Properties

Label 297.2.t.a.8.8
Level $297$
Weight $2$
Character 297.8
Analytic conductor $2.372$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(8,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.8");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.t (of order \(30\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 8.8
Character \(\chi\) \(=\) 297.8
Dual form 297.2.t.a.260.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.189668 + 1.80457i) q^{2} +(-1.26420 + 0.268714i) q^{4} +(1.19507 + 0.125607i) q^{5} +(3.59771 - 3.23939i) q^{7} +(0.396737 + 1.22103i) q^{8} +2.18041i q^{10} +(1.93170 - 2.69602i) q^{11} +(-1.24460 + 2.79542i) q^{13} +(6.52808 + 5.87791i) q^{14} +(-4.48960 + 1.99890i) q^{16} +(-1.80866 - 1.31407i) q^{17} +(-4.34428 + 1.41154i) q^{19} +(-1.54456 + 0.162340i) q^{20} +(5.23153 + 2.97455i) q^{22} +(-1.72112 + 0.993689i) q^{23} +(-3.47832 - 0.739340i) q^{25} +(-5.28060 - 1.71577i) q^{26} +(-3.67776 + 5.06200i) q^{28} +(1.13479 + 1.26031i) q^{29} +(4.85274 + 2.16058i) q^{31} +(-3.17481 - 5.49894i) q^{32} +(2.02828 - 3.51308i) q^{34} +(4.70641 - 3.41941i) q^{35} +(0.344857 - 1.06136i) q^{37} +(-3.37119 - 7.57182i) q^{38} +(0.320759 + 1.50905i) q^{40} +(-7.11427 + 7.90120i) q^{41} +(-3.28272 - 1.89528i) q^{43} +(-1.71760 + 3.92738i) q^{44} +(-2.11962 - 2.91741i) q^{46} +(0.678872 - 3.19384i) q^{47} +(1.71815 - 16.3471i) q^{49} +(0.674464 - 6.41710i) q^{50} +(0.822258 - 3.86842i) q^{52} +(0.749954 + 1.03222i) q^{53} +(2.64716 - 2.97930i) q^{55} +(5.38274 + 3.10773i) q^{56} +(-2.05908 + 2.28684i) q^{58} +(0.00657007 + 0.0309097i) q^{59} +(-0.482921 - 1.08466i) q^{61} +(-2.97851 + 9.16690i) q^{62} +(1.36926 - 0.994827i) q^{64} +(-1.83851 + 3.18440i) q^{65} +(1.05277 + 1.82345i) q^{67} +(2.63961 + 1.17523i) q^{68} +(7.06321 + 7.84449i) q^{70} +(2.26013 - 3.11080i) q^{71} +(6.69980 + 2.17690i) q^{73} +(1.98070 + 0.421012i) q^{74} +(5.11273 - 2.95184i) q^{76} +(-1.78375 - 15.9570i) q^{77} +(3.80026 - 0.399424i) q^{79} +(-5.61646 + 1.82490i) q^{80} +(-15.6076 - 11.3396i) q^{82} +(-6.64079 + 2.95667i) q^{83} +(-1.99642 - 1.79758i) q^{85} +(2.79753 - 6.28336i) q^{86} +(4.05830 + 1.28906i) q^{88} -10.2875i q^{89} +(4.57775 + 14.0889i) q^{91} +(1.90882 - 1.71871i) q^{92} +(5.89227 + 0.619302i) q^{94} +(-5.36902 + 1.14122i) q^{95} +(-1.51615 - 14.4252i) q^{97} +29.8254 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 15 q^{2} + 5 q^{4} + 6 q^{5} - 5 q^{7} + 3 q^{11} - 5 q^{13} + 9 q^{14} + 5 q^{16} - 50 q^{19} + 3 q^{20} - 11 q^{22} + 42 q^{23} - 2 q^{25} - 20 q^{28} - 30 q^{29} - 6 q^{31} - 10 q^{34} - 6 q^{37}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.189668 + 1.80457i 0.134115 + 1.27602i 0.829957 + 0.557828i \(0.188365\pi\)
