Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [297,2,Mod(2,297)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(297, base_ring=CyclotomicField(90))
chi = DirichletCharacter(H, H._module([5, 9]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("297.2");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 297 = 3^{3} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 297.x (of order \(90\), degree \(24\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.37155694003\) |
Analytic rank: | \(0\) |
Dimension: | \(816\) |
Relative dimension: | \(34\) over \(\Q(\zeta_{90})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{90}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −2.35990 | − | 1.25478i | 1.70844 | − | 0.285014i | 2.87626 | + | 4.26423i | −0.324115 | + | 0.518692i | −4.38938 | − | 1.47111i | −0.825769 | + | 2.87980i | −0.878253 | − | 8.35602i | 2.83753 | − | 0.973859i | 1.41572 | − | 0.817368i |
2.2 | −2.26253 | − | 1.20301i | 0.515632 | + | 1.65352i | 2.55343 | + | 3.78562i | 0.859531 | − | 1.37554i | 0.822565 | − | 4.36145i | 0.489304 | − | 1.70640i | −0.687383 | − | 6.54001i | −2.46825 | + | 1.70521i | −3.59950 | + | 2.07817i |
2.3 | −2.26092 | − | 1.20215i | −0.483507 | − | 1.66320i | 2.54822 | + | 3.77789i | 1.25715 | − | 2.01187i | −0.906247 | + | 4.34161i | −0.310667 | + | 1.08342i | −0.684398 | − | 6.51161i | −2.53244 | + | 1.60833i | −5.26090 | + | 3.03738i |
2.4 | −2.19675 | − | 1.16803i | −1.73177 | − | 0.0312456i | 2.34303 | + | 3.47368i | −0.743142 | + | 1.18928i | 3.76777 | + | 2.09140i | 1.21182 | − | 4.22614i | −0.569546 | − | 5.41887i | 2.99805 | + | 0.108220i | 3.02161 | − | 1.74453i |
2.5 | −1.96350 | − | 1.04401i | −1.03570 | + | 1.38828i | 1.64697 | + | 2.44174i | −1.86245 | + | 2.98054i | 3.48297 | − | 1.64461i | −1.27752 | + | 4.45523i | −0.219728 | − | 2.09057i | −0.854668 | − | 2.87568i | 6.76862 | − | 3.90787i |
2.6 | −1.85576 | − | 0.986723i | −1.57006 | + | 0.731366i | 1.35182 | + | 2.00416i | 2.23335 | − | 3.57411i | 3.63531 | + | 0.191982i | −0.641535 | + | 2.23730i | −0.0917117 | − | 0.872579i | 1.93021 | − | 2.29658i | −7.67120 | + | 4.42897i |
2.7 | −1.85524 | − | 0.986448i | −0.117170 | − | 1.72808i | 1.35045 | + | 2.00212i | −1.51818 | + | 2.42960i | −1.48729 | + | 3.32159i | 0.513847 | − | 1.79200i | −0.0911464 | − | 0.867200i | −2.97254 | + | 0.404959i | 5.21326 | − | 3.00988i |
2.8 | −1.52582 | − | 0.811295i | 1.55110 | − | 0.770772i | 0.551554 | + | 0.817713i | −1.39756 | + | 2.23657i | −2.99203 | − | 0.0823374i | 0.208948 | − | 0.728689i | 0.183104 | + | 1.74211i | 1.81182 | − | 2.39109i | 3.94695 | − | 2.27877i |
2.9 | −1.46798 | − | 0.780540i | 1.71058 | + | 0.271862i | 0.427343 | + | 0.633562i | 1.29552 | − | 2.07327i | −2.29890 | − | 1.73427i | 1.10448 | − | 3.85179i | 0.214765 | + | 2.04335i | 2.85218 | + | 0.930084i | −3.52007 | + | 2.03232i |
2.10 | −1.31955 | − | 0.701616i | −0.367723 | + | 1.69257i | 0.130555 | + | 0.193555i | −0.165773 | + | 0.265291i | 1.67276 | − | 1.97542i | 0.396429 | − | 1.38251i | 0.275960 | + | 2.62558i | −2.72956 | − | 1.24479i | 0.404877 | − | 0.233756i |
2.11 | −1.17173 | − | 0.623019i | −1.24456 | − | 1.20460i | −0.133592 | − | 0.198058i | −0.0930248 | + | 0.148871i | 0.707795 | + | 2.18685i | −0.585190 | + | 2.04080i | 0.310571 | + | 2.95489i | 0.0978601 | + | 2.99840i | 0.201749 | − | 0.116480i |
