Properties

Label 3.16
Level 3
Weight 16
Dimension 2
Nonzero newspaces 1
Newform subspaces 2
Sturm bound 10
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3 \)
Weight: \( k \) = \( 16 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 2 \)
Sturm bound: \(10\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{16}(\Gamma_1(3))\).

Total New Old
Modular forms 6 2 4
Cusp forms 4 2 2
Eisenstein series 2 0 2

Trace form

\( 2 q - 306 q^{2} - 5596 q^{4} + 59220 q^{5} + 354294 q^{6} - 3522344 q^{7} + 6867864 q^{8} + 9565938 q^{9} - 49738860 q^{10} + 71200368 q^{11} - 108413964 q^{12} + 104047996 q^{13} + 476090496 q^{14} - 1098311400 q^{15}+ \cdots + 340549152932592 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{16}^{\mathrm{new}}(\Gamma_1(3))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3.16.a \(\chi_{3}(1, \cdot)\) 3.16.a.a 1 1
3.16.a.b 1

Decomposition of \(S_{16}^{\mathrm{old}}(\Gamma_1(3))\) into lower level spaces

\( S_{16}^{\mathrm{old}}(\Gamma_1(3)) \cong \) \(S_{16}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 2}\)