 0.673017i \(-0.764998\pi\)
−0.739627 + 0.673017i \(0.764998\pi\)
\(150\) 5.59219e39 0.308954
\(151\) 3.03874e40 1.48464 0.742319 0.670047i \(-0.233726\pi\)
0.742319 + 0.670047i \(0.233726\pi\)
\(152\) −6.94112e40 −3.00140
\(153\) 6.25297e38 0.0239494
\(154\) 2.71307e40 0.921145
\(155\) 1.63274e40 0.491792
\(156\) 5.94006e40 1.58849
\(157\) −1.39003e40 −0.330280 −0.165140 0.986270i \(-0.552808\pi\)
−0.165140 + 0.986270i \(0.552808\pi\)
\(158\) 1.74894e41 3.69504
\(159\) −2.55643e40 −0.480604
\(160\) −2.66382e41 −4.45948
\(161\) −5.36742e40 −0.800731
\(162\) 1.61595e40 0.214980
\(163\) 8.33630e40 0.989698 0.494849 0.868979i \(-0.335223\pi\)
0.494849 + 0.868979i \(0.335223\pi\)
\(164\) −4.31067e40 −0.457018
\(165\) −8.09924e40 −0.767346
\(166\) −2.56432e40 −0.217256
\(167\) −5.26775e40 −0.399365 −0.199683 0.979861i \(-0.563991\pi\)
−0.199683 + 0.979861i \(0.563991\pi\)
\(168\) 1.16116e41 0.788265
\(169\) 9.36904e38 0.00569890
\(170\) −2.87996e40 −0.157066
\(171\) −6.06115e40 −0.296570
\(172\) 2.70689e41 1.18904
\(173\) −3.80189e41 −1.50019 −0.750096 0.661329i \(-0.769993\pi\)
−0.750096 + 0.661329i \(0.769993\pi\)
\(174\) −1.03608e41 −0.367479
\(175\) 3.50892e40 0.111936
\(176\) 1.55027e42 4.45063
\(177\) −3.29601e41 −0.852086
\(178\) 9.19990e41 2.14295
\(179\) −5.74115e41 −1.20564 −0.602820 0.797877i \(-0.705956\pi\)
−0.602820 + 0.797877i \(0.705956\pi\)
\(180\) −5.45451e41 −1.03327
\(181\) 9.26735e41 1.58453 0.792267 0.610174i \(-0.208900\pi\)
0.792267 + 0.610174i \(0.208900\pi\)
\(182\) 5.08574e41 0.785296
\(183\) 2.34747e41 0.327533
\(184\) −5.29095e42 −6.67427
\(185\) −3.06021e41 −0.349200
\(186\) −4.70791e41 −0.486227
\(187\) 9.03680e40 0.0845171
\(188\) 1.14439e41 0.0969738
\(189\) 1.01396e41 0.0778890
\(190\) 2.79161e42 1.94497
\(191\) 1.34788e42 0.852183 0.426092 0.904680i \(-0.359890\pi\)
0.426092 + 0.904680i \(0.359890\pi\)
\(192\) 3.87551e42 2.22462
\(193\) 2.58423e42 1.34748 0.673738 0.738970i \(-0.264688\pi\)
0.673738 + 0.738970i \(0.264688\pi\)
\(194\) −6.24311e42 −2.95848
\(195\) −1.51823e42 −0.654179
\(196\) −5.85274e42 −2.29415
\(197\) 3.24438e42 1.15746 0.578730 0.815519i \(-0.303549\pi\)
0.578730 + 0.815519i \(0.303549\pi\)
\(198\) 2.33537e42 0.758663
\(199\) 4.99334e42 1.47778 0.738890 0.673826i \(-0.235350\pi\)
0.738890 + 0.673826i \(0.235350\pi\)
\(200\) 3.45893e42 0.933012
\(201\) −1.01548e42 −0.249773
\(202\) −7.92125e42 −1.77743
\(203\) −6.50109e41 −0.133140
\(204\) 6.08592e41 0.113807
\(205\) 1.10177e42 0.188211
\(206\) −2.13729e42 −0.333672
\(207\) −4.62018e42 −0.659489
\(208\) 2.90602e43 3.79426
\(209\) −8.75958e42 −1.04659
\(210\) −4.67002e42 −0.510813
\(211\) 4.78475e42 0.479329 0.239665 0.970856i \(-0.422963\pi\)
0.239665 + 0.970856i \(0.422963\pi\)
\(212\) −2.48814e43 −2.28381
\(213\) 5.37944e42 0.452599
\(214\) 5.61639e42 0.433314
\(215\) −6.91858e42 −0.489672
\(216\) 9.99511e42 0.649222
\(217\) −2.95407e42 −0.176164
\(218\) 8.44577e42 0.462588
\(219\) −4.17688e42 −0.210201
\(220\) −7.88285e43 −3.64640
\(221\) 1.69398e42 0.0720527
\(222\) 8.82392e42 0.345248
\(223\) −2.35490e43 −0.847875 −0.423938 0.905691i \(-0.639352\pi\)
−0.423938 + 0.905691i \(0.639352\pi\)
\(224\) 4.81956e43 1.59742
\(225\) 3.02042e42 0.0921915
\(226\) 9.44818e43 2.65670
\(227\) 3.01075e43 0.780183 0.390092 0.920776i \(-0.372443\pi\)
0.390092 + 0.920776i \(0.372443\pi\)
\(228\) −5.89922e43 −1.40929
\(229\) −5.09965e43 −1.12353 −0.561764 0.827297i \(-0.689877\pi\)
−0.561764 + 0.827297i \(0.689877\pi\)
\(230\) 2.12794e44 4.32507
\(231\) 1.46537e43 0.274869
\(232\) −6.40847e43 −1.10975
\(233\) 1.15459e43 0.184647 0.0923237 0.995729i \(-0.470571\pi\)
0.0923237 + 0.995729i \(0.470571\pi\)
\(234\) 4.37772e43 0.646777
\(235\) −2.92497e42 −0.0399361
\(236\) −3.20795e44 −4.04908
\(237\) 9.44629e43 1.10260
\(238\) 5.21062e42 0.0562621
\(239\) −9.64335e43 −0.963533 −0.481767 0.876300i \(-0.660005\pi\)
−0.481767 + 0.876300i \(0.660005\pi\)
\(240\) −2.66848e44 −2.46806
\(241\) 2.88872e43 0.247394 0.123697 0.992320i \(-0.460525\pi\)
0.123697 + 0.992320i \(0.460525\pi\)
\(242\) 9.35993e43 0.742486
\(243\) 8.72796e42 0.0641500
\(244\) 2.28476e44 1.55643
\(245\) 1.49591e44 0.944785
\(246\) −3.17689e43 −0.186081
\(247\) −1.64201e44 −0.892241
\(248\) −2.91198e44 −1.46836
\(249\) −1.38503e43 −0.0648291
\(250\) 3.63872e44 1.58146
