[N,k,chi] = [3,22,Mod(1,3)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 22, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3.1");
S:= CuspForms(chi, 22);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
This newform does not admit any (nontrivial) inner twists.
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2} - 1728 \)
acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(3))\).
$p$ |
$F_p(T)$ |
$2$ |
\( T - 1728 \)
|
$3$ |
\( T + 59049 \)
|
$5$ |
\( T + 41512770 \)
|
$7$ |
\( T - 538429808 \)
|
$11$ |
\( T + 64113040188 \)
|
$13$ |
\( T + 130980107986 \)
|
$17$ |
\( T - 8242029723618 \)
|
$19$ |
\( T - 13492101753020 \)
|
$23$ |
\( T + 233184825844776 \)
|
$29$ |
\( T + 2024562031123770 \)
|
$31$ |
\( T + 6869194988701768 \)
|
$37$ |
\( T - 3443998107027638 \)
|
$41$ |
\( T + 21\!\cdots\!58 \)
|
$43$ |
\( T + 71\!\cdots\!56 \)
|
$47$ |
\( T - 28\!\cdots\!48 \)
|
$53$ |
\( T + 21\!\cdots\!46 \)
|
$59$ |
\( T - 15\!\cdots\!60 \)
|
$61$ |
\( T - 43\!\cdots\!62 \)
|
$67$ |
\( T - 92\!\cdots\!68 \)
|
$71$ |
\( T + 20\!\cdots\!28 \)
|
$73$ |
\( T - 16\!\cdots\!74 \)
|
$79$ |
\( T - 67\!\cdots\!80 \)
|
$83$ |
\( T - 39\!\cdots\!84 \)
|
$89$ |
\( T - 41\!\cdots\!90 \)
|
$97$ |
\( T - 57\!\cdots\!98 \)
|
show more
|
show less
|