Properties

Label 3.11
Level 3
Weight 11
Dimension 2
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 7
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3 \)
Weight: \( k \) = \( 11 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(7\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(\Gamma_1(3))\).

Total New Old
Modular forms 4 4 0
Cusp forms 2 2 0
Eisenstein series 2 2 0

Trace form

\( 2 q - 54 q^{3} + 608 q^{4} - 12960 q^{6} + 34468 q^{7} - 115182 q^{9} + 152640 q^{10} - 16416 q^{12} - 339308 q^{13} + 1373760 q^{15} - 1289728 q^{16} + 699840 q^{18} - 1898924 q^{19} - 930636 q^{21} + 10025280 q^{22}+ \cdots - 4872286080 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(\Gamma_1(3))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3.11.b \(\chi_{3}(2, \cdot)\) 3.11.b.a 2 1