\(251\) 3.22802e43 0.130308 0.0651542 0.997875i \(-0.479246\pi\)
0.0651542 + 0.997875i \(0.479246\pi\)
\(252\) 9.86867e43 0.370125
\(253\) −6.67709e44 −2.32733
\(254\) 8.86165e44 2.87138
\(255\) −1.55551e43 −0.0468683
\(256\) 1.04712e45 2.93465
\(257\) −2.79016e44 −0.727555 −0.363777 0.931486i \(-0.618513\pi\)
−0.363777 + 0.931486i \(0.618513\pi\)
\(258\) 1.99493e44 0.484132
\(259\) 5.53674e43 0.125086
\(260\) −1.47767e45 −3.10863
\(261\) −5.59603e43 −0.109656
\(262\) −1.59140e45 −2.90539
\(263\) 1.50410e43 0.0255916 0.0127958 0.999918i \(-0.495927\pi\)
0.0127958 + 0.999918i \(0.495927\pi\)
\(264\) 1.44449e45 2.29109
\(265\) 6.35946e44 0.940528
\(266\) −5.05078e44 −0.696703
\(267\) 4.96900e44 0.639456
\(268\) −9.88352e44 −1.18691
\(269\) 1.21815e45 1.36548 0.682738 0.730663i \(-0.260789\pi\)
0.682738 + 0.730663i \(0.260789\pi\)
\(270\) −4.01987e44 −0.420710
\(271\) 7.74428e44 0.756918 0.378459 0.925618i \(-0.376454\pi\)
0.378459 + 0.925618i \(0.376454\pi\)
\(272\) 2.97738e44 0.271838
\(273\) 2.74688e44 0.234332
\(274\) 1.34056e45 1.06881
\(275\) 4.36512e44 0.325343
\(276\) −4.49675e45 −3.13387
\(277\) −6.27119e44 −0.408766 −0.204383 0.978891i \(-0.565519\pi\)
−0.204383 + 0.978891i \(0.565519\pi\)
\(278\) −2.62122e45 −1.59836
\(279\) −2.54281e44 −0.145090
\(280\) −2.88855e45 −1.54261
\(281\) −1.10245e45 −0.551180 −0.275590 0.961275i \(-0.588873\pi\)
−0.275590 + 0.961275i \(0.588873\pi\)
\(282\) 8.43396e43 0.0394842
\(283\) 3.71020e45 1.62685 0.813427 0.581667i \(-0.197599\pi\)
0.813427 + 0.581667i \(0.197599\pi\)
\(284\) 5.23572e45 2.15073
\(285\) 1.50779e45 0.580378
\(286\) 6.32668e45 2.28246
\(287\) −1.99340e44 −0.0674186
\(288\) 4.14860e45 1.31565
\(289\) −3.34474e45 −0.994838
\(290\) 2.57739e45 0.719145
\(291\) −3.37200e45 −0.882809
\(292\) −4.06529e45 −0.998869
\(293\) −1.22173e45 −0.281788 −0.140894 0.990025i \(-0.544998\pi\)
−0.140894 + 0.990025i \(0.544998\pi\)
\(294\) −4.31337e45 −0.934094
\(295\) 8.19925e45 1.66750
\(296\) 5.45786e45 1.04262
\(297\) 1.26137e45 0.226384
\(298\) −1.69701e46 −2.86210
\(299\) −1.25164e46 −1.98410
\(300\) 2.93973e45 0.438091
\(301\) 1.25176e45 0.175404
\(302\) 2.17967e46 2.87251
\(303\) −4.27838e45 −0.530385
\(304\) −2.88604e46 −3.36621
\(305\) −5.83964e45 −0.640972
\(306\) 4.48521e44 0.0463379
\(307\) −2.41884e45 −0.235260 −0.117630 0.993057i \(-0.537530\pi\)
−0.117630 + 0.993057i \(0.537530\pi\)
\(308\) 1.42622e46 1.30617
\(309\) −1.15438e45 −0.0995675
\(310\) 1.17115e46 0.951531
\(311\) −2.34597e46 −1.79579 −0.897893 0.440214i \(-0.854902\pi\)
−0.897893 + 0.440214i \(0.854902\pi\)
\(312\) 2.70775e46 1.95321
\(313\) 1.37353e46 0.933832 0.466916 0.884302i \(-0.345365\pi\)
0.466916 + 0.884302i \(0.345365\pi\)
\(314\) −9.97062e45 −0.639033
\(315\) −2.52235e45 −0.152426
\(316\) 9.19392e46 5.23950
\(317\) 1.81588e46 0.976091 0.488046 0.872818i \(-0.337710\pi\)
0.488046 + 0.872818i \(0.337710\pi\)
\(318\) −1.83371e46 −0.929885
\(319\) −8.08738e45 −0.386973
\(320\) −9.64082e46 −4.35351
\(321\) 3.03350e45 0.129301
\(322\) −3.85001e46 −1.54927
\(323\) −1.68233e45 −0.0639241
\(324\) 8.49478e45 0.304838
\(325\) 8.18255e45 0.277362
\(326\) 5.97957e46 1.91489
\(327\) 4.56168e45 0.138036
\(328\) −1.96500e46 −0.561948
\(329\) 5.29205e44 0.0143054
\(330\) −5.80952e46 −1.48468
\(331\) 6.35602e46 1.53592 0.767958 0.640500i \(-0.221273\pi\)
0.767958 + 0.640500i \(0.221273\pi\)
\(332\) −1.34802e46 −0.308065
\(333\) 4.76593e45 0.103022
\(334\) −3.77852e46 −0.772701
\(335\) 2.52614e46 0.488797
\(336\) 4.82800e46 0.884078
\(337\) −8.32564e46 −1.44299 −0.721497 0.692417i \(-0.756546\pi\)
−0.721497 + 0.692417i \(0.756546\pi\)
\(338\) 6.72034e44 0.0110264
\(339\) 5.10310e46 0.792757
\(340\) −1.51395e46 −0.222716
\(341\) −3.67488e46 −0.512020
\(342\) −4.34762e46 −0.573811
\(343\) −5.94318e46 −0.743152
\(344\) 1.23392e47 1.46203
\(345\) 1.14933e47 1.29060
\(346\) −2.72707e47 −2.90261
\(347\) −2.08182e46 −0.210062 −0.105031 0.994469i \(-0.533494\pi\)
−0.105031 + 0.994469i \(0.533494\pi\)
\(348\) −5.44652e46 −0.521079
\(349\) 1.34295e47 1.21840 0.609201 0.793016i \(-0.291490\pi\)
0.609201 + 0.793016i \(0.291490\pi\)
\(350\) 2.51693e46 0.216577
\(351\) 2.36447e46 0.192998
\(352\) 5.99555e47 4.64291
\(353\) −2.08412e47 −1.53141 −0.765705 0.643192i \(-0.777610\pi\)
−0.765705 + 0.643192i \(0.777610\pi\)
\(354\) −2.36421e47 −1.64864
