Defining parameters
Level: | \( N \) | \(=\) | \( 3 \) |
Weight: | \( k \) | \(=\) | \( 26 \) |
Character orbit: | \([\chi]\) | \(=\) | 3.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(8\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{26}(\Gamma_0(3))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 9 | 5 | 4 |
Cusp forms | 7 | 5 | 2 |
Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | Dim |
---|---|
\(+\) | \(2\) |
\(-\) | \(3\) |
Trace form
Decomposition of \(S_{26}^{\mathrm{new}}(\Gamma_0(3))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | |||||||
3.26.a.a | $2$ | $11.880$ | \(\Q(\sqrt{1287001}) \) | None | \(-324\) | \(-1062882\) | \(570861756\) | \(-29687385728\) | $+$ | \(q+(-162-\beta )q^{2}-3^{12}q^{3}+(12803848+\cdots)q^{4}+\cdots\) | |
3.26.a.b | $3$ | $11.880$ | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) | None | \(-3678\) | \(1594323\) | \(-163152750\) | \(-9622572744\) | $-$ | \(q+(-1226+\beta _{1})q^{2}+3^{12}q^{3}+(30249196+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{26}^{\mathrm{old}}(\Gamma_0(3))\) into lower level spaces
\( S_{26}^{\mathrm{old}}(\Gamma_0(3)) \simeq \) \(S_{26}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)