2.12 | −1.03336 | − | 0.549449i | 1.50566 | + | 0.856142i | −0.352441 | − | 0.522516i | 0.280072 | − | 0.448209i | −1.08549 | − | 1.71199i | −0.906185 | + | 3.16024i | 0.321775 | + | 3.06149i | 1.53404 | + | 2.57812i | −0.535684 | + | 0.309277i |
2.13 | −0.707588 | − | 0.376231i | −1.13129 | − | 1.31156i | −0.759255 | − | 1.12564i | 1.77592 | − | 2.84206i | 0.307039 | + | 1.35367i | 1.17780 | − | 4.10748i | 0.281275 | + | 2.67615i | −0.440362 | + | 2.96750i | −2.32589 | + | 1.34285i |
2.14 | −0.496209 | − | 0.263839i | 1.09688 | − | 1.34046i | −0.941773 | − | 1.39624i | 1.91409 | − | 3.06319i | −0.897951 | + | 0.375750i | −0.560137 | + | 1.95343i | 0.216423 | + | 2.05913i | −0.593689 | − | 2.94067i | −1.75798 | + | 1.01497i |
2.15 | −0.479124 | − | 0.254755i | 1.10485 | + | 1.33390i | −0.953726 | − | 1.41396i | −1.90249 | + | 3.04462i | −0.189543 | − | 0.920571i | 0.294306 | − | 1.02637i | 0.210184 | + | 1.99976i | −0.558602 | + | 2.94754i | 1.68716 | − | 0.974083i |
2.16 | −0.330318 | − | 0.175633i | −0.396513 | + | 1.68605i | −1.04012 | − | 1.54205i | 1.19100 | − | 1.90599i | 0.427103 | − | 0.487294i | −0.158877 | + | 0.554068i | 0.150947 | + | 1.43616i | −2.68556 | − | 1.33708i | −0.728164 | + | 0.420406i |
2.17 | −0.269305 | − | 0.143192i | −1.63163 | + | 0.581205i | −1.06636 | − | 1.58095i | −1.80542 | + | 2.88927i | 0.522628 | + | 0.0771141i | 0.611788 | − | 2.13356i | 0.124561 | + | 1.18512i | 2.32440 | − | 1.89662i | 0.899926 | − | 0.519573i |
2.18 | −0.214028 | − | 0.113801i | 0.440063 | − | 1.67521i | −1.08553 | − | 1.60936i | −0.565155 | + | 0.904436i | −0.284826 | + | 0.308463i | 0.830386 | − | 2.89590i | 0.0998625 | + | 0.950128i | −2.61269 | − | 1.47440i | 0.223884 | − | 0.129259i |
2.19 | −0.206000 | − | 0.109532i | −1.69914 | + | 0.336021i | −1.08795 | − | 1.61295i | 0.239455 | − | 0.383208i | 0.386828 | + | 0.116890i | −0.317762 | + | 1.10817i | 0.0962223 | + | 0.915494i | 2.77418 | − | 1.14190i | −0.0913011 | + | 0.0527127i |
2.20 | 0.170131 | + | 0.0904602i | −0.411206 | − | 1.68253i | −1.09762 | − | 1.62729i | −1.62004 | + | 2.59261i | 0.0822432 | − | 0.323448i | −1.38803 | + | 4.84064i | −0.0798166 | − | 0.759404i | −2.66182 | + | 1.38373i | −0.510147 | + | 0.294533i |
See next 80 embeddings (of 816 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.d | odd | 10 | 1 | inner |
27.f | odd | 18 | 1 | inner |
297.x | even | 90 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 297.2.x.a | ✓ | 816 |
3.b | odd | 2 | 1 | 891.2.bb.a | 816 | ||
11.d | odd | 10 | 1 | inner | 297.2.x.a | ✓ | 816 |
27.e | even | 9 | 1 | 891.2.bb.a | 816 | ||
27.f | odd | 18 | 1 | inner | 297.2.x.a | ✓ | 816 |
33.f | even | 10 | 1 | 891.2.bb.a | 816 | ||
297.w | odd | 90 | 1 | 891.2.bb.a | 816 | ||
297.x | even | 90 | 1 | inner | 297.2.x.a | ✓ | 816 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
297.2.x.a | ✓ | 816 | 1.a | even | 1 | 1 | trivial |
297.2.x.a | ✓ | 816 | 11.d | odd | 10 | 1 | inner |
297.2.x.a | ✓ | 816 | 27.f | odd | 18 | 1 | inner |
297.2.x.a | ✓ | 816 | 297.x | even | 90 | 1 | inner |
891.2.bb.a | 816 | 3.b | odd | 2 | 1 | ||
891.2.bb.a | 816 | 27.e | even | 9 | 1 | ||
891.2.bb.a | 816 | 33.f | even | 10 | 1 | ||
891.2.bb.a | 816 | 297.w | odd | 90 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(297, [\chi])\).