\(355\) −1.33820e47 −0.885723
\(356\) 4.83625e47 3.03867
\(357\) 2.81433e45 0.0167886
\(358\) −4.11808e47 −2.33270
\(359\) 6.98095e46 0.375550 0.187775 0.982212i \(-0.439872\pi\)
0.187775 + 0.982212i \(0.439872\pi\)
\(360\) −2.48641e47 −1.27051
\(361\) −4.29354e46 −0.208416
\(362\) 6.64740e47 3.06580
\(363\) 5.05543e46 0.221557
\(364\) 2.67350e47 1.11354
\(365\) 1.03905e47 0.411357
\(366\) 1.68383e47 0.633719
\(367\) 4.35331e46 0.155775 0.0778875 0.996962i \(-0.475183\pi\)
0.0778875 + 0.996962i \(0.475183\pi\)
\(368\) −2.19992e48 −7.48553
\(369\) −1.71588e46 −0.0555265
\(370\) −2.19506e47 −0.675640
\(371\) −1.15060e47 −0.336904
\(372\) −2.47488e47 −0.689461
\(373\) 4.60312e47 1.22022 0.610111 0.792316i \(-0.291125\pi\)
0.610111 + 0.792316i \(0.291125\pi\)
\(374\) 6.48203e46 0.163526
\(375\) 1.96533e47 0.471907
\(376\) 5.21666e46 0.119239
\(377\) −1.51601e47 −0.329903
\(378\) 7.27304e46 0.150701
\(379\) −1.24559e47 −0.245783 −0.122891 0.992420i \(-0.539217\pi\)
−0.122891 + 0.992420i \(0.539217\pi\)
\(380\) 1.46751e48 2.75793
\(381\) 4.78631e47 0.856818
\(382\) 9.66823e47 1.64882
\(383\) −5.34361e47 −0.868275 −0.434137 0.900847i \(-0.642947\pi\)
−0.434137 + 0.900847i \(0.642947\pi\)
\(384\) 1.30814e48 2.02548
\(385\) −3.64530e47 −0.537910
\(386\) 1.85365e48 2.60713
\(387\) 1.07749e47 0.144465
\(388\) −3.28191e48 −4.19507
\(389\) 5.89339e47 0.718286 0.359143 0.933283i \(-0.383069\pi\)
0.359143 + 0.933283i \(0.383069\pi\)
\(390\) −1.08901e48 −1.26572
\(391\) −1.28238e47 −0.142149
\(392\) −2.66795e48 −2.82088
\(393\) −8.59538e47 −0.866968
\(394\) 2.32717e48 2.23948
\(395\) −2.34989e48 −2.15775
\(396\) 1.22767e48 1.07577
\(397\) 6.73632e47 0.563376 0.281688 0.959506i \(-0.409106\pi\)
0.281688 + 0.959506i \(0.409106\pi\)
\(398\) 3.58169e48 2.85924
\(399\) −2.72800e47 −0.207896
\(400\) 1.43819e48 1.04642
\(401\) −1.51806e48 −1.05468 −0.527338 0.849656i \(-0.676810\pi\)
−0.527338 + 0.849656i \(0.676810\pi\)
\(402\) −7.28398e47 −0.483267
\(403\) −6.88867e47 −0.436508
\(404\) −4.16408e48 −2.52037
\(405\) −2.17119e47 −0.125540
\(406\) −4.66319e47 −0.257603
\(407\) 6.88772e47 0.363563
\(408\) 2.77424e47 0.139936
\(409\) 3.44449e48 1.66052 0.830259 0.557377i \(-0.188192\pi\)
0.830259 + 0.557377i \(0.188192\pi\)
\(410\) 7.90292e47 0.364155
\(411\) 7.24058e47 0.318933
\(412\) −1.12354e48 −0.473141
\(413\) −1.48347e48 −0.597313
\(414\) −3.31402e48 −1.27600
\(415\) 3.44543e47 0.126868
\(416\) 1.12389e49 3.95818
\(417\) −1.41576e48 −0.476950
\(418\) −6.28318e48 −2.02497
\(419\) −7.49755e47 −0.231185 −0.115593 0.993297i \(-0.536877\pi\)
−0.115593 + 0.993297i \(0.536877\pi\)
\(420\) −2.45496e48 −0.724323
\(421\) 5.66375e48 1.59913 0.799567 0.600576i \(-0.205062\pi\)
0.799567 + 0.600576i \(0.205062\pi\)
\(422\) 3.43207e48 0.927418
\(423\) 4.55531e46 0.0117821
\(424\) −1.13421e49 −2.80817
\(425\) 8.38347e46 0.0198714
\(426\) 3.85863e48 0.875700
\(427\) 1.05655e48 0.229601
\(428\) 2.95245e48 0.614431
\(429\) 3.41713e48 0.681086
\(430\) −4.96265e48 −0.947430
\(431\) −1.73243e47 −0.0316829 −0.0158415 0.999875i \(-0.505043\pi\)
−0.0158415 + 0.999875i \(0.505043\pi\)
\(432\) 4.15586e48 0.728134
\(433\) 1.13654e49 1.90792 0.953960 0.299934i \(-0.0969646\pi\)
0.953960 + 0.299934i \(0.0969646\pi\)
\(434\) −2.11893e48 −0.340845
\(435\) 1.39208e48 0.214592
\(436\) 4.43981e48 0.655941
\(437\) 1.24304e49 1.76026
\(438\) −2.99604e48 −0.406703
\(439\) −1.20746e49 −1.57137 −0.785684 0.618629i \(-0.787689\pi\)
−0.785684 + 0.618629i \(0.787689\pi\)
\(440\) −3.59336e49 −4.48360
\(441\) −2.32971e48 −0.278733
\(442\) 1.21508e48 0.139409
\(443\) −4.29789e48 −0.472919 −0.236459 0.971641i \(-0.575987\pi\)
−0.236459 + 0.971641i \(0.575987\pi\)
\(444\) 4.63860e48 0.489556
\(445\) −1.23610e49 −1.25140
\(446\) −1.68915e49 −1.64049
\(447\) −9.16582e48 −0.854047
\(448\) 1.74428e49 1.55946
\(449\) 9.38321e48 0.804997 0.402498 0.915421i \(-0.368142\pi\)
0.402498 + 0.915421i \(0.368142\pi\)
\(450\) 2.16653e48 0.178374
\(451\) −2.47980e48 −0.195952
\(452\) 4.96677e49 3.76715
\(453\) 1.17727e49 0.857156
\(454\) 2.15959e49 1.50952
\(455\) −6.83323e48 −0.458580
\(456\) −2.68913e49 −1.73286
\(457\) −2.71199e49 −1.67818 −0.839091 0.543992i \(-0.816912\pi\)
−0.839091 + 0.543992i \(0.816912\pi\)
\(458\) −3.65794e49 −2.17383
\(459\) 2.42253e47 0.0138272
\(460\) 1.11862e50 6.13288