−0.695841 + 0.718195i \(0.744968\pi\)
\(3\) 0 0
\(4\) −1.26420 + 0.268714i −0.632100 + 0.134357i
\(5\) 1.19507 + 0.125607i 0.534452 + 0.0561731i 0.367910 0.929861i \(-0.380073\pi\)
0.166542 + 0.986034i \(0.446740\pi\)
\(6\) 0 0
\(7\) 3.59771 3.23939i 1.35981 1.22438i 0.409788 0.912181i \(-0.365603\pi\)
0.950018 0.312195i \(-0.101064\pi\)
\(8\) 0.396737 + 1.22103i 0.140268 + 0.431700i
\(9\) 0 0
\(10\) 2.18041i 0.689506i
\(11\) 1.93170 2.69602i 0.582431 0.812880i
\(12\) 0 0
\(13\) −1.24460 + 2.79542i −0.345191 + 0.775311i 0.654622 + 0.755956i \(0.272828\pi\)
−0.999813 + 0.0193546i \(0.993839\pi\)
\(14\) 6.52808 + 5.87791i 1.74470 + 1.57094i
\(15\) 0 0
\(16\) −4.48960 + 1.99890i −1.12240 + 0.499724i
\(17\) −1.80866 1.31407i −0.438664 0.318708i 0.346440 0.938072i \(-0.387390\pi\)
−0.785104 + 0.619364i \(0.787390\pi\)
\(18\) 0 0
\(19\) −4.34428 + 1.41154i −0.996645 + 0.323830i −0.761524 0.648136i \(-0.775549\pi\)
−0.235121 + 0.971966i \(0.575549\pi\)
\(20\) −1.54456 + 0.162340i −0.345374 + 0.0363003i
\(21\) 0 0
\(22\) 5.23153 + 2.97455i 1.11537 + 0.634175i
\(23\) −1.72112 + 0.993689i −0.358878 + 0.207199i −0.668589 0.743632i \(-0.733101\pi\)
0.309710 + 0.950831i \(0.399768\pi\)
\(24\) 0 0
\(25\) −3.47832 0.739340i −0.695664 0.147868i
\(26\) −5.28060 1.71577i −1.03561 0.336490i
\(27\) 0 0
\(28\) −3.67776 + 5.06200i −0.695030 + 0.956627i
\(29\) 1.13479 + 1.26031i 0.210725 + 0.234034i 0.839237 0.543766i \(-0.183002\pi\)
−0.628512 + 0.777800i \(0.716336\pi\)
\(30\) 0 0
\(31\) 4.85274 + 2.16058i 0.871579 + 0.388052i 0.793265 0.608877i \(-0.208380\pi\)
0.0783139 + 0.996929i \(0.475046\pi\)
\(32\) −3.17481 5.49894i −0.561233 0.972084i
\(33\) 0 0
\(34\) 2.02828 3.51308i 0.347847 0.602489i
\(35\) 4.70641 3.41941i 0.795528 0.577985i
\(36\) 0 0
\(37\) 0.344857 1.06136i 0.0566941 0.174486i −0.918699 0.394957i \(-0.870759\pi\)
0.975394 + 0.220471i \(0.0707594\pi\)
\(38\) −3.37119 7.57182i −0.546880 1.22831i
\(39\) 0 0
\(40\) 0.320759 + 1.50905i 0.0507164 + 0.238602i
\(41\) −7.11427 + 7.90120i −1.11106 + 1.23396i −0.141285 + 0.989969i \(0.545123\pi\)
−0.969778 + 0.243991i \(0.921543\pi\)
\(42\) 0 0
\(43\) −3.28272 1.89528i −0.500609 0.289027i 0.228356 0.973578i \(-0.426665\pi\)
−0.728965 + 0.684551i \(0.759998\pi\)
\(44\) −1.71760 + 3.92738i −0.258938 + 0.592075i
\(45\) 0 0
\(46\) −2.11962 2.91741i −0.312521 0.430149i
\(47\) 0.678872 3.19384i 0.0990236 0.465870i −0.900496 0.434865i \(-0.856796\pi\)
0.999519 0.0310045i \(-0.00987062\pi\)
