Properties

Label 3.20.a.b
Level $3$
Weight $20$
Character orbit 3.a
Self dual yes
Analytic conductor $6.865$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3,20,Mod(1,3)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3.1"); S:= CuspForms(chi, 20); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 20, names="a")
 
Level: \( N \) \(=\) \( 3 \)
Weight: \( k \) \(=\) \( 20 \)
Character orbit: \([\chi]\) \(=\) 3.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.86450089669\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{87481}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 21870 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 3\sqrt{87481}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 351) q^{2} - 19683 q^{3} + ( - 702 \beta + 386242) q^{4} + ( - 4160 \beta + 3008070) q^{5} + (19683 \beta - 6908733) q^{6} + (63936 \beta + 56946032) q^{7} + ( - 108356 \beta + 504250812) q^{8}+ \cdots + (42\!\cdots\!76 \beta - 12\!\cdots\!04) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 702 q^{2} - 39366 q^{3} + 772484 q^{4} + 6016140 q^{5} - 13817466 q^{6} + 113892064 q^{7} + 1008501624 q^{8} + 774840978 q^{9} + 8662242420 q^{10} - 6650071272 q^{11} - 15204802572 q^{12} - 44072356148 q^{13}+ \cdots - 25\!\cdots\!08 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
148.386
−147.386
−536.316 −19683.0 −236654. −683163. 1.05563e7 1.13677e8 4.08105e8 3.87420e8 3.66391e8
1.2 1238.32 −19683.0 1.00914e6 6.69930e6 −2.43738e7 214621. 6.00397e8 3.87420e8 8.29585e9
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3.20.a.b 2
3.b odd 2 1 9.20.a.c 2
4.b odd 2 1 48.20.a.j 2
5.b even 2 1 75.20.a.b 2
5.c odd 4 2 75.20.b.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3.20.a.b 2 1.a even 1 1 trivial
9.20.a.c 2 3.b odd 2 1
48.20.a.j 2 4.b odd 2 1
75.20.a.b 2 5.b even 2 1
75.20.b.b 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 702T_{2} - 664128 \) acting on \(S_{20}^{\mathrm{new}}(\Gamma_0(3))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 702T - 664128 \) Copy content Toggle raw display
$3$ \( (T + 19683)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + \cdots - 4576715617500 \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots + 24397550813440 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 84\!\cdots\!28 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 77\!\cdots\!08 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 23\!\cdots\!24 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 75\!\cdots\!20 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 13\!\cdots\!80 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 19\!\cdots\!80 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 91\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 97\!\cdots\!80 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 99\!\cdots\!60 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 83\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 97\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 17\!\cdots\!80 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 76\!\cdots\!40 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 18\!\cdots\!16 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 60\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 75\!\cdots\!16 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 23\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 53\!\cdots\!12 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 82\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 10\!\cdots\!16 \) Copy content Toggle raw display
show more
show less