Properties

Label 297.3.m.a
Level $297$
Weight $3$
Character orbit 297.m
Analytic conductor $8.093$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,3,Mod(26,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.26");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 297.m (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.09266385150\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.484000000.6
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + 16x^{4} - 66x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{4} + \beta_1) q^{2} + (\beta_{5} - \beta_{3} - \beta_{2} - 1) q^{4} - \beta_{7} q^{5} + (9 \beta_{5} - 9 \beta_{3} + 7 \beta_{2} + 7) q^{7} + (2 \beta_{7} - 3 \beta_{6} + \cdots + 3 \beta_1) q^{8}+ \cdots + ( - 36 \beta_{7} + 32 \beta_{4} - 36 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 10 q^{4} + 6 q^{7} + 32 q^{10} + 90 q^{13} + 62 q^{16} - 44 q^{22} - 52 q^{25} - 90 q^{28} + 162 q^{31} - 124 q^{34} + 30 q^{37} - 22 q^{40} - 332 q^{43} + 42 q^{46} - 200 q^{49} - 120 q^{52} + 154 q^{55}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - x^{6} + 16x^{4} - 66x^{2} + 121 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -7\nu^{6} - 37\nu^{4} - 629\nu^{2} - 363 ) / 1991 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -28\nu^{6} - 148\nu^{4} - 525\nu^{2} + 539 ) / 1991 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -28\nu^{7} - 148\nu^{5} - 525\nu^{3} + 539\nu ) / 1991 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 40\nu^{6} - 73\nu^{4} + 750\nu^{2} - 2761 ) / 1991 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 61\nu^{7} + 38\nu^{5} + 646\nu^{3} - 1672\nu ) / 1991 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 68\nu^{7} + 75\nu^{5} + 1275\nu^{3} - 3300\nu ) / 1991 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 4\beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 4\beta_{7} - 4\beta_{6} + \beta_{4} + 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -7\beta_{5} - 10\beta_{3} - 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -7\beta_{7} - 17\beta_{4} - 7\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 37\beta_{5} - 37\beta_{3} + 75\beta_{2} + 75 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -38\beta_{7} + 75\beta_{6} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(-1\) \(-1 - \beta_{2} + \beta_{3} - \beta_{5}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
26.1
−1.46782 + 0.476925i
1.46782 0.476925i
−1.26313 + 1.73855i
1.26313 1.73855i
−1.46782 0.476925i
1.46782 + 0.476925i
−1.26313 1.73855i
1.26313 + 1.73855i
−1.46782 + 2.02029i 0 −0.690983 2.12663i −1.46782 2.02029i 0 −3.16312 9.73508i −4.18932 1.36119i 0 6.23607
26.2 1.46782 2.02029i 0 −0.690983 2.12663i 1.46782 + 2.02029i 0 −3.16312 9.73508i 4.18932 + 1.36119i 0 6.23607
53.1 −1.26313 0.410415i 0 −1.80902 1.31433i −1.26313 + 0.410415i 0 4.66312 + 3.38795i 4.86822 + 6.70053i 0 1.76393
53.2 1.26313 + 0.410415i 0 −1.80902 1.31433i 1.26313 0.410415i 0 4.66312 + 3.38795i −4.86822 6.70053i 0 1.76393
80.1 −1.46782 2.02029i 0 −0.690983 + 2.12663i −1.46782 + 2.02029i 0 −3.16312 + 9.73508i −4.18932 + 1.36119i 0 6.23607
80.2 1.46782 + 2.02029i 0 −0.690983 + 2.12663i 1.46782 2.02029i 0 −3.16312 + 9.73508i 4.18932 1.36119i 0 6.23607
269.1 −1.26313 + 0.410415i 0 −1.80902 + 1.31433i −1.26313 0.410415i 0 4.66312 3.38795i 4.86822 6.70053i 0 1.76393
269.2 1.26313 0.410415i 0 −1.80902 + 1.31433i 1.26313 + 0.410415i 0 4.66312 3.38795i −4.86822 + 6.70053i 0 1.76393
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 26.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
11.c even 5 1 inner
33.h odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 297.3.m.a 8
3.b odd 2 1 inner 297.3.m.a 8
11.c even 5 1 inner 297.3.m.a 8
33.h odd 10 1 inner 297.3.m.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
297.3.m.a 8 1.a even 1 1 trivial
297.3.m.a 8 3.b odd 2 1 inner
297.3.m.a 8 11.c even 5 1 inner
297.3.m.a 8 33.h odd 10 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} + T_{2}^{6} + 31T_{2}^{4} - 99T_{2}^{2} + 121 \) acting on \(S_{3}^{\mathrm{new}}(297, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + T^{6} + \cdots + 121 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + T^{6} + \cdots + 121 \) Copy content Toggle raw display
$7$ \( (T^{4} - 3 T^{3} + \cdots + 3481)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + 209 T^{6} + \cdots + 214358881 \) Copy content Toggle raw display
$13$ \( (T^{4} - 45 T^{3} + \cdots + 198025)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 480264246121 \) Copy content Toggle raw display
$19$ \( (T^{4} + 10 T^{2} + \cdots + 25)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + 288 T^{2} + 891)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 7032525875881 \) Copy content Toggle raw display
$31$ \( (T^{4} - 81 T^{3} + \cdots + 1852321)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} - 15 T^{3} + \cdots + 9025)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 7562500000000 \) Copy content Toggle raw display
$43$ \( (T^{2} + 83 T + 1711)^{4} \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 15786405650521 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 7502181258121 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 15786405650521 \) Copy content Toggle raw display
$61$ \( (T^{4} - 30 T^{3} + \cdots + 4818025)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 74 T - 1511)^{4} \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 19\!\cdots\!21 \) Copy content Toggle raw display
$73$ \( (T^{4} + 105 T^{3} + \cdots + 6375625)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} - 198 T^{3} + \cdots + 13512976)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 1033426763776 \) Copy content Toggle raw display
$89$ \( (T^{4} + 2448 T^{2} + 228096)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} - 6 T^{3} + \cdots + 5812921)^{2} \) Copy content Toggle raw display
show more
show less