\(48\) 0 0
\(49\) 1.71815 16.3471i 0.245450 2.33530i
\(50\) 0.674464 6.41710i 0.0953837 0.907515i
\(51\) 0 0
\(52\) 0.822258 3.86842i 0.114027 0.536453i
\(53\) 0.749954 + 1.03222i 0.103014 + 0.141787i 0.857412 0.514631i \(-0.172071\pi\)
−0.754398 + 0.656417i \(0.772071\pi\)
\(54\) 0 0
\(55\) 2.64716 2.97930i 0.356943 0.401728i
\(56\) 5.38274 + 3.10773i 0.719299 + 0.415288i
\(57\) 0 0
\(58\) −2.05908 + 2.28684i −0.270371 + 0.300277i
\(59\) 0.00657007 + 0.0309097i 0.000855350 + 0.00402410i 0.978573 0.205899i \(-0.0660119\pi\)
−0.977718 + 0.209923i \(0.932679\pi\)
\(60\) 0 0
\(61\) −0.482921 1.08466i −0.0618317 0.138876i 0.879987 0.474998i \(-0.157551\pi\)
−0.941818 + 0.336122i \(0.890885\pi\)
\(62\) −2.97851 + 9.16690i −0.378271 + 1.16420i
\(63\) 0 0
\(64\) 1.36926 0.994827i 0.171158 0.124353i
\(65\) −1.83851 + 3.18440i −0.228039 + 0.394976i
\(66\) 0 0
\(67\) 1.05277 + 1.82345i 0.128617 + 0.222770i 0.923141 0.384462i \(-0.125613\pi\)
−0.794524 + 0.607232i \(0.792280\pi\)
\(68\) 2.63961 + 1.17523i 0.320100 + 0.142518i
\(69\) 0 0
\(70\) 7.06321 + 7.84449i 0.844215 + 0.937595i
\(71\) 2.26013 3.11080i 0.268228 0.369184i −0.653563 0.756873i \(-0.726726\pi\)
0.921790 + 0.387688i \(0.126726\pi\)
\(72\) 0 0
\(73\) 6.69980 + 2.17690i 0.784152 + 0.254786i 0.673612 0.739085i \(-0.264742\pi\)
0.110540 + 0.993872i \(0.464742\pi\)
\(74\) 1.98070 + 0.421012i 0.230252 + 0.0489416i
\(75\) 0 0
\(76\) 5.11273 2.95184i 0.586471 0.338599i
\(77\) −1.78375 15.9570i −0.203277 1.81847i
\(78\) 0 0
\(79\) 3.80026 0.399424i 0.427563 0.0449387i 0.111697 0.993742i \(-0.464372\pi\)
0.315866 + 0.948804i \(0.397705\pi\)
\(80\) −5.61646 + 1.82490i −0.627940 + 0.204030i
\(81\) 0 0
\(82\) −15.6076 11.3396i −1.72357 1.25225i
\(83\) −6.64079 + 2.95667i −0.728922 + 0.324537i −0.737427 0.675427i \(-0.763959\pi\)
0.00850508 + 0.999964i \(0.497293\pi\)
\(84\) 0 0
\(85\) −1.99642 1.79758i −0.216542 0.194975i
\(86\) 2.79753 6.28336i 0.301666 0.677552i
\(87\) 0 0
\(88\) 4.05830 + 1.28906i 0.432616 + 0.137414i
\(89\) 10.2875i 1.09048i −0.838281 0.545238i \(-0.816439\pi\)
0.838281 0.545238i \(-0.183561\pi\)
\(90\) 0 0
\(91\) 4.57775 + 14.0889i 0.479879 + 1.47692i
\(92\) 1.90882 1.71871i 0.199009 0.179188i
\(93\) 0 0
\(94\) 5.89227 + 0.619302i 0.607741 + 0.0638761i
\(95\) −5.36902 + 1.14122i −0.550849 + 0.117087i
\(96\) 0 0
\(97\) −1.51615 14.4252i −0.153941 1.46465i −0.749853 0.661605i \(-0.769876\pi\)
0.595912 0.803050i \(-0.296791\pi\)
\(98\) 29.8254 3.01282
\(99\) 0 0
\(100\) 4.59597 0.459597
\(101\) 1.68141 + 15.9976i 0.167307 + 1.59182i 0.679977 + 0.733234i \(0.261990\pi\)
