Properties

Label 3.26
Level 3
Weight 26
Dimension 5
Nonzero newspaces 1
Newform subspaces 2
Sturm bound 17
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3 \)
Weight: \( k \) = \( 26 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 2 \)
Sturm bound: \(17\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{26}(\Gamma_1(3))\).

Total New Old
Modular forms 9 5 4
Cusp forms 7 5 2
Eisenstein series 2 0 2

Trace form

\( 5 q - 4002 q^{2} + 531441 q^{3} + 116355284 q^{4} + 407709006 q^{5} - 1782453114 q^{6} - 39309958472 q^{7} - 291312800760 q^{8} + 1412147682405 q^{9} + 6147590052564 q^{10} - 24134783749332 q^{11} + 34618009344372 q^{12}+ \cdots - 68\!\cdots\!92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{26}^{\mathrm{new}}(\Gamma_1(3))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3.26.a \(\chi_{3}(1, \cdot)\) 3.26.a.a 2 1
3.26.a.b 3

Decomposition of \(S_{26}^{\mathrm{old}}(\Gamma_1(3))\) into lower level spaces

\( S_{26}^{\mathrm{old}}(\Gamma_1(3)) \cong \) \(S_{26}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 2}\)