Newspace parameters
Level: | \( N \) | \(=\) | \( 297 = 3^{3} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 297.l (of order \(10\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(8.09266385150\) |
Analytic rank: | \(0\) |
Dimension: | \(64\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
28.1 | −3.48622 | + | 1.13274i | 0 | 7.63453 | − | 5.54681i | −0.766665 | + | 2.35955i | 0 | −2.71772 | − | 3.74062i | −11.7141 | + | 16.1231i | 0 | − | 9.09434i | |||||||
28.2 | −3.41410 | + | 1.10931i | 0 | 7.18945 | − | 5.22344i | 2.78589 | − | 8.57409i | 0 | 5.28260 | + | 7.27087i | −10.3110 | + | 14.1918i | 0 | 32.3632i | ||||||||
28.3 | −2.95304 | + | 0.959502i | 0 | 4.56376 | − | 3.31576i | −2.12063 | + | 6.52662i | 0 | −1.17161 | − | 1.61258i | −2.99516 | + | 4.12249i | 0 | − | 21.3082i | |||||||
28.4 | −2.17344 | + | 0.706193i | 0 | 0.989055 | − | 0.718590i | 0.353597 | − | 1.08826i | 0 | 4.76453 | + | 6.55781i | 3.73085 | − | 5.13507i | 0 | 2.61497i | ||||||||
28.5 | −1.86420 | + | 0.605715i | 0 | −0.127721 | + | 0.0927948i | 2.39947 | − | 7.38482i | 0 | −7.73432 | − | 10.6454i | 4.79044 | − | 6.59348i | 0 | 15.2202i | ||||||||
28.6 | −1.32011 | + | 0.428931i | 0 | −1.67735 | + | 1.21867i | 0.0558517 | − | 0.171894i | 0 | 2.71308 | + | 3.73423i | 4.95507 | − | 6.82007i | 0 | 0.250876i | ||||||||
28.7 | −0.763996 | + | 0.248237i | 0 | −2.71400 | + | 1.97184i | −2.83974 | + | 8.73981i | 0 | −0.00743157 | − | 0.0102287i | 3.47270 | − | 4.77977i | 0 | − | 7.38210i | |||||||
28.8 | −0.600591 | + | 0.195144i | 0 | −2.91344 | + | 2.11674i | −0.173185 | + | 0.533010i | 0 | −3.36519 | − | 4.63179i | 2.82146 | − | 3.88341i | 0 | − | 0.353917i | |||||||
28.9 | 0.600591 | − | 0.195144i | 0 | −2.91344 | + | 2.11674i | 0.173185 | − | 0.533010i | 0 | −3.36519 | − | 4.63179i | −2.82146 | + | 3.88341i | 0 | − | 0.353917i | |||||||
28.10 | 0.763996 | − | 0.248237i | 0 | −2.71400 | + | 1.97184i | 2.83974 | − | 8.73981i | 0 | −0.00743157 | − | 0.0102287i | −3.47270 | + | 4.77977i | 0 | − | 7.38210i | |||||||
28.11 | 1.32011 | − | 0.428931i | 0 | −1.67735 | + | 1.21867i | −0.0558517 | + | 0.171894i | 0 | 2.71308 | + | 3.73423i | −4.95507 | + | 6.82007i | 0 | 0.250876i | ||||||||
28.12 | 1.86420 | − | 0.605715i | 0 | −0.127721 | + | 0.0927948i | −2.39947 | + | 7.38482i | 0 | −7.73432 | − | 10.6454i | −4.79044 | + | 6.59348i | 0 | 15.2202i | ||||||||
28.13 | 2.17344 | − | 0.706193i | 0 | 0.989055 | − | 0.718590i | −0.353597 | + | 1.08826i | 0 | 4.76453 | + | 6.55781i | −3.73085 | + | 5.13507i | 0 | 2.61497i | ||||||||
28.14 | 2.95304 | − | 0.959502i | 0 | 4.56376 | − | 3.31576i | 2.12063 | − | 6.52662i | 0 | −1.17161 | − | 1.61258i | 2.99516 | − | 4.12249i | 0 | − | 21.3082i | |||||||
28.15 | 3.41410 | − | 1.10931i | 0 | 7.18945 | − | 5.22344i | −2.78589 | + | 8.57409i | 0 | 5.28260 | + | 7.27087i | 10.3110 | − | 14.1918i | 0 | 32.3632i | ||||||||
28.16 | 3.48622 | − | 1.13274i | 0 | 7.63453 | − | 5.54681i | 0.766665 | − | 2.35955i | 0 | −2.71772 | − | 3.74062i | 11.7141 | − | 16.1231i | 0 | − | 9.09434i | |||||||
217.1 | −2.19894 | − | 3.02659i | 0 | −3.08880 | + | 9.50636i | −0.777076 | − | 0.564579i | 0 | −1.43576 | − | 0.466506i | 21.3321 | − | 6.93121i | 0 | 3.59336i | ||||||||
217.2 | −1.91199 | − | 2.63163i | 0 | −2.03371 | + | 6.25911i | −1.65999 | − | 1.20606i | 0 | 10.3634 | + | 3.36727i | 7.98545 | − | 2.59463i | 0 | 6.67447i | ||||||||
217.3 | −1.74465 | − | 2.40130i | 0 | −1.48638 | + | 4.57462i | 5.42117 | + | 3.93871i | 0 | −8.55033 | − | 2.77817i | 2.28665 | − | 0.742976i | 0 | − | 19.8895i | |||||||
217.4 | −1.41441 | − | 1.94677i | 0 | −0.553285 | + | 1.70284i | 5.91381 | + | 4.29664i | 0 | 4.75262 | + | 1.54422i | −5.05666 | + | 1.64301i | 0 | − | 17.5900i | |||||||
See all 64 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
11.d | odd | 10 | 1 | inner |
33.f | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 297.3.l.b | ✓ | 64 |
3.b | odd | 2 | 1 | inner | 297.3.l.b | ✓ | 64 |
11.d | odd | 10 | 1 | inner | 297.3.l.b | ✓ | 64 |
33.f | even | 10 | 1 | inner | 297.3.l.b | ✓ | 64 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
297.3.l.b | ✓ | 64 | 1.a | even | 1 | 1 | trivial |
297.3.l.b | ✓ | 64 | 3.b | odd | 2 | 1 | inner |
297.3.l.b | ✓ | 64 | 11.d | odd | 10 | 1 | inner |
297.3.l.b | ✓ | 64 | 33.f | even | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{64} - 48 T_{2}^{62} + 1366 T_{2}^{60} - 30192 T_{2}^{58} + 581223 T_{2}^{56} + \cdots + 22\!\cdots\!56 \)
acting on \(S_{3}^{\mathrm{new}}(297, [\chi])\).