−0.512670 + 0.858586i \(0.671343\pi\)
\(102\) 0 0
\(103\) 2.03569 0.432699i 0.200582 0.0426351i −0.106525 0.994310i \(-0.533972\pi\)
0.307107 + 0.951675i \(0.400639\pi\)
\(104\) −3.90708 0.410651i −0.383121 0.0402676i
\(105\) 0 0
\(106\) −1.72047 + 1.54912i −0.167107 + 0.150464i
\(107\) −0.129361 0.398133i −0.0125058 0.0384889i 0.944609 0.328198i \(-0.106441\pi\)
−0.957115 + 0.289709i \(0.906441\pi\)
\(108\) 0 0
\(109\) 14.6788i 1.40597i −0.711205 0.702985i \(-0.751850\pi\)
0.711205 0.702985i \(-0.248150\pi\)
\(110\) 5.87843 + 4.21191i 0.560486 + 0.401590i
\(111\) 0 0
\(112\) −9.67706 + 21.7350i −0.914396 + 2.05377i
\(113\) −2.37557 2.13897i −0.223475 0.201218i 0.549786 0.835305i \(-0.314709\pi\)
−0.773261 + 0.634088i \(0.781376\pi\)
\(114\) 0 0
\(115\) −2.18167 + 0.971344i −0.203442 + 0.0905783i
\(116\) −1.77326 1.28835i −0.164643 0.119620i
\(117\) 0 0
\(118\) −0.0545326 + 0.0177187i −0.00502013 + 0.00163114i
\(119\) −10.7638 + 1.13132i −0.986716 + 0.103708i
\(120\) 0 0
\(121\) −3.53703 10.4158i −0.321548 0.946893i
\(122\) 1.86575 1.07719i 0.168917 0.0975241i
\(123\) 0 0
\(124\) −6.71542 1.42741i −0.603062 0.128185i
\(125\) −9.77817 3.17712i −0.874587 0.284170i
\(126\) 0 0
\(127\) −13.1088 + 18.0428i −1.16322 + 1.60104i −0.464654 + 0.885492i \(0.653821\pi\)
−0.698567 + 0.715545i \(0.746179\pi\)
\(128\) −6.44252 7.15514i −0.569444 0.632431i
\(129\) 0 0
\(130\) −6.09517 2.71375i −0.534582 0.238011i
\(131\) 7.74960 + 13.4227i 0.677086 + 1.17275i 0.975855 + 0.218421i \(0.0700907\pi\)
−0.298769 + 0.954326i \(0.596576\pi\)
\(132\) 0 0
\(133\) −11.0569 + 19.1511i −0.958756 + 1.66061i
\(134\) −3.09087 + 2.24565i −0.267011 + 0.193995i
\(135\) 0 0
\(136\) 0.886955 2.72977i 0.0760557 0.234075i
\(137\) −6.97178 15.6589i −0.595639 1.33783i −0.920009 0.391897i \(-0.871819\pi\)
0.324370 0.945930i \(-0.394848\pi\)
\(138\) 0 0
\(139\) 2.15559 + 10.1413i 0.182835 + 0.860172i 0.969938 + 0.243350i \(0.0782465\pi\)
−0.787103 + 0.616821i \(0.788420\pi\)
\(140\) −5.03100 + 5.58749i −0.425197 + 0.472229i
\(141\) 0 0
\(142\) 6.04233 + 3.48854i 0.507061 + 0.292752i
\(143\) 5.13231 + 8.75541i 0.429185 + 0.732164i
\(144\) 0 0
\(145\) 1.19785 + 1.64870i 0.0994759 + 0.136917i
\(146\) −2.65762 + 12.5031i −0.219946 + 1.03477i
\(147\) 0 0
\(148\) −0.150766 + 1.43444i −0.0123929 + 0.117910i
\(149\) 0.00422899 0.0402361i 0.000346452 0.00329627i −0.994347 0.106176i \(-0.966139\pi\)
0.994694 + 0.102880i \(0.0328058\pi\)
\(150\) 0 0
\(151\) −0.572095 + 2.69150i −0.0465564 + 0.219031i −0.995276 0.0970890i \(-0.969047\pi\)
0.948719 + 0.316120i \(0.102380\pi\)
