Defining parameters
Level: | \( N \) | = | \( 3 \) |
Weight: | \( k \) | = | \( 17 \) |
Character orbit: | \([\chi]\) | = | 3.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | = | \( 3 \) |
Character field: | \(\Q\) | ||
Newforms: | \( 1 \) | ||
Sturm bound: | \(5\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{17}(3, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 6 | 6 | 0 |
Cusp forms | 4 | 4 | 0 |
Eisenstein series | 2 | 2 | 0 |
Trace form
Decomposition of \(S_{17}^{\mathrm{new}}(3, [\chi])\) into irreducible Hecke orbits
Label | Dim. | \(A\) | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||
3.17.b.a | \(4\) | \(4.870\) | \(\mathbb{Q}[x]/(x^{4} + \cdots)\) | None | \(0\) | \(-2052\) | \(0\) | \(-3141544\) | \(q+\beta _{1}q^{2}+(-513+\beta _{1}+\beta _{2})q^{3}+(-3116+\cdots)q^{4}+\cdots\) |