Properties

Label 3.23.b
Level $3$
Weight $23$
Character orbit 3.b
Rep. character $\chi_{3}(2,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $1$
Sturm bound $7$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3 \)
Weight: \( k \) \(=\) \( 23 \)
Character orbit: \([\chi]\) \(=\) 3.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(7\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{23}(3, [\chi])\).

Total New Old
Modular forms 8 8 0
Cusp forms 6 6 0
Eisenstein series 2 2 0

Trace form

\( 6 q + 86670 q^{3} - 11258688 q^{4} + 293575104 q^{6} - 3447063060 q^{7} + 57339715158 q^{9} - 186869600640 q^{10} - 1325972980800 q^{12} + 2025132496860 q^{13} + 2628031314240 q^{15} - 9703467227136 q^{16}+ \cdots - 60\!\cdots\!60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{23}^{\mathrm{new}}(3, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3.23.b.a 3.b 3.b $6$ $9.201$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 3.23.b.a \(0\) \(86670\) \(0\) \(-3447063060\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(14445-8\beta _{1}+\beta _{2})q^{3}+\cdots\)