\(152\) −3.44707 4.74449i −0.279594 0.384829i
\(153\) 0 0
\(154\) 28.4573 6.24544i 2.29315 0.503272i
\(155\) 5.52799 + 3.19159i 0.444019 + 0.256354i
\(156\) 0 0
\(157\) 1.41178 1.56794i 0.112672 0.125135i −0.684170 0.729322i \(-0.739835\pi\)
0.796842 + 0.604187i \(0.206502\pi\)
\(158\) 1.44158 + 6.78208i 0.114686 + 0.539553i
\(159\) 0 0
\(160\) −3.10342 6.97040i −0.245347 0.551058i
\(161\) −2.97314 + 9.15039i −0.234316 + 0.721152i
\(162\) 0 0
\(163\) −11.8085 + 8.57941i −0.924917 + 0.671991i −0.944743 0.327812i \(-0.893689\pi\)
0.0198264 + 0.999803i \(0.493689\pi\)
\(164\) 6.87070 11.9004i 0.536512 0.929265i
\(165\) 0 0
\(166\) −6.59506 11.4230i −0.511876 0.886596i
\(167\) −0.815131 0.362920i −0.0630767 0.0280836i 0.374956 0.927043i \(-0.377658\pi\)
−0.438033 + 0.898959i \(0.644325\pi\)
\(168\) 0 0
\(169\) 2.43334 + 2.70250i 0.187180 + 0.207884i
\(170\) 2.86520 3.94362i 0.219751 0.302461i
\(171\) 0 0
\(172\) 4.65930 + 1.51390i 0.355268 + 0.115434i
\(173\) 12.9579 + 2.75430i 0.985175 + 0.209405i 0.672211 0.740360i \(-0.265345\pi\)
0.312964 + 0.949765i \(0.398678\pi\)
\(174\) 0 0
\(175\) −14.9090 + 8.60772i −1.12701 + 0.650682i
\(176\) −3.28351 + 15.9653i −0.247504 + 1.20343i
\(177\) 0 0
\(178\) 18.5646 1.95121i 1.39147 0.146250i
\(179\) 19.1587 6.22502i 1.43199 0.465280i 0.512596 0.858630i \(-0.328684\pi\)
0.919389 + 0.393350i \(0.128684\pi\)
\(180\) 0 0
\(181\) 3.63758 + 2.64286i 0.270379 + 0.196442i 0.714710 0.699421i \(-0.246559\pi\)
−0.444331 + 0.895863i \(0.646559\pi\)
\(182\) −24.5561 + 10.9331i −1.82022 + 0.810414i
\(183\) 0 0
\(184\) −1.89616 1.70731i −0.139787 0.125864i
\(185\) 0.545442 1.22508i 0.0401017 0.0900699i
\(186\) 0 0
\(187\) −7.03654 + 2.33778i −0.514563 + 0.170956i
\(188\) 4.22008i 0.307781i
\(189\) 0 0
\(190\) −3.07774 9.47231i −0.223283 0.687193i
\(191\) 13.2086 11.8931i 0.955742 0.860554i −0.0345721 0.999402i \(-0.511007\pi\)
0.990314 + 0.138849i \(0.0443402\pi\)
\(192\) 0 0
\(193\) −6.12522 0.643787i −0.440903 0.0463408i −0.118523 0.992951i \(-0.537816\pi\)
−0.322380 + 0.946610i \(0.604483\pi\)
\(194\) 25.7437 5.47198i 1.84829 0.392866i
\(195\) 0 0
\(196\) 2.22062 + 21.1277i 0.158615 + 1.50912i
\(197\) −22.5100 −1.60377 −0.801886 0.597477i \(-0.796170\pi\)
−0.801886 + 0.597477i \(0.796170\pi\)
\(198\) 0 0
\(199\) 9.30680 0.659742 0.329871 0.944026i \(-0.392995\pi\)
0.329871 + 0.944026i \(0.392995\pi\)
\(200\) −0.477222 4.54046i −0.0337447 0.321059i
\(201\) 0 0
\(202\) −28.5498 + 6.06846i −2.00876 + 0.426975i
\(203\) 8.16528 + 0.858206i 0.573090 + 0.0602342i
\(204\) 0 0
\(205\) −9.49450 + 8.54889i −0.663125 + 0.597080i
