[N,k,chi] = [3,28,Mod(1,3)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 28, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3.1");
S:= CuspForms(chi, 28);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 63\sqrt{30001}\).
We also show the integral \(q\)-expansion of the trace form .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} - 21582T_{2} - 2628288 \)
T2^2 - 21582*T2 - 2628288
acting on \(S_{28}^{\mathrm{new}}(\Gamma_0(3))\).
$p$
$F_p(T)$
$2$
\( T^{2} - 21582 T - 2628288 \)
T^2 - 21582*T - 2628288
$3$
\( (T + 1594323)^{2} \)
(T + 1594323)^2
$5$
\( T^{2} + 1771946100 T + 74\!\cdots\!00 \)
T^2 + 1771946100*T + 748063892688862500
$7$
\( T^{2} - 369665199904 T - 43\!\cdots\!80 \)
T^2 - 369665199904*T - 4340371263682844122880
$11$
\( T^{2} - 75762335668248 T - 63\!\cdots\!48 \)
T^2 - 75762335668248*T - 6389498603120162943945940848
$13$
\( T^{2} + 103021079177588 T - 15\!\cdots\!08 \)
T^2 + 103021079177588*T - 1596432101338246535743919270108
$17$
\( T^{2} + \cdots - 24\!\cdots\!84 \)
T^2 - 34691611579147908*T - 2476347036073106231505021564805884
$19$
\( T^{2} + \cdots + 21\!\cdots\!80 \)
T^2 - 111620476558642216*T + 2171829758473025469383471345480080
$23$
\( T^{2} + \cdots - 17\!\cdots\!40 \)
T^2 + 2892743075819387952*T - 1739135432770228324313475355282415040
$29$
\( T^{2} + \cdots - 15\!\cdots\!40 \)
T^2 - 29959552473322806972*T - 1579804585965708628403270593827281398140
$31$
\( T^{2} + \cdots - 10\!\cdots\!00 \)
T^2 - 10367463257055494032*T - 10578703753934794363831836536379029259200
$37$
\( T^{2} + \cdots + 34\!\cdots\!20 \)
T^2 + 3703660908819524869316*T + 3426884552526412639409080167591265870175620
$41$
\( T^{2} + \cdots - 34\!\cdots\!20 \)
T^2 - 1481814928479478034772*T - 34504197823512071400284178603153187632181020
$43$
\( T^{2} + \cdots + 90\!\cdots\!76 \)
T^2 - 9778778623457380249240*T + 9031669858042942246399897495158794070687376
$47$
\( T^{2} + \cdots + 16\!\cdots\!64 \)
T^2 - 89494998518809740323520*T + 1619518321800003939544858775653408625353073664
$53$
\( T^{2} + \cdots + 45\!\cdots\!20 \)
T^2 - 425671275824601813476748*T + 45298237386218569760745654431708458288995197220
$59$
\( T^{2} + \cdots - 75\!\cdots\!00 \)
T^2 - 369418769643380130292824*T - 750087467899589171167763578101073947453016230000
$61$
\( T^{2} + \cdots + 88\!\cdots\!16 \)
T^2 - 925133397428892745249420*T + 88608319181812587337803577750263955030359719716
$67$
\( T^{2} + \cdots + 41\!\cdots\!56 \)
T^2 - 4151706674555213948132968*T + 4157416884573458798065159028399246466084844544656
$71$
\( T^{2} + \cdots - 41\!\cdots\!36 \)
T^2 - 9760455855870867537668784*T - 41238793453017535084833156033107645174099804991936
$73$
\( T^{2} + \cdots + 15\!\cdots\!20 \)
T^2 - 28449956347640075157409588*T + 156647932223951904236724371740911184026414294419620
$79$
\( T^{2} + \cdots + 43\!\cdots\!00 \)
T^2 + 49553221898675501744231120*T + 4393171542720735106096605425201072908032978971200
$83$
\( T^{2} + \cdots + 36\!\cdots\!28 \)
T^2 + 120473408203228735926347736*T + 3605386542611967712172595535431345802912227278102928
$89$
\( T^{2} + \cdots - 45\!\cdots\!20 \)
T^2 - 205644052209697133056985556*T - 45026813920164268731507781286862742358775990469909020
$97$
\( T^{2} + \cdots + 44\!\cdots\!96 \)
T^2 + 1478339006400409594836427772*T + 442013022000318245941320588664428598066443103499630596
show more
show less