Newspace parameters
Level: | \( N \) | \(=\) | \( 297 = 3^{3} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 297.l (of order \(10\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(8.09266385150\) |
Analytic rank: | \(0\) |
Dimension: | \(64\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
28.1 | −3.54471 | + | 1.15175i | 0 | 8.00236 | − | 5.81406i | −1.37260 | + | 4.22442i | 0 | 7.83056 | + | 10.7778i | −12.9067 | + | 17.7646i | 0 | − | 16.5552i | |||||||
28.2 | −3.36249 | + | 1.09254i | 0 | 6.87662 | − | 4.99616i | −0.167460 | + | 0.515388i | 0 | −2.87959 | − | 3.96341i | −9.35153 | + | 12.8713i | 0 | − | 1.91594i | |||||||
28.3 | −2.46532 | + | 0.801032i | 0 | 2.20009 | − | 1.59846i | 2.02943 | − | 6.24594i | 0 | 0.446735 | + | 0.614878i | 1.95110 | − | 2.68545i | 0 | 17.0239i | ||||||||
28.4 | −2.36517 | + | 0.768489i | 0 | 1.76737 | − | 1.28407i | −1.62812 | + | 5.01083i | 0 | −7.38827 | − | 10.1691i | 2.65368 | − | 3.65248i | 0 | − | 13.1026i | |||||||
28.5 | −2.17481 | + | 0.706638i | 0 | 0.994385 | − | 0.722463i | 1.84605 | − | 5.68157i | 0 | 1.94543 | + | 2.67766i | 3.72434 | − | 5.12612i | 0 | 13.6608i | ||||||||
28.6 | −1.52193 | + | 0.494505i | 0 | −1.16433 | + | 0.845936i | −1.94332 | + | 5.98091i | 0 | 7.34667 | + | 10.1118i | 5.11613 | − | 7.04175i | 0 | − | 10.0635i | |||||||
28.7 | −0.906042 | + | 0.294391i | 0 | −2.50182 | + | 1.81768i | −0.862169 | + | 2.65348i | 0 | −4.17645 | − | 5.74839i | 3.97151 | − | 5.46631i | 0 | − | 2.65798i | |||||||
28.8 | −0.0795886 | + | 0.0258599i | 0 | −3.23040 | + | 2.34702i | 1.48372 | − | 4.56642i | 0 | 1.34705 | + | 1.85405i | 0.393163 | − | 0.541143i | 0 | 0.401804i | ||||||||
28.9 | 0.0795886 | − | 0.0258599i | 0 | −3.23040 | + | 2.34702i | −1.48372 | + | 4.56642i | 0 | 1.34705 | + | 1.85405i | −0.393163 | + | 0.541143i | 0 | 0.401804i | ||||||||
28.10 | 0.906042 | − | 0.294391i | 0 | −2.50182 | + | 1.81768i | 0.862169 | − | 2.65348i | 0 | −4.17645 | − | 5.74839i | −3.97151 | + | 5.46631i | 0 | − | 2.65798i | |||||||
28.11 | 1.52193 | − | 0.494505i | 0 | −1.16433 | + | 0.845936i | 1.94332 | − | 5.98091i | 0 | 7.34667 | + | 10.1118i | −5.11613 | + | 7.04175i | 0 | − | 10.0635i | |||||||
28.12 | 2.17481 | − | 0.706638i | 0 | 0.994385 | − | 0.722463i | −1.84605 | + | 5.68157i | 0 | 1.94543 | + | 2.67766i | −3.72434 | + | 5.12612i | 0 | 13.6608i | ||||||||
28.13 | 2.36517 | − | 0.768489i | 0 | 1.76737 | − | 1.28407i | 1.62812 | − | 5.01083i | 0 | −7.38827 | − | 10.1691i | −2.65368 | + | 3.65248i | 0 | − | 13.1026i | |||||||
28.14 | 2.46532 | − | 0.801032i | 0 | 2.20009 | − | 1.59846i | −2.02943 | + | 6.24594i | 0 | 0.446735 | + | 0.614878i | −1.95110 | + | 2.68545i | 0 | 17.0239i | ||||||||
28.15 | 3.36249 | − | 1.09254i | 0 | 6.87662 | − | 4.99616i | 0.167460 | − | 0.515388i | 0 | −2.87959 | − | 3.96341i | 9.35153 | − | 12.8713i | 0 | − | 1.91594i | |||||||
28.16 | 3.54471 | − | 1.15175i | 0 | 8.00236 | − | 5.81406i | 1.37260 | − | 4.22442i | 0 | 7.83056 | + | 10.7778i | 12.9067 | − | 17.7646i | 0 | − | 16.5552i | |||||||
217.1 | −2.18358 | − | 3.00544i | 0 | −3.02859 | + | 9.32103i | −7.33251 | − | 5.32738i | 0 | −7.07395 | − | 2.29846i | 20.4945 | − | 6.65908i | 0 | 33.6702i | ||||||||
217.2 | −2.12418 | − | 2.92369i | 0 | −2.79972 | + | 8.61665i | 5.78682 | + | 4.20437i | 0 | −8.46490 | − | 2.75041i | 17.3915 | − | 5.65085i | 0 | − | 25.8497i | |||||||
217.3 | −1.76521 | − | 2.42960i | 0 | −1.55092 | + | 4.77325i | −3.34009 | − | 2.42672i | 0 | 7.42789 | + | 2.41347i | 2.91011 | − | 0.945551i | 0 | 12.3987i | ||||||||
217.4 | −1.49206 | − | 2.05364i | 0 | −0.755134 | + | 2.32406i | 1.98794 | + | 1.44433i | 0 | 3.94202 | + | 1.28084i | −3.75730 | + | 1.22082i | 0 | − | 6.23753i | |||||||
See all 64 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
11.d | odd | 10 | 1 | inner |
33.f | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 297.3.l.a | ✓ | 64 |
3.b | odd | 2 | 1 | inner | 297.3.l.a | ✓ | 64 |
11.d | odd | 10 | 1 | inner | 297.3.l.a | ✓ | 64 |
33.f | even | 10 | 1 | inner | 297.3.l.a | ✓ | 64 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
297.3.l.a | ✓ | 64 | 1.a | even | 1 | 1 | trivial |
297.3.l.a | ✓ | 64 | 3.b | odd | 2 | 1 | inner |
297.3.l.a | ✓ | 64 | 11.d | odd | 10 | 1 | inner |
297.3.l.a | ✓ | 64 | 33.f | even | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{64} - 48 T_{2}^{62} + 1411 T_{2}^{60} - 32946 T_{2}^{58} + 668298 T_{2}^{56} - 11457474 T_{2}^{54} + \cdots + 214358881 \)
acting on \(S_{3}^{\mathrm{new}}(297, [\chi])\).