\(206\) 1.16694 + 3.59147i 0.0813046 + 0.250230i
\(207\) 0 0
\(208\) 15.0382i 1.04271i
\(209\) −4.58632 + 14.4389i −0.317242 + 0.998762i
\(210\) 0 0
\(211\) 5.69884 12.7998i 0.392325 0.881175i −0.604118 0.796895i \(-0.706474\pi\)
0.996442 0.0842801i \(-0.0268591\pi\)
\(212\) −1.22546 1.10341i −0.0841652 0.0757827i
\(213\) 0 0
\(214\) 0.693922 0.308954i 0.0474355 0.0211197i
\(215\) −3.68502 2.67732i −0.251316 0.182592i
\(216\) 0 0
\(217\) 24.4577 7.94680i 1.66030 0.539464i
\(218\) 26.4888 2.78409i 1.79405 0.188562i
\(219\) 0 0
\(220\) −2.54596 + 4.47776i −0.171649 + 0.301890i
\(221\) 5.92443 3.42047i 0.398520 0.230086i
\(222\) 0 0
\(223\) 15.7802 + 3.35419i 1.05672 + 0.224613i 0.703331 0.710863i \(-0.251695\pi\)
0.353391 + 0.935476i \(0.385029\pi\)
\(224\) −29.2353 9.49912i −1.95336 0.634686i
\(225\) 0 0
\(226\) 3.40936 4.69258i 0.226787 0.312146i
\(227\) 9.84619 + 10.9353i 0.653515 + 0.725802i 0.975269 0.221022i \(-0.0709392\pi\)
−0.321754 + 0.946823i \(0.604272\pi\)
\(228\) 0 0
\(229\) 20.2798 + 9.02915i 1.34013 + 0.596663i 0.946529 0.322620i \(-0.104564\pi\)
0.393598 + 0.919283i \(0.371230\pi\)
\(230\) −2.16665 3.75275i −0.142865 0.247449i
\(231\) 0 0
\(232\) −1.08867 + 1.88562i −0.0714744 + 0.123797i
\(233\) −4.18134 + 3.03792i −0.273929 + 0.199021i −0.716265 0.697828i \(-0.754150\pi\)
0.442336 + 0.896849i \(0.354150\pi\)
\(234\) 0 0
\(235\) 1.21247 3.73159i 0.0790927 0.243422i
\(236\) −0.0166118 0.0373106i −0.00108133 0.00242871i
\(237\) 0 0
\(238\) −4.08309 19.2094i −0.264668 1.24516i
\(239\) 9.14380 10.1552i 0.591463 0.656886i −0.370894 0.928675i \(-0.620949\pi\)
0.962357 + 0.271789i \(0.0876153\pi\)
\(240\) 0 0
\(241\) −6.10765 3.52625i −0.393428 0.227146i 0.290216 0.956961i \(-0.406273\pi\)
−0.683645 + 0.729815i \(0.739606\pi\)
\(242\) 18.1252 8.35837i 1.16513 0.537296i
\(243\) 0 0
\(244\) 0.901971 + 1.24146i 0.0577428 + 0.0794761i
\(245\) 4.10663 19.3202i 0.262363 1.23432i
\(246\) 0 0
\(247\) 1.46104 13.9009i 0.0929640 0.884493i
\(248\) −0.712873 + 6.78253i −0.0452675 + 0.430691i
\(249\) 0 0
\(250\) 3.87873 18.2480i 0.245312 1.15410i
\(251\) −3.95496 5.44354i −0.249635 0.343593i 0.665748 0.746176i \(-0.268112\pi\)
−0.915383 + 0.402583i \(0.868112\pi\)
\(252\) 0 0
\(253\) −0.645692 + 6.55969i −0.0405943 + 0.412404i
\(254\) −35.0457 20.2337i −2.19897 1.26957i
\(255\) 0 0
\(256\) 13.9550 15.4986i 0.872189 0.968664i
\(257\) 2.94227 + 13.8423i 0.183534 + 0.863457i 0.969481 + 0.245165i \(0.0788420\pi\)
−0.785948 + 0.618293i \(0.787825\pi\)
\(258\) 0 0
\(259\) −2.19747 4.93559i −0.136544 0.306683i