\(461\) 3.50105e48 0.184387 0.0921937 0.995741i \(-0.470612\pi\)
0.0921937 + 0.995741i \(0.470612\pi\)
\(462\) 1.05110e49 0.531823
\(463\) −2.14736e49 −1.04389 −0.521946 0.852979i \(-0.674794\pi\)
−0.521946 + 0.852979i \(0.674794\pi\)
\(464\) −2.66457e49 −1.24464
\(465\) 6.32558e48 0.283936
\(466\) 8.28179e48 0.357260
\(467\) −1.07777e49 −0.446853 −0.223427 0.974721i \(-0.571724\pi\)
−0.223427 + 0.974721i \(0.571724\pi\)
\(468\) 2.30130e49 0.917117
\(469\) −4.57047e48 −0.175091
\(470\) −2.09806e48 −0.0772693
\(471\) −5.38528e48 −0.190687
\(472\) −1.46233e50 −4.97873
\(473\) 1.55719e49 0.509813
\(474\) 6.77576e49 2.13333
\(475\) −8.12629e48 −0.246071
\(476\) 2.73914e48 0.0797786
\(477\) −9.90415e48 −0.277477
\(478\) −6.91711e49 −1.86427
\(479\) 4.42983e49 1.14863 0.574314 0.818635i \(-0.305269\pi\)
0.574314 + 0.818635i \(0.305269\pi\)
\(480\) −1.03202e50 −2.57468
\(481\) 1.29113e49 0.309945
\(482\) 2.07205e49 0.478664
\(483\) −2.07945e49 −0.462302
\(484\) 4.92037e49 1.05283
\(485\) 8.38827e49 1.72763
\(486\) 6.26051e48 0.124119
\(487\) 8.17887e48 0.156102 0.0780508 0.996949i \(-0.475130\pi\)
0.0780508 + 0.996949i \(0.475130\pi\)
\(488\) 1.04150e50 1.91378
\(489\) 3.22965e49 0.571402
\(490\) 1.07301e50 1.82799
\(491\) −8.00334e49 −1.31300 −0.656498 0.754328i \(-0.727963\pi\)
−0.656498 + 0.754328i \(0.727963\pi\)
\(492\) −1.67004e49 −0.263860
\(493\) −1.55323e48 −0.0236357
\(494\) −1.17780e50 −1.72633
\(495\) −3.13781e49 −0.443027
\(496\) −1.21077e50 −1.64684
\(497\) 2.42117e49 0.317273
\(498\) −9.93469e48 −0.125433
\(499\) −2.89490e49 −0.352187 −0.176094 0.984373i \(-0.556346\pi\)
−0.176094 + 0.984373i \(0.556346\pi\)
\(500\) 1.91282e50 2.24248
\(501\) −2.04083e49 −0.230574
\(502\) 2.31544e49 0.252124
\(503\) −6.85440e49 −0.719385 −0.359693 0.933071i \(-0.617118\pi\)
−0.359693 + 0.933071i \(0.617118\pi\)
\(504\) 4.49859e49 0.455105
\(505\) 1.06430e50 1.03795
\(506\) −4.78943e50 −4.50297
\(507\) 3.62976e47 0.00329026
\(508\) 4.65844e50 4.07157
\(509\) 5.38706e49 0.454018 0.227009 0.973893i \(-0.427105\pi\)
0.227009 + 0.973893i \(0.427105\pi\)
\(510\) −1.11575e49 −0.0906818
\(511\) −1.87993e49 −0.147351
\(512\) 2.87022e50 2.16981
\(513\) −2.34821e49 −0.171225
\(514\) −2.00136e50 −1.40769
\(515\) 2.87167e49 0.194850
\(516\) 1.04871e50 0.686490
\(517\) 6.58333e48 0.0415787
\(518\) 3.97146e49 0.242019
\(519\) −1.47293e50 −0.866136
\(520\) −6.73587e50 −3.82236
\(521\) 3.05490e50 1.67301 0.836506 0.547958i \(-0.184595\pi\)
0.836506 + 0.547958i \(0.184595\pi\)
\(522\) −4.01399e49 −0.212164
\(523\) −2.66823e50 −1.36126 −0.680631 0.732626i \(-0.738294\pi\)
−0.680631 + 0.732626i \(0.738294\pi\)
\(524\) −8.36574e50 −4.11980
\(525\) 1.35943e49 0.0646263
\(526\) 1.07888e49 0.0495152
\(527\) −7.05782e48 −0.0312733
\(528\) 6.00605e50 2.56957
\(529\) 7.05455e50 2.91433
\(530\) 4.56159e50 1.81976
\(531\) −1.27694e50 −0.491952
\(532\) −2.65512e50 −0.987912
\(533\) −4.64846e49 −0.167054
\(534\) 3.56423e50 1.23724
\(535\) −7.54621e49 −0.253037
\(536\) −4.50536e50 −1.45942
\(537\) −2.22424e50 −0.696076
\(538\) 8.73771e50 2.64196
\(539\) −3.36690e50 −0.983645
\(540\) −2.11319e50 −0.596559
\(541\) −3.15729e50 −0.861322 −0.430661 0.902514i \(-0.641720\pi\)
−0.430661 + 0.902514i \(0.641720\pi\)
\(542\) 5.55491e50 1.46450
\(543\) 3.59036e50 0.914832
\(544\) 1.15148e50 0.283581
\(545\) −1.13478e50 −0.270132
\(546\) 1.97032e50 0.453391
\(547\) 1.90478e50 0.423720 0.211860 0.977300i \(-0.432048\pi\)
0.211860 + 0.977300i \(0.432048\pi\)
\(548\) 7.04713e50 1.51556
\(549\) 9.09459e49 0.189101
\(550\) 3.13107e50 0.629481
\(551\) 1.50558e50 0.292685
\(552\) −2.04982e51 −3.85339
\(553\) 4.25158e50 0.772922
\(554\) −4.49828e50 −0.790890
\(555\) −1.18559e50 −0.201610
\(556\) −1.37794e51 −2.26645
\(557\) 1.91249e50 0.304283 0.152142 0.988359i \(-0.451383\pi\)
0.152142 + 0.988359i \(0.451383\pi\)
\(558\) −1.82394e50 −0.280723
\(559\) 2.91901e50 0.434627
\(560\) −1.20103e51 −1.73011
\(561\) 3.50104e49 0.0487960
\(562\) −7.90782e50 −1.06644
\(563\) −4.86098e50 −0.634335 −0.317167 0.948370i \(-0.602732\pi\)
−0.317167 + 0.948370i \(0.602732\pi\)
\(564\) 4.43361e49 0.0559878
\(565\) −1.26946e51 −1.55140
\(566\) 2.66130e51 3.14768
\(567\) 3.92828e49 0.0449692
\(568\) 2.38668e51 2.64454
\(569\) −9.00352e50 −0.965685 −0.482842 0.875707i \(-0.660396\pi\)
