Properties

Label 2975.2.a.m
Level $2975$
Weight $2$
Character orbit 2975.a
Self dual yes
Analytic conductor $23.755$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2975,2,Mod(1,2975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2975, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2975.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2975 = 5^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2975.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-2,2,10,0,-1,5,-6,11,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.7554946013\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.453749.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 10x^{2} + x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 119)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{2} + ( - \beta_{3} + \beta_1) q^{3} + ( - \beta_{3} + 2) q^{4} + ( - 2 \beta_{4} - \beta_{3} + 2 \beta_{2} + 1) q^{6} + q^{7} + ( - \beta_{4} + \beta_{2} + \beta_1 - 1) q^{8} + ( - \beta_{4} - \beta_{3} - \beta_{2} + \cdots + 2) q^{9}+ \cdots + ( - 4 \beta_{4} - 2 \beta_{3} + \cdots - 10) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 2 q^{3} + 10 q^{4} - q^{6} + 5 q^{7} - 6 q^{8} + 11 q^{9} - 2 q^{11} + 22 q^{12} - 2 q^{13} - 2 q^{14} + 4 q^{16} - 5 q^{17} + 18 q^{18} + 6 q^{19} + 2 q^{21} - 6 q^{22} + 10 q^{23} + 2 q^{24}+ \cdots - 62 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 5x^{3} + 10x^{2} + x - 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - \nu^{3} - 5\nu^{2} + 4\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 4\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + \beta_{3} + 5\beta_{2} + 13 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.609440
−2.17679
2.32183
−0.544198
1.78972
−2.49227 2.82084 4.21140 0 −7.03030 1.00000 −5.51141 4.95716 0
1.2 −2.36800 −0.569378 3.60742 0 1.34829 1.00000 −3.80636 −2.67581 0
1.3 −0.877834 −0.907578 −1.22941 0 0.796703 1.00000 2.83488 −2.17630 0
1.4 1.40868 −2.55982 −0.0156267 0 −3.60597 1.00000 −2.83937 3.55270 0
1.5 2.32942 3.21594 3.42621 0 7.49128 1.00000 3.32226 7.34225 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2975.2.a.m 5
5.b even 2 1 119.2.a.b 5
15.d odd 2 1 1071.2.a.m 5
20.d odd 2 1 1904.2.a.t 5
35.c odd 2 1 833.2.a.g 5
35.i odd 6 2 833.2.e.h 10
35.j even 6 2 833.2.e.i 10
40.e odd 2 1 7616.2.a.bq 5
40.f even 2 1 7616.2.a.bt 5
85.c even 2 1 2023.2.a.j 5
105.g even 2 1 7497.2.a.br 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
119.2.a.b 5 5.b even 2 1
833.2.a.g 5 35.c odd 2 1
833.2.e.h 10 35.i odd 6 2
833.2.e.i 10 35.j even 6 2
1071.2.a.m 5 15.d odd 2 1
1904.2.a.t 5 20.d odd 2 1
2023.2.a.j 5 85.c even 2 1
2975.2.a.m 5 1.a even 1 1 trivial
7497.2.a.br 5 105.g even 2 1
7616.2.a.bq 5 40.e odd 2 1
7616.2.a.bt 5 40.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2975))\):

\( T_{2}^{5} + 2T_{2}^{4} - 8T_{2}^{3} - 14T_{2}^{2} + 14T_{2} + 17 \) Copy content Toggle raw display
\( T_{11}^{5} + 2T_{11}^{4} - 44T_{11}^{3} - 40T_{11}^{2} + 496T_{11} - 192 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} + 2 T^{4} + \cdots + 17 \) Copy content Toggle raw display
$3$ \( T^{5} - 2 T^{4} + \cdots + 12 \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( (T - 1)^{5} \) Copy content Toggle raw display
$11$ \( T^{5} + 2 T^{4} + \cdots - 192 \) Copy content Toggle raw display
$13$ \( T^{5} + 2 T^{4} + \cdots + 544 \) Copy content Toggle raw display
$17$ \( (T + 1)^{5} \) Copy content Toggle raw display
$19$ \( T^{5} - 6 T^{4} + \cdots - 64 \) Copy content Toggle raw display
$23$ \( T^{5} - 10 T^{4} + \cdots + 128 \) Copy content Toggle raw display
$29$ \( T^{5} + 8 T^{4} + \cdots + 2592 \) Copy content Toggle raw display
$31$ \( T^{5} - 33 T^{3} + \cdots - 16 \) Copy content Toggle raw display
$37$ \( T^{5} + 8 T^{4} + \cdots - 4384 \) Copy content Toggle raw display
$41$ \( T^{5} - 18 T^{4} + \cdots + 162 \) Copy content Toggle raw display
$43$ \( T^{5} + 8 T^{4} + \cdots + 1052 \) Copy content Toggle raw display
$47$ \( T^{5} - 10 T^{4} + \cdots + 2304 \) Copy content Toggle raw display
$53$ \( T^{5} + 4 T^{4} + \cdots - 138 \) Copy content Toggle raw display
$59$ \( T^{5} - 8 T^{4} + \cdots - 3072 \) Copy content Toggle raw display
$61$ \( T^{5} - 22 T^{4} + \cdots + 5542 \) Copy content Toggle raw display
$67$ \( T^{5} + 16 T^{4} + \cdots - 1868 \) Copy content Toggle raw display
$71$ \( T^{5} + 2 T^{4} + \cdots + 13696 \) Copy content Toggle raw display
$73$ \( T^{5} + 10 T^{4} + \cdots + 11118 \) Copy content Toggle raw display
$79$ \( T^{5} - 18 T^{4} + \cdots + 3072 \) Copy content Toggle raw display
$83$ \( T^{5} - 12 T^{4} + \cdots - 1984 \) Copy content Toggle raw display
$89$ \( T^{5} - 20 T^{4} + \cdots + 7456 \) Copy content Toggle raw display
$97$ \( T^{5} + 12 T^{4} + \cdots - 218 \) Copy content Toggle raw display
show more
show less