\(260\) 1.46856 4.51975i 0.0910760 0.280303i
\(261\) 0 0
\(262\) −22.7523 + 16.5305i −1.40564 + 1.02126i
\(263\) 3.47292 6.01527i 0.214149 0.370917i −0.738860 0.673859i \(-0.764635\pi\)
0.953009 + 0.302942i \(0.0979688\pi\)
\(264\) 0 0
\(265\) 0.766593 + 1.32778i 0.0470914 + 0.0815648i
\(266\) −36.6567 16.3206i −2.24757 1.00068i
\(267\) 0 0
\(268\) −1.82090 2.02232i −0.111229 0.123533i
\(269\) 4.05850 5.58605i 0.247451 0.340587i −0.667165 0.744910i \(-0.732493\pi\)
0.914617 + 0.404322i \(0.132493\pi\)
\(270\) 0 0
\(271\) −12.9581 4.21033i −0.787146 0.255759i −0.112258 0.993679i \(-0.535808\pi\)
−0.674888 + 0.737920i \(0.735808\pi\)
\(272\) 10.7468 + 2.28431i 0.651622 + 0.138507i
\(273\) 0 0
\(274\) 26.9352 15.5510i 1.62721 0.939473i
\(275\) −8.71236 + 7.94943i −0.525375 + 0.479369i
\(276\) 0 0
\(277\) 11.5914 1.21831i 0.696461 0.0732010i 0.250319 0.968163i \(-0.419464\pi\)
0.446142 + 0.894962i \(0.352798\pi\)
\(278\) −17.8918 + 5.81339i −1.07308 + 0.348664i
\(279\) 0 0
\(280\) 6.04241 + 4.39007i 0.361103 + 0.262357i
\(281\) 19.9523 8.88333i 1.19025 0.529935i 0.286538 0.958069i \(-0.407495\pi\)
0.903715 + 0.428134i \(0.140829\pi\)
\(282\) 0 0
\(283\) 17.4451 + 15.7076i 1.03700 + 0.933722i 0.997852 0.0655115i \(-0.0208679\pi\)
0.0391513 + 0.999233i \(0.487535\pi\)
\(284\) −2.02134 + 4.54000i −0.119944 + 0.269400i
\(285\) 0 0
\(286\) −14.8263 + 10.9222i −0.876698 + 0.645845i
\(287\) 51.4721i 3.03830i
\(288\) 0 0
\(289\) −3.70882 11.4146i −0.218166 0.671445i
\(290\) −2.74799 + 2.47431i −0.161368 + 0.145296i
\(291\) 0 0
\(292\) −9.05485 0.951703i −0.529895 0.0556942i
\(293\) −1.65959 + 0.352756i −0.0969542 + 0.0206082i −0.256133 0.966641i \(-0.582449\pi\)
0.159179 + 0.987250i \(0.449115\pi\)
\(294\) 0 0
\(295\) 0.00396922 + 0.0377646i 0.000231097 + 0.00219874i
\(296\) 1.43277 0.0832781
\(297\) 0 0
\(298\) 0.0734110 0.00425258
\(299\) −0.635671 6.04801i −0.0367618 0.349765i
\(300\) 0 0
\(301\) −17.9498 + 3.81535i −1.03461 + 0.219913i
\(302\) −4.96550 0.521895i −0.285732 0.0300317i
\(303\) 0 0
\(304\) 16.6825 15.0210i 0.956809 0.861514i
\(305\) −0.440884 1.35690i −0.0252449 0.0776959i
\(306\) 0 0
\(307\) 2.35281i 0.134282i 0.997743 + 0.0671410i \(0.0213877\pi\)
−0.997743 + 0.0671410i \(0.978612\pi\)
\(308\) 6.54290 + 19.6936i 0.372816 + 1.12215i
\(309\) 0 0
\(310\) −4.71095 + 10.5810i −0.267564 + 0.600959i
\(311\) −7.88205 7.09703i −0.446950 0.402436i 0.414684 0.909965i \(-0.363892\pi\)
−0.861634 + 0.507530i \(0.830559\pi\)
\(312\) 0 0
\(313\) −23.1439 + 10.3043i −1.30817 + 0.582435i −0.938034 0.346543i \(-0.887355\pi\)
−0.370136 + 0.928978i \(0.620689\pi\)