−0.482842 + 0.875707i \(0.660396\pi\)
\(570\) 1.08153e51 1.12293
\(571\) −1.09945e51 −1.10512 −0.552560 0.833473i \(-0.686349\pi\)
−0.552560 + 0.833473i \(0.686349\pi\)
\(572\) 3.32584e51 3.23649
\(573\) 5.22195e50 0.492008
\(574\) −1.42985e50 −0.130443
\(575\) −6.19436e50 −0.547194
\(576\) 1.50145e51 1.28438
\(577\) −8.24476e50 −0.683007 −0.341504 0.939880i \(-0.610936\pi\)
−0.341504 + 0.939880i \(0.610936\pi\)
\(578\) −2.39916e51 −1.92484
\(579\) 1.00118e51 0.777966
\(580\) 1.35489e51 1.01973
\(581\) −6.23371e49 −0.0454452
\(582\) −2.41871e51 −1.70808
\(583\) −1.43135e51 −0.979213
\(584\) −1.85314e51 −1.22821
\(585\) −5.88192e50 −0.377690
\(586\) −8.76336e50 −0.545211
\(587\) 2.47843e51 1.49407 0.747035 0.664784i \(-0.231477\pi\)
0.747035 + 0.664784i \(0.231477\pi\)
\(588\) −2.26747e51 −1.32453
\(589\) 6.84131e50 0.387263
\(590\) 5.88127e51 3.22633
\(591\) 1.25694e51 0.668260
\(592\) 2.26932e51 1.16935
\(593\) −2.66024e50 −0.132864 −0.0664322 0.997791i \(-0.521162\pi\)
−0.0664322 + 0.997791i \(0.521162\pi\)
\(594\) 9.04769e50 0.438014
\(595\) −7.00102e49 −0.0328547
\(596\) −8.92094e51 −4.05840
\(597\) 1.93452e51 0.853196
\(598\) −8.97793e51 −3.83888
\(599\) 7.18446e50 0.297850 0.148925 0.988848i \(-0.452419\pi\)
0.148925 + 0.988848i \(0.452419\pi\)
\(600\) 1.34006e51 0.538675
\(601\) 4.14069e51 1.61397 0.806984 0.590574i \(-0.201099\pi\)
0.806984 + 0.590574i \(0.201099\pi\)
\(602\) 8.97877e50 0.339377
\(603\) −3.93419e50 −0.144206
\(604\) 1.14582e52 4.07317
\(605\) −1.25760e51 −0.433580
\(606\) −3.06885e51 −1.02620
\(607\) 2.73180e51 0.886049 0.443025 0.896509i \(-0.353905\pi\)
0.443025 + 0.896509i \(0.353905\pi\)
\(608\) −1.11616e52 −3.51164
\(609\) −2.51866e50 −0.0768686
\(610\) −4.18873e51 −1.24017
\(611\) 1.23407e50 0.0354467
\(612\) 2.35781e50 0.0657063
\(613\) 4.36236e51 1.17951 0.589756 0.807581i \(-0.299224\pi\)
0.589756 + 0.807581i \(0.299224\pi\)
\(614\) −1.73502e51 −0.455187
\(615\) 4.26848e50 0.108664
\(616\) 6.50136e51 1.60606
\(617\) −3.01014e51 −0.721624 −0.360812 0.932639i \(-0.617500\pi\)
−0.360812 + 0.932639i \(0.617500\pi\)
\(618\) −8.28030e50 −0.192646
\(619\) −1.23535e51 −0.278942 −0.139471 0.990226i \(-0.544540\pi\)
−0.139471 + 0.990226i \(0.544540\pi\)
\(620\) 6.15658e51 1.34925
\(621\) −1.78995e51 −0.380756
\(622\) −1.68274e52 −3.47453
\(623\) 2.23644e51 0.448259
\(624\) 1.12585e52 2.19062
\(625\) −6.35318e51 −1.20008
\(626\) 9.85225e51 1.80680
\(627\) −3.39364e51 −0.604250
\(628\) −5.24140e51 −0.906138
\(629\) 1.32283e50 0.0222058
\(630\) −1.80926e51 −0.294918
\(631\) 1.05432e52 1.66890 0.834450 0.551083i \(-0.185785\pi\)
0.834450 + 0.551083i \(0.185785\pi\)
\(632\) 4.19101e52 6.44247
\(633\) 1.85371e51 0.276741
\(634\) 1.30252e52 1.88857
\(635\) −1.19066e52 −1.67677
\(636\) −9.63955e51 −1.31856
\(637\) −6.31137e51 −0.838579
\(638\) −5.80102e51 −0.748724
\(639\) 2.08410e51 0.261308
\(640\) −3.25417e52 −3.96379
\(641\) −8.08669e51 −0.956968 −0.478484 0.878096i \(-0.658813\pi\)
−0.478484 + 0.878096i \(0.658813\pi\)
\(642\) 2.17590e51 0.250174
\(643\) 5.36035e51 0.598812 0.299406 0.954126i \(-0.403211\pi\)
0.299406 + 0.954126i \(0.403211\pi\)
\(644\) −2.02389e52 −2.19684
\(645\) −2.68040e51 −0.282713
\(646\) −1.20672e51 −0.123682
\(647\) −6.77154e51 −0.674463 −0.337232 0.941422i \(-0.609491\pi\)
−0.337232 + 0.941422i \(0.609491\pi\)
\(648\) 3.87231e51 0.374828
\(649\) −1.84544e52 −1.73609
\(650\) 5.86928e51 0.536646
\(651\) −1.14447e51 −0.101708
\(652\) 3.14337e52 2.71528
\(653\) −9.50332e51 −0.797961 −0.398981 0.916959i \(-0.630636\pi\)
−0.398981 + 0.916959i \(0.630636\pi\)
\(654\) 3.27206e51 0.267075
\(655\) 2.13821e52 1.69663
\(656\) −8.17026e51 −0.630253
\(657\) −1.61821e51 −0.121360
\(658\) 3.79595e50 0.0276784
\(659\) 1.31463e52 0.932018 0.466009 0.884780i \(-0.345691\pi\)
0.466009 + 0.884780i \(0.345691\pi\)
\(660\) −3.05398e52 −2.10525
\(661\) 1.11659e52 0.748459 0.374229 0.927336i \(-0.377907\pi\)
0.374229 + 0.927336i \(0.377907\pi\)
\(662\) 4.55913e52 2.97173
\(663\) 6.56281e50 0.0415996
\(664\) −6.14490e51 −0.378796
\(665\) 6.78625e51 0.406845
\(666\) 3.41857e51 0.199329
\(667\) 1.14765e52 0.650850
\(668\) −1.98631e52 −1.09568
\(669\) −9.12335e51 −0.489521
\(670\) 1.81198e52 0.945737
\(671\) 1.31435e52 0.667336
\(672\) 1.86720e52 0.922271
\(673\) −2.40983e52 −1.15800 −0.578998 0.815329i \(-0.696556\pi\)
