Properties

Label 3.14
Level 3
Weight 14
Dimension 3
Nonzero newspaces 1
Newform subspaces 2
Sturm bound 9
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3 \)
Weight: \( k \) = \( 14 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 2 \)
Sturm bound: \(9\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_1(3))\).

Total New Old
Modular forms 5 3 2
Cusp forms 3 3 0
Eisenstein series 2 0 2

Trace form

\( 3 q - 66 q^{2} + 729 q^{3} + 12468 q^{4} + 10506 q^{5} - 30618 q^{6} + 214080 q^{7} - 1830552 q^{8} + 1594323 q^{9} + 3799764 q^{10} - 10510500 q^{11} + 20823156 q^{12} + 25582218 q^{13} - 124741392 q^{14}+ \cdots - 5585710630500 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_1(3))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3.14.a \(\chi_{3}(1, \cdot)\) 3.14.a.a 1 1
3.14.a.b 2