Properties

Label 3.26.a
Level $3$
Weight $26$
Character orbit 3.a
Rep. character $\chi_{3}(1,\cdot)$
Character field $\Q$
Dimension $5$
Newform subspaces $2$
Sturm bound $8$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3 \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 3.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(8\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{26}(\Gamma_0(3))\).

Total New Old
Modular forms 9 5 4
Cusp forms 7 5 2
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)Dim
\(+\)\(2\)
\(-\)\(3\)

Trace form

\( 5 q - 4002 q^{2} + 531441 q^{3} + 116355284 q^{4} + 407709006 q^{5} - 1782453114 q^{6} - 39309958472 q^{7} - 291312800760 q^{8} + 1412147682405 q^{9} + 6147590052564 q^{10} - 24134783749332 q^{11} + 34618009344372 q^{12}+ \cdots - 68\!\cdots\!92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{26}^{\mathrm{new}}(\Gamma_0(3))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3
3.26.a.a 3.a 1.a $2$ $11.880$ \(\Q(\sqrt{1287001}) \) None 3.26.a.a \(-324\) \(-1062882\) \(570861756\) \(-29687385728\) $+$ $\mathrm{SU}(2)$ \(q+(-162-\beta )q^{2}-3^{12}q^{3}+(12803848+\cdots)q^{4}+\cdots\)
3.26.a.b 3.a 1.a $3$ $11.880$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 3.26.a.b \(-3678\) \(1594323\) \(-163152750\) \(-9622572744\) $-$ $\mathrm{SU}(2)$ \(q+(-1226+\beta _{1})q^{2}+3^{12}q^{3}+(30249196+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{26}^{\mathrm{old}}(\Gamma_0(3))\) into lower level spaces

\( S_{26}^{\mathrm{old}}(\Gamma_0(3)) \simeq \) \(S_{26}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)