Properties

Label 3.12.a.a
Level 3
Weight 12
Character orbit 3.a
Self dual yes
Analytic conductor 2.305
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 3 \)
Weight: \( k \) = \( 12 \)
Character orbit: \([\chi]\) = 3.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(2.30502954168\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 78q^{2} - 243q^{3} + 4036q^{4} - 5370q^{5} - 18954q^{6} - 27760q^{7} + 155064q^{8} + 59049q^{9} + O(q^{10}) \) \( q + 78q^{2} - 243q^{3} + 4036q^{4} - 5370q^{5} - 18954q^{6} - 27760q^{7} + 155064q^{8} + 59049q^{9} - 418860q^{10} + 637836q^{11} - 980748q^{12} + 766214q^{13} - 2165280q^{14} + 1304910q^{15} + 3829264q^{16} + 3084354q^{17} + 4605822q^{18} - 19511404q^{19} - 21673320q^{20} + 6745680q^{21} + 49751208q^{22} + 15312360q^{23} - 37680552q^{24} - 19991225q^{25} + 59764692q^{26} - 14348907q^{27} - 112039360q^{28} + 10751262q^{29} + 101782980q^{30} - 50937400q^{31} - 18888480q^{32} - 154994148q^{33} + 240579612q^{34} + 149071200q^{35} + 238321764q^{36} + 664740830q^{37} - 1521889512q^{38} - 186190002q^{39} - 832693680q^{40} + 898833450q^{41} + 526163040q^{42} - 957947188q^{43} + 2574306096q^{44} - 317093130q^{45} + 1194364080q^{46} - 1555741344q^{47} - 930511152q^{48} - 1206709143q^{49} - 1559315550q^{50} - 749498022q^{51} + 3092439704q^{52} + 3792417030q^{53} - 1119214746q^{54} - 3425179320q^{55} - 4304576640q^{56} + 4741271172q^{57} + 838598436q^{58} + 555306924q^{59} + 5266616760q^{60} + 4950420998q^{61} - 3973117200q^{62} - 1639200240q^{63} - 9315634112q^{64} - 4114569180q^{65} - 12089543544q^{66} + 5292399284q^{67} + 12448452744q^{68} - 3720903480q^{69} + 11627553600q^{70} - 14831086248q^{71} + 9156374136q^{72} + 13971005210q^{73} + 51849784740q^{74} + 4857867675q^{75} - 78748026544q^{76} - 17706327360q^{77} - 14522820156q^{78} + 3720542360q^{79} - 20563147680q^{80} + 3486784401q^{81} + 70109009100q^{82} + 8768454036q^{83} + 27225564480q^{84} - 16562980980q^{85} - 74719880664q^{86} - 2612556666q^{87} + 98905401504q^{88} - 25472769174q^{89} - 24733264140q^{90} - 21270100640q^{91} + 61800684960q^{92} + 12377788200q^{93} - 121347824832q^{94} + 104776239480q^{95} + 4589900640q^{96} - 39092494846q^{97} - 94123313154q^{98} + 37663577964q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
78.0000 −243.000 4036.00 −5370.00 −18954.0 −27760.0 155064. 59049.0 −418860.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3.12.a.a 1
3.b odd 2 1 9.12.a.a 1
4.b odd 2 1 48.12.a.f 1
5.b even 2 1 75.12.a.a 1
5.c odd 4 2 75.12.b.a 2
7.b odd 2 1 147.12.a.c 1
8.b even 2 1 192.12.a.q 1
8.d odd 2 1 192.12.a.g 1
9.c even 3 2 81.12.c.a 2
9.d odd 6 2 81.12.c.e 2
12.b even 2 1 144.12.a.l 1
15.d odd 2 1 225.12.a.f 1
15.e even 4 2 225.12.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3.12.a.a 1 1.a even 1 1 trivial
9.12.a.a 1 3.b odd 2 1
48.12.a.f 1 4.b odd 2 1
75.12.a.a 1 5.b even 2 1
75.12.b.a 2 5.c odd 4 2
81.12.c.a 2 9.c even 3 2
81.12.c.e 2 9.d odd 6 2
144.12.a.l 1 12.b even 2 1
147.12.a.c 1 7.b odd 2 1
192.12.a.g 1 8.d odd 2 1
192.12.a.q 1 8.b even 2 1
225.12.a.f 1 15.d odd 2 1
225.12.b.a 2 15.e even 4 2

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)

Hecke kernels

This newform subspace is the entire newspace \(S_{12}^{\mathrm{new}}(\Gamma_0(3))\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 - 78 T + 2048 T^{2} \)
$3$ \( 1 + 243 T \)
$5$ \( 1 + 5370 T + 48828125 T^{2} \)
$7$ \( 1 + 27760 T + 1977326743 T^{2} \)
$11$ \( 1 - 637836 T + 285311670611 T^{2} \)
$13$ \( 1 - 766214 T + 1792160394037 T^{2} \)
$17$ \( 1 - 3084354 T + 34271896307633 T^{2} \)
$19$ \( 1 + 19511404 T + 116490258898219 T^{2} \)
$23$ \( 1 - 15312360 T + 952809757913927 T^{2} \)
$29$ \( 1 - 10751262 T + 12200509765705829 T^{2} \)
$31$ \( 1 + 50937400 T + 25408476896404831 T^{2} \)
$37$ \( 1 - 664740830 T + 177917621779460413 T^{2} \)
$41$ \( 1 - 898833450 T + 550329031716248441 T^{2} \)
$43$ \( 1 + 957947188 T + 929293739471222707 T^{2} \)
$47$ \( 1 + 1555741344 T + 2472159215084012303 T^{2} \)
$53$ \( 1 - 3792417030 T + 9269035929372191597 T^{2} \)
$59$ \( 1 - 555306924 T + 30155888444737842659 T^{2} \)
$61$ \( 1 - 4950420998 T + 43513917611435838661 T^{2} \)
$67$ \( 1 - 5292399284 T + \)\(12\!\cdots\!83\)\( T^{2} \)
$71$ \( 1 + 14831086248 T + \)\(23\!\cdots\!71\)\( T^{2} \)
$73$ \( 1 - 13971005210 T + \)\(31\!\cdots\!77\)\( T^{2} \)
$79$ \( 1 - 3720542360 T + \)\(74\!\cdots\!79\)\( T^{2} \)
$83$ \( 1 - 8768454036 T + \)\(12\!\cdots\!67\)\( T^{2} \)
$89$ \( 1 + 25472769174 T + \)\(27\!\cdots\!89\)\( T^{2} \)
$97$ \( 1 + 39092494846 T + \)\(71\!\cdots\!53\)\( T^{2} \)
show more
show less