−0.578998 + 0.815329i \(0.696556\pi\)
\(674\) −5.97192e52 −2.79194
\(675\) 1.17017e51 0.0532268
\(676\) 3.53278e50 0.0156352
\(677\) 2.62781e52 1.13163 0.565814 0.824533i \(-0.308562\pi\)
0.565814 + 0.824533i \(0.308562\pi\)
\(678\) 3.66042e52 1.53385
\(679\) −1.51767e52 −0.618850
\(680\) −6.90127e51 −0.273851
\(681\) 1.16643e52 0.450439
\(682\) −2.63596e52 −0.990668
\(683\) 2.18094e52 0.797741 0.398870 0.917007i \(-0.369402\pi\)
0.398870 + 0.917007i \(0.369402\pi\)
\(684\) −2.28548e52 −0.813653
\(685\) −1.80119e52 −0.624142
\(686\) −4.26300e52 −1.43787
\(687\) −1.97571e52 −0.648669
\(688\) 5.13053e52 1.63974
\(689\) −2.68311e52 −0.834800
\(690\) 8.24406e52 2.49708
\(691\) 2.89991e51 0.0855148 0.0427574 0.999085i \(-0.486386\pi\)
0.0427574 + 0.999085i \(0.486386\pi\)
\(692\) −1.43358e53 −4.11585
\(693\) 5.67714e51 0.158696
\(694\) −1.49327e52 −0.406433
\(695\) 3.52188e52 0.933375
\(696\) −2.48277e52 −0.640717
\(697\) −4.76260e50 −0.0119684
\(698\) 9.63291e52 2.35740
\(699\) 4.47312e51 0.106606
\(700\) 1.32311e52 0.307102
\(701\) −7.75630e51 −0.175336 −0.0876681 0.996150i \(-0.527941\pi\)
−0.0876681 + 0.996150i \(0.527941\pi\)
\(702\) 1.69602e52 0.373417
\(703\) −1.28225e52 −0.274979
\(704\) 2.16990e53 4.53257
\(705\) −1.13319e51 −0.0230571
\(706\) −1.49493e53 −2.96301
\(707\) −1.92561e52 −0.371800
\(708\) −1.24283e53 −2.33774
\(709\) −2.37217e52 −0.434700 −0.217350 0.976094i \(-0.569741\pi\)
−0.217350 + 0.976094i \(0.569741\pi\)
\(710\) −9.59884e52 −1.71372
\(711\) 3.65969e52 0.636585
\(712\) 2.20458e53 3.73634
\(713\) 5.21487e52 0.861166
\(714\) 2.01870e51 0.0324829
\(715\) −8.50056e52 −1.33286
\(716\) −2.16481e53 −3.30773
\(717\) −3.73603e52 −0.556296
\(718\) 5.00739e52 0.726623
\(719\) 1.39711e53 1.97581 0.987904 0.155068i \(-0.0495598\pi\)
0.987904 + 0.155068i \(0.0495598\pi\)
\(720\) −1.03382e53 −1.42494
\(721\) −5.19563e51 −0.0697969
\(722\) −3.07972e52 −0.403249
\(723\) 1.11915e52 0.142833
\(724\) 3.49444e53 4.34724
\(725\) −7.50269e51 −0.0909838
\(726\) 3.62623e52 0.428674
\(727\) 1.82625e52 0.210462 0.105231 0.994448i \(-0.466442\pi\)
0.105231 + 0.994448i \(0.466442\pi\)
\(728\) 1.21870e53 1.36920
\(729\) 3.38139e51 0.0370370
\(730\) 7.45305e52 0.795904
\(731\) 2.99068e51 0.0311386
\(732\) 8.85162e52 0.898602
\(733\) −2.47287e52 −0.244781 −0.122390 0.992482i \(-0.539056\pi\)
−0.122390 + 0.992482i \(0.539056\pi\)
\(734\) 3.12260e52 0.301397
\(735\) 5.79546e52 0.545472
\(736\) −8.50805e53 −7.80891
\(737\) −5.68569e52 −0.508902
\(738\) −1.23079e52 −0.107434
\(739\) −3.06278e52 −0.260732 −0.130366 0.991466i \(-0.541615\pi\)
−0.130366 + 0.991466i \(0.541615\pi\)
\(740\) −1.15391e53 −0.958045
\(741\) −6.36149e52 −0.515136
\(742\) −8.25316e52 −0.651850
\(743\) 2.58567e52 0.199196 0.0995978 0.995028i \(-0.468244\pi\)
0.0995978 + 0.995028i \(0.468244\pi\)
\(744\) −1.12816e53 −0.847759
\(745\) 2.28011e53 1.67134
\(746\) 3.30179e53 2.36092
\(747\) −5.36587e51 −0.0374291
\(748\) 3.40751e52 0.231877
\(749\) 1.36531e52 0.0906398
\(750\) 1.40971e53 0.913057
\(751\) −1.09214e53 −0.690141 −0.345071 0.938577i \(-0.612145\pi\)
−0.345071 + 0.938577i \(0.612145\pi\)
\(752\) 2.16903e52 0.133732
\(753\) 1.25060e52 0.0752336
\(754\) −1.08742e53 −0.638304
\(755\) −2.92862e53 −1.67743
\(756\) 3.82333e52 0.213692
\(757\) 5.53806e52 0.302054 0.151027 0.988530i \(-0.451742\pi\)
0.151027 + 0.988530i \(0.451742\pi\)
\(758\) −8.93456e52 −0.475546
\(759\) −2.58684e53 −1.34368
\(760\) 6.68956e53 3.39114
\(761\) 1.91021e53 0.945072 0.472536 0.881311i \(-0.343339\pi\)
0.472536 + 0.881311i \(0.343339\pi\)
\(762\) 3.43319e53 1.65779
\(763\) 2.05312e52 0.0967632
\(764\) 5.08244e53 2.33800
\(765\) −6.02635e51 −0.0270594
\(766\) −3.83293e53 −1.67996
\(767\) −3.45933e53 −1.48006
\(768\) 4.05675e53 1.69432
\(769\) −3.71712e52 −0.151555 −0.0757773 0.997125i \(-0.524144\pi\)
−0.0757773 + 0.997125i \(0.524144\pi\)
\(770\) −2.61475e53 −1.04076
\(771\) −1.08096e53 −0.420054
\(772\) 9.74436e53 3.69686
\(773\) −1.53846e53 −0.569858 −0.284929 0.958549i \(-0.591970\pi\)
−0.284929 + 0.958549i \(0.591970\pi\)
\(774\) 7.72877e52 0.279514
\(775\) −3.40920e52 −0.120384
\(776\) −1.49604e54 −5.15825
\(777\) 2.14505e52 0.0722184
\(778\) 4.22728e53 1.38976
\(779\) 4.61650e52 0.148207
\(780\) −5.72478e53 −1.79477
\(781\) 3.01195e53 0.922153
\(782\) −9.19839e52 −0.275034
