Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [297,3,Mod(10,297)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(297, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2, 3]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("297.10");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 297 = 3^{3} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 297.h (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.09266385150\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(20\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 99) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10.1 | −3.30671 | + | 1.90913i | 0 | 5.28955 | − | 9.16177i | 2.91356 | − | 5.04644i | 0 | 5.33694 | − | 3.08128i | 25.1207i | 0 | 22.2495i | ||||||||||
10.2 | −3.03057 | + | 1.74970i | 0 | 4.12292 | − | 7.14111i | 0.198992 | − | 0.344665i | 0 | −2.03014 | + | 1.17210i | 14.8579i | 0 | 1.39271i | ||||||||||
10.3 | −2.67675 | + | 1.54542i | 0 | 2.77667 | − | 4.80934i | 1.89480 | − | 3.28189i | 0 | −5.27354 | + | 3.04468i | 4.80116i | 0 | 11.7131i | ||||||||||
10.4 | −2.41819 | + | 1.39614i | 0 | 1.89841 | − | 3.28815i | −3.95412 | + | 6.84874i | 0 | −11.3316 | + | 6.54229i | − | 0.567308i | 0 | − | 22.0820i | ||||||||
10.5 | −2.38735 | + | 1.37834i | 0 | 1.79962 | − | 3.11703i | −3.89274 | + | 6.74242i | 0 | 6.72208 | − | 3.88100i | − | 1.10477i | 0 | − | 21.4620i | ||||||||
10.6 | −1.81513 | + | 1.04797i | 0 | 0.196474 | − | 0.340304i | −1.28105 | + | 2.21884i | 0 | 4.60933 | − | 2.66120i | − | 7.56015i | 0 | − | 5.37000i | ||||||||
10.7 | −1.64469 | + | 0.949563i | 0 | −0.196660 | + | 0.340626i | 3.05607 | − | 5.29326i | 0 | −4.13935 | + | 2.38985i | − | 8.34347i | 0 | 11.6077i | |||||||||
10.8 | −1.10231 | + | 0.636421i | 0 | −1.18994 | + | 2.06103i | 1.84774 | − | 3.20038i | 0 | 6.26503 | − | 3.61711i | − | 8.12057i | 0 | 4.70376i | |||||||||
10.9 | −0.981412 | + | 0.566618i | 0 | −1.35789 | + | 2.35193i | −0.0827703 | + | 0.143362i | 0 | 3.82724 | − | 2.20966i | − | 7.61056i | 0 | − | 0.187597i | ||||||||
10.10 | −0.491166 | + | 0.283575i | 0 | −1.83917 | + | 3.18554i | −1.20048 | + | 2.07930i | 0 | −10.1718 | + | 5.87270i | − | 4.35477i | 0 | − | 1.36171i | ||||||||
10.11 | 0.491166 | − | 0.283575i | 0 | −1.83917 | + | 3.18554i | −1.20048 | + | 2.07930i | 0 | 10.1718 | − | 5.87270i | 4.35477i | 0 | 1.36171i | ||||||||||
10.12 | 0.981412 | − | 0.566618i | 0 | −1.35789 | + | 2.35193i | −0.0827703 | + | 0.143362i | 0 | −3.82724 | + | 2.20966i | 7.61056i | 0 | 0.187597i | ||||||||||
10.13 | 1.10231 | − | 0.636421i | 0 | −1.18994 | + | 2.06103i | 1.84774 | − | 3.20038i | 0 | −6.26503 | + | 3.61711i | 8.12057i | 0 | − | 4.70376i | |||||||||
10.14 | 1.64469 | − | 0.949563i | 0 | −0.196660 | + | 0.340626i | 3.05607 | − | 5.29326i | 0 | 4.13935 | − | 2.38985i | 8.34347i | 0 | − | 11.6077i | |||||||||
10.15 | 1.81513 | − | 1.04797i | 0 | 0.196474 | − | 0.340304i | −1.28105 | + | 2.21884i | 0 | −4.60933 | + | 2.66120i | 7.56015i | 0 | 5.37000i | ||||||||||
10.16 | 2.38735 | − | 1.37834i | 0 | 1.79962 | − | 3.11703i | −3.89274 | + | 6.74242i | 0 | −6.72208 | + | 3.88100i | 1.10477i | 0 | 21.4620i | ||||||||||
10.17 | 2.41819 | − | 1.39614i | 0 | 1.89841 | − | 3.28815i | −3.95412 | + | 6.84874i | 0 | 11.3316 | − | 6.54229i | 0.567308i | 0 | 22.0820i | ||||||||||
10.18 | 2.67675 | − | 1.54542i | 0 | 2.77667 | − | 4.80934i | 1.89480 | − | 3.28189i | 0 | 5.27354 | − | 3.04468i | − | 4.80116i | 0 | − | 11.7131i | ||||||||
10.19 | 3.03057 | − | 1.74970i | 0 | 4.12292 | − | 7.14111i | 0.198992 | − | 0.344665i | 0 | 2.03014 | − | 1.17210i | − | 14.8579i | 0 | − | 1.39271i | ||||||||
10.20 | 3.30671 | − | 1.90913i | 0 | 5.28955 | − | 9.16177i | 2.91356 | − | 5.04644i | 0 | −5.33694 | + | 3.08128i | − | 25.1207i | 0 | − | 22.2495i | ||||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
11.b | odd | 2 | 1 | inner |
99.h | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 297.3.h.b | 40 | |
3.b | odd | 2 | 1 | 99.3.h.b | ✓ | 40 | |
9.c | even | 3 | 1 | inner | 297.3.h.b | 40 | |
9.c | even | 3 | 1 | 891.3.c.f | 20 | ||
9.d | odd | 6 | 1 | 99.3.h.b | ✓ | 40 | |
9.d | odd | 6 | 1 | 891.3.c.e | 20 | ||
11.b | odd | 2 | 1 | inner | 297.3.h.b | 40 | |
33.d | even | 2 | 1 | 99.3.h.b | ✓ | 40 | |
99.g | even | 6 | 1 | 99.3.h.b | ✓ | 40 | |
99.g | even | 6 | 1 | 891.3.c.e | 20 | ||
99.h | odd | 6 | 1 | inner | 297.3.h.b | 40 | |
99.h | odd | 6 | 1 | 891.3.c.f | 20 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
99.3.h.b | ✓ | 40 | 3.b | odd | 2 | 1 | |
99.3.h.b | ✓ | 40 | 9.d | odd | 6 | 1 | |
99.3.h.b | ✓ | 40 | 33.d | even | 2 | 1 | |
99.3.h.b | ✓ | 40 | 99.g | even | 6 | 1 | |
297.3.h.b | 40 | 1.a | even | 1 | 1 | trivial | |
297.3.h.b | 40 | 9.c | even | 3 | 1 | inner | |
297.3.h.b | 40 | 11.b | odd | 2 | 1 | inner | |
297.3.h.b | 40 | 99.h | odd | 6 | 1 | inner | |
891.3.c.e | 20 | 9.d | odd | 6 | 1 | ||
891.3.c.e | 20 | 99.g | even | 6 | 1 | ||
891.3.c.f | 20 | 9.c | even | 3 | 1 | ||
891.3.c.f | 20 | 99.h | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{40} - 63 T_{2}^{38} + 2289 T_{2}^{36} - 56286 T_{2}^{34} + 1039872 T_{2}^{32} + \cdots + 1148217259401 \)
acting on \(S_{3}^{\mathrm{new}}(297, [\chi])\).