Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [297,3,Mod(26,297)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(297, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 2]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("297.26");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 297 = 3^{3} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 297.m (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.09266385150\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
26.1 | −1.91915 | + | 2.64148i | 0 | −2.05823 | − | 6.33458i | −5.62765 | − | 7.74580i | 0 | 1.38002 | + | 4.24727i | 8.26173 | + | 2.68440i | 0 | 31.2607 | ||||||||
26.2 | −1.70641 | + | 2.34868i | 0 | −1.36837 | − | 4.21142i | 1.87123 | + | 2.57553i | 0 | −2.03023 | − | 6.24840i | 1.18212 | + | 0.384095i | 0 | −9.24219 | ||||||||
26.3 | −0.932126 | + | 1.28296i | 0 | 0.458937 | + | 1.41246i | 3.97855 | + | 5.47600i | 0 | 2.86444 | + | 8.81585i | −8.27277 | − | 2.68799i | 0 | −10.7340 | ||||||||
26.4 | −0.432865 | + | 0.595788i | 0 | 1.06848 | + | 3.28843i | −2.00643 | − | 2.76162i | 0 | −1.21424 | − | 3.73704i | −5.22328 | − | 1.69715i | 0 | 2.51386 | ||||||||
26.5 | 0.432865 | − | 0.595788i | 0 | 1.06848 | + | 3.28843i | 2.00643 | + | 2.76162i | 0 | −1.21424 | − | 3.73704i | 5.22328 | + | 1.69715i | 0 | 2.51386 | ||||||||
26.6 | 0.932126 | − | 1.28296i | 0 | 0.458937 | + | 1.41246i | −3.97855 | − | 5.47600i | 0 | 2.86444 | + | 8.81585i | 8.27277 | + | 2.68799i | 0 | −10.7340 | ||||||||
26.7 | 1.70641 | − | 2.34868i | 0 | −1.36837 | − | 4.21142i | −1.87123 | − | 2.57553i | 0 | −2.03023 | − | 6.24840i | −1.18212 | − | 0.384095i | 0 | −9.24219 | ||||||||
26.8 | 1.91915 | − | 2.64148i | 0 | −2.05823 | − | 6.33458i | 5.62765 | + | 7.74580i | 0 | 1.38002 | + | 4.24727i | −8.26173 | − | 2.68440i | 0 | 31.2607 | ||||||||
53.1 | −3.74988 | − | 1.21841i | 0 | 9.34099 | + | 6.78663i | 6.49312 | − | 2.10974i | 0 | 0.851148 | + | 0.618395i | −17.4885 | − | 24.0708i | 0 | −26.9189 | ||||||||
53.2 | −2.68763 | − | 0.873263i | 0 | 3.22469 | + | 2.34287i | −7.76821 | + | 2.52404i | 0 | 4.13431 | + | 3.00376i | 0.0233650 | + | 0.0321592i | 0 | 23.0822 | ||||||||
53.3 | −2.05552 | − | 0.667878i | 0 | 0.543019 | + | 0.394526i | 2.08499 | − | 0.677453i | 0 | −8.15858 | − | 5.92755i | 4.22883 | + | 5.82048i | 0 | −4.73818 | ||||||||
53.4 | −0.767275 | − | 0.249303i | 0 | −2.70951 | − | 1.96857i | 2.62117 | − | 0.851670i | 0 | 4.17312 | + | 3.03195i | 3.48498 | + | 4.79666i | 0 | −2.22348 | ||||||||
53.5 | 0.767275 | + | 0.249303i | 0 | −2.70951 | − | 1.96857i | −2.62117 | + | 0.851670i | 0 | 4.17312 | + | 3.03195i | −3.48498 | − | 4.79666i | 0 | −2.22348 | ||||||||
53.6 | 2.05552 | + | 0.667878i | 0 | 0.543019 | + | 0.394526i | −2.08499 | + | 0.677453i | 0 | −8.15858 | − | 5.92755i | −4.22883 | − | 5.82048i | 0 | −4.73818 | ||||||||
53.7 | 2.68763 | + | 0.873263i | 0 | 3.22469 | + | 2.34287i | 7.76821 | − | 2.52404i | 0 | 4.13431 | + | 3.00376i | −0.0233650 | − | 0.0321592i | 0 | 23.0822 | ||||||||
53.8 | 3.74988 | + | 1.21841i | 0 | 9.34099 | + | 6.78663i | −6.49312 | + | 2.10974i | 0 | 0.851148 | + | 0.618395i | 17.4885 | + | 24.0708i | 0 | −26.9189 | ||||||||
80.1 | −1.91915 | − | 2.64148i | 0 | −2.05823 | + | 6.33458i | −5.62765 | + | 7.74580i | 0 | 1.38002 | − | 4.24727i | 8.26173 | − | 2.68440i | 0 | 31.2607 | ||||||||
80.2 | −1.70641 | − | 2.34868i | 0 | −1.36837 | + | 4.21142i | 1.87123 | − | 2.57553i | 0 | −2.03023 | + | 6.24840i | 1.18212 | − | 0.384095i | 0 | −9.24219 | ||||||||
80.3 | −0.932126 | − | 1.28296i | 0 | 0.458937 | − | 1.41246i | 3.97855 | − | 5.47600i | 0 | 2.86444 | − | 8.81585i | −8.27277 | + | 2.68799i | 0 | −10.7340 | ||||||||
80.4 | −0.432865 | − | 0.595788i | 0 | 1.06848 | − | 3.28843i | −2.00643 | + | 2.76162i | 0 | −1.21424 | + | 3.73704i | −5.22328 | + | 1.69715i | 0 | 2.51386 | ||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
11.c | even | 5 | 1 | inner |
33.h | odd | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 297.3.m.c | ✓ | 32 |
3.b | odd | 2 | 1 | inner | 297.3.m.c | ✓ | 32 |
11.c | even | 5 | 1 | inner | 297.3.m.c | ✓ | 32 |
33.h | odd | 10 | 1 | inner | 297.3.m.c | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
297.3.m.c | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
297.3.m.c | ✓ | 32 | 3.b | odd | 2 | 1 | inner |
297.3.m.c | ✓ | 32 | 11.c | even | 5 | 1 | inner |
297.3.m.c | ✓ | 32 | 33.h | odd | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{32} - 33 T_{2}^{30} + 598 T_{2}^{28} - 7840 T_{2}^{26} + 105464 T_{2}^{24} - 1043961 T_{2}^{22} + \cdots + 2139525025 \)
acting on \(S_{3}^{\mathrm{new}}(297, [\chi])\).