\(783\) −2.16802e52 −0.0633096
\(784\) −1.10930e54 −3.16376
\(785\) 1.33966e53 0.373169
\(786\) −6.16541e53 −1.67743
\(787\) 1.23159e53 0.327292 0.163646 0.986519i \(-0.447675\pi\)
0.163646 + 0.986519i \(0.447675\pi\)
\(788\) 1.22336e54 3.17554
\(789\) 5.82721e51 0.0147753
\(790\) −1.68556e54 −4.17486
\(791\) 2.29680e53 0.555723
\(792\) 5.59626e53 1.32276
\(793\) 2.46379e53 0.568918
\(794\) 4.83192e53 1.09003
\(795\) 2.46378e53 0.543014
\(796\) 1.88284e54 4.05436
\(797\) −1.87818e53 −0.395147 −0.197574 0.980288i \(-0.563306\pi\)
−0.197574 + 0.980288i \(0.563306\pi\)
\(798\) −1.95677e53 −0.402242
\(799\) 1.26437e51 0.00253956
\(800\) 5.56209e53 1.09163
\(801\) 1.92509e53 0.369190
\(802\) −1.08890e54 −2.04061
\(803\) −2.33863e53 −0.428277
\(804\) −3.82908e53 −0.685263
\(805\) 5.17289e53 0.904711
\(806\) −4.94119e53 −0.844566
\(807\) 4.71937e53 0.788358
\(808\) −1.89818e54 −3.09904
\(809\) 1.37996e53 0.220201 0.110100 0.993920i \(-0.464883\pi\)
0.110100 + 0.993920i \(0.464883\pi\)
\(810\) −1.55738e53 −0.242897
\(811\) 2.88787e53 0.440243 0.220121 0.975472i \(-0.429355\pi\)
0.220121 + 0.975472i \(0.429355\pi\)
\(812\) −2.45137e53 −0.365276
\(813\) 3.00029e53 0.437007
\(814\) 4.94051e53 0.703430
\(815\) −8.03418e53 −1.11822
\(816\) 1.15350e53 0.156946
\(817\) −2.89894e53 −0.385595
\(818\) 2.47071e54 3.21281
\(819\) 1.06420e53 0.135292
\(820\) 4.15445e53 0.516365
\(821\) 9.46819e53 1.15058 0.575292 0.817948i \(-0.304888\pi\)
0.575292 + 0.817948i \(0.304888\pi\)
\(822\) 5.19361e53 0.617079
\(823\) −9.45005e53 −1.09783 −0.548917 0.835877i \(-0.684960\pi\)
−0.548917 + 0.835877i \(0.684960\pi\)
\(824\) −5.12161e53 −0.581772
\(825\) 1.69114e53 0.187837
\(826\) −1.06408e54 −1.15570
\(827\) 6.22799e53 0.661449 0.330724 0.943727i \(-0.392707\pi\)
0.330724 + 0.943727i \(0.392707\pi\)
\(828\) −1.74213e54 −1.80934
\(829\) −3.74356e53 −0.380212 −0.190106 0.981764i \(-0.560883\pi\)
−0.190106 + 0.981764i \(0.560883\pi\)
\(830\) 2.47138e53 0.245468
\(831\) −2.42959e53 −0.236001
\(832\) 4.06754e54 3.86412
\(833\) −6.46634e52 −0.0600795
\(834\) −1.01551e54 −0.922814
\(835\) 5.07683e53 0.451225
\(836\) −3.30297e54 −2.87137
\(837\) −9.85138e52 −0.0837676
\(838\) −5.37794e53 −0.447303
\(839\) −1.42400e54 −1.15855 −0.579274 0.815133i \(-0.696664\pi\)
−0.579274 + 0.815133i \(0.696664\pi\)
\(840\) −1.11908e54 −0.890626
\(841\) −1.14547e54 −0.891781
\(842\) 4.06257e54 3.09405
\(843\) −4.27113e53 −0.318224
\(844\) 1.80419e54 1.31506
\(845\) −9.02949e51 −0.00643893
\(846\) 3.26749e52 0.0227962
\(847\) 2.27535e53 0.155312
\(848\) −4.71590e54 −3.14950
\(849\) 1.43741e54 0.939264
\(850\) 6.01340e52 0.0384477
\(851\) −9.77409e53 −0.611476
\(852\) 2.02842e54 1.24173
\(853\) −1.93589e54 −1.15964 −0.579821 0.814744i \(-0.696877\pi\)
−0.579821 + 0.814744i \(0.696877\pi\)
\(854\) 7.57855e53 0.444238
\(855\) 5.84149e53 0.335081
\(856\) 1.34586e54 0.755502
\(857\) −2.55656e54 −1.40447 −0.702233 0.711947i \(-0.747813\pi\)
−0.702233 + 0.711947i \(0.747813\pi\)
\(858\) 2.45108e54 1.31778
\(859\) −1.64382e54 −0.864927 −0.432464 0.901651i \(-0.642356\pi\)
−0.432464 + 0.901651i \(0.642356\pi\)
\(860\) −2.60879e54 −1.34344
\(861\) −7.72284e52 −0.0389241
\(862\) −1.24266e53 −0.0613009
\(863\) −1.78555e54 −0.862128 −0.431064 0.902321i \(-0.641862\pi\)
−0.431064 + 0.902321i \(0.641862\pi\)
\(864\) 1.60725e54 0.759590
\(865\) 3.66411e54 1.69500
\(866\) 8.15235e54 3.69149
\(867\) −1.29582e54 −0.574370
\(868\) −1.11389e54 −0.483313
\(869\) 5.28898e54 2.24650
\(870\) 9.98532e53 0.415198
\(871\) −1.06580e54 −0.433850
\(872\) 2.02387e54 0.806543
\(873\) −1.30638e54 −0.509690
\(874\) 8.91621e54 3.40580
\(875\) 8.84553e53 0.330807
\(876\) −1.57498e54 −0.576697
\(877\) −1.18991e54 −0.426602 −0.213301 0.976987i \(-0.568421\pi\)
−0.213301 + 0.976987i \(0.568421\pi\)
\(878\) −8.66099e54 −3.04032
\(879\) −4.73322e53 −0.162691
\(880\) −1.49408e55 −5.02858
\(881\) 6.27215e53 0.206710 0.103355 0.994645i \(-0.467042\pi\)
0.103355 + 0.994645i \(0.467042\pi\)
\(882\) −1.67109e54 −0.539300
\(883\) −7.94118e53 −0.250964 −0.125482 0.992096i \(-0.540048\pi\)
−0.125482 + 0.992096i \(0.540048\pi\)
\(884\) 6.38748e53 0.197680
\(885\) 3.17656e54 0.962734
\(886\) −3.08285e54 −0.915014
\(887\) 4.43676e54 1.28967 0.644836 0.764321i \(-0.276926\pi\)
0.644836 + 0.764321i \(0.276926\pi\)
\(888\) 2.11449e54 0.601956
\(889\) 2.15422e54 0.600630
\(890\) −8.86648e54 −2.42123
\(891\) 4.88679e53 0.130703
\(892\) −8.87961e54 −2.32618
\(893\) −1.22558e53 −0.0314478
\(894\) −6.57457e54 −1.65243
\(895\) 5.53308e54 1.36220
\(896\) 5.88767e54 1.41986
\(897\) −4.84912e54 −1.14552
\(898\) 6.73051e54 1.55753
\(899\) 6.31632e53 0.143189
\(900\) 1.13891e54 0.252932
\(901\) −2.74899e53 −0.0598087
\(902\) −1.77874e54 −0.379133
\(903\) 4.84957e53 0.101270
\(904\) 2.26408e55 4.63207
\(905\) −8.93148e54 −1.79030
\(906\) 8.44449e54 1.65845
\(907\) 8.87474e54 1.70774 0.853868 0.520490i \(-0.174251\pi\)
0.853868 + 0.520490i \(0.174251\pi\)
\(908\) 1.13526e55 2.14047
\(909\) −1.65753e54 −0.306218
\(910\) −4.90142e54 −0.887271
\(911\) 2.41119e54 0.427702 0.213851 0.976866i \(-0.431399\pi\)
0.213851 + 0.976866i \(0.431399\pi\)
\(912\) −1.11811e55 −1.94348
\(913\) −7.75476e53 −0.132087
\(914\) −1.94529e55 −3.24699
\(915\) −2.26240e54 −0.370065
\(916\) −1.92293e55 −3.08245
\(917\) −3.86860e54 −0.607745
\(918\) 1.73766e53 0.0267532
\(919\) −9.87356e54 −1.48983 −0.744915 0.667159i \(-0.767510\pi\)
−0.744915 + 0.667159i \(0.767510\pi\)
\(920\) 5.09920e55 7.54096
\(921\) −9.37110e53 −0.135827
\(922\) 2.51128e54 0.356757
\(923\) 5.64599e54 0.786156
\(924\) 5.52547e54 0.754116
\(925\) 6.38977e53 0.0854797
\(926\) −1.54028e55 −2.01975
\(927\) −4.47231e53 −0.0574853
\(928\) −1.03051e55 −1.29841
\(929\) −6.84483e54 −0.845418 −0.422709 0.906265i \(-0.638921\pi\)
−0.422709 + 0.906265i \(0.638921\pi\)
\(930\) 4.53729e54 0.549366
\(931\) 6.26798e54 0.743975
\(932\) 4.35361e54 0.506589
\(933\) −9.08875e54 −1.03680
\(934\) −7.73078e54 −0.864582
\(935\) −8.70929e53 −0.0954922
\(936\) 1.04904e55 1.12768
\(937\) −9.21588e53 −0.0971302 −0.0485651 0.998820i \(-0.515465\pi\)
−0.0485651 + 0.998820i \(0.515465\pi\)
\(938\) −3.27837e54 −0.338770
\(939\) 5.32134e54 0.539148
\(940\) −1.10292e54 −0.109566
\(941\) 1.10225e55 1.07367 0.536835 0.843687i \(-0.319620\pi\)
0.536835 + 0.843687i \(0.319620\pi\)
\(942\) −3.86282e54 −0.368946
\(943\) 3.51898e54 0.329572
\(944\) −6.08022e55 −5.58390
\(945\) −9.77209e53 −0.0880033
\(946\) 1.11696e55 0.986399
\(947\) 2.12495e55 1.84024 0.920120 0.391636i \(-0.128091\pi\)
0.920120 + 0.391636i \(0.128091\pi\)
\(948\) 3.56191e55 3.02503
\(949\) −4.38384e54 −0.365115
\(950\) −5.82893e54 −0.476104
\(951\) 7.03509e54 0.563547
\(952\) 1.24863e54 0.0980955
\(953\) 1.66851e55 1.28562 0.642808 0.766028i \(-0.277769\pi\)
0.642808 + 0.766028i \(0.277769\pi\)
\(954\) −7.10417e54 −0.536869
\(955\) −1.29903e55 −0.962844
\(956\) −3.63622e55 −2.64350
\(957\) −3.13322e54 −0.223419
\(958\) 3.17748e55 2.22240
\(959\) 3.25883e54 0.223572
\(960\) −3.73505e55 −2.51350
\(961\) −1.22788e55 −0.810541
\(962\) 9.26115e54 0.599689
\(963\) 1.17524e54 0.0746517
\(964\) 1.08925e55 0.678737
\(965\) −2.49057e55 −1.52245
\(966\) −1.49157e55 −0.894474
\(967\) −1.94586e55 −1.14478 −0.572389 0.819982i \(-0.693983\pi\)
−0.572389 + 0.819982i \(0.693983\pi\)
\(968\) 2.24293e55 1.29456
\(969\) −6.51769e53 −0.0369066
\(970\) 6.01685e55 3.34266
\(971\) −1.46805e55 −0.800173 −0.400087 0.916477i \(-0.631020\pi\)
−0.400087 + 0.916477i \(0.631020\pi\)
\(972\) 3.29105e54 0.175999
\(973\) −6.37204e54 −0.334342
\(974\) 5.86664e54 0.302029
\(975\) 3.17009e54 0.160135
\(976\) 4.33043e55 2.14639
\(977\) 2.32343e55 1.13001 0.565003 0.825089i \(-0.308875\pi\)
0.565003 + 0.825089i \(0.308875\pi\)
\(978\) 2.31661e55 1.10556
\(979\) 2.78215e55 1.30287
\(980\) 5.64063e55 2.59206
\(981\) 1.76729e54 0.0796950
\(982\) −5.74073e55 −2.54042
\(983\) 1.19994e55 0.521097 0.260549 0.965461i \(-0.416097\pi\)
0.260549 + 0.965461i \(0.416097\pi\)
\(984\) −7.61281e54 −0.324441
\(985\) −3.12679e55 −1.30776
\(986\) −1.11412e54 −0.0457309
\(987\) 2.05025e53 0.00825923
\(988\) −6.19153e55 −2.44790
\(989\) −2.20975e55 −0.857455
\(990\) −2.25073e55 −0.857180
\(991\) −3.02946e54 −0.113241 −0.0566203 0.998396i \(-0.518032\pi\)
−0.0566203 + 0.998396i \(0.518032\pi\)
\(992\) −4.68258e55 −1.71799
\(993\) 2.46245e55 0.886762
\(994\) 1.73669e55 0.613867
\(995\) −4.81238e55 −1.66968
\(996\) −5.22252e54 −0.177862
\(997\) −3.34593e55 −1.11855 −0.559277 0.828981i \(-0.688921\pi\)
−0.559277 + 0.828981i \(0.688921\pi\)
\(998\) −2.07649e55 −0.681421
\(999\) 1.84642e54 0.0594797
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))