\(314\) 3.09722 + 2.25026i 0.174786 + 0.126990i
\(315\) 0 0
\(316\) −4.69696 + 1.52614i −0.264225 + 0.0858518i
\(317\) −26.6656 + 2.80266i −1.49769 + 0.157413i −0.817629 0.575745i \(-0.804712\pi\)
−0.680058 + 0.733158i \(0.738045\pi\)
\(318\) 0 0
\(319\) 5.58990 0.624864i 0.312974 0.0349856i
\(320\) 1.76132 1.01690i 0.0984609 0.0568464i
\(321\) 0 0
\(322\) −17.0764 3.62971i −0.951632 0.202276i
\(323\) 9.71216 + 3.15567i 0.540399 + 0.175586i
\(324\) 0 0
\(325\) 6.39590 8.80320i 0.354781 0.488314i
\(326\) −17.7218 19.6821i −0.981522 1.09009i
\(327\) 0 0
\(328\) −12.4701 5.55205i −0.688546 0.306561i
\(329\) −7.90372 13.6896i −0.435746 0.754735i
\(330\) 0 0
\(331\) 8.66186 15.0028i 0.476099 0.824627i −0.523526 0.852010i \(-0.675384\pi\)
0.999625 + 0.0273822i \(0.00871710\pi\)
\(332\) 7.60079 5.52230i 0.417148 0.303076i
\(333\) 0 0
\(334\) 0.500309 1.53979i 0.0273757 0.0842538i
\(335\) 1.02910 + 2.31139i 0.0562256 + 0.126285i
\(336\) 0 0
\(337\) 2.70366 + 12.7197i 0.147278 + 0.692887i 0.988379 + 0.152009i \(0.0485743\pi\)
−0.841101 + 0.540877i \(0.818092\pi\)
\(338\) −4.41532 + 4.90371i −0.240162 + 0.266727i
\(339\) 0 0
\(340\) 3.00691 + 1.73604i 0.163072 + 0.0941499i
\(341\) 15.1990 8.90948i 0.823074 0.482476i
\(342\) 0 0
\(343\) −26.8543 36.9618i −1.45000 1.99575i
\(344\) 1.01182 4.76023i 0.0545535 0.256654i
\(345\) 0 0
\(346\) −2.51261 + 23.9059i −0.135079 + 1.28519i
\(347\) 2.22189 21.1399i 0.119277 1.13485i −0.757126 0.653269i \(-0.773397\pi\)
0.876403 0.481578i \(-0.159936\pi\)
\(348\) 0 0
\(349\) −1.94002 + 9.12708i −0.103847 + 0.488562i 0.895230 + 0.445604i \(0.147011\pi\)
−0.999077 + 0.0429571i \(0.986322\pi\)
\(350\) −18.3610 25.2717i −0.981436 1.35083i
\(351\) 0 0
\(352\) −20.9580 2.06297i −1.11707 0.109957i
\(353\) −7.89937 4.56070i −0.420441 0.242742i 0.274825 0.961494i \(-0.411380\pi\)
−0.695266 + 0.718753i \(0.744713\pi\)
\(354\) 0 0
\(355\) 3.09175 3.43374i 0.164093 0.182244i
\(356\) 2.76440 + 13.0055i 0.146513 + 0.689290i
\(357\) 0 0
\(358\) 14.8673 + 33.3924i 0.785760 + 1.76484i
\(359\) −2.41692 + 7.43851i −0.127560 + 0.392589i −0.994359 0.106069i \(-0.966174\pi\)
0.866799 + 0.498658i \(0.166174\pi\)
\(360\) 0 0
\(361\) 1.50897 1.09633i 0.0794193 0.0577015i
\(362\) −4.07929 + 7.06553i −0.214402 + 0.371356i
\(363\) 0 0
\(364\) −9.57308 16.5811i −0.501766 0.869084i
\(365\) 7.73330 + 3.44309i 0.404779 + 0.180219i
\(366\) 0 0
\(367\) 16.3966 + 18.2102i 0.855894 + 0.950567i 0.999235 0.0391068i \(-0.0124513\pi\)
−0.143341 + 0.989673i \(0.545785\pi\)
\(368\) 5.74086 7.90161i 0.299263 0.411900i
\(369\) 0 0
\(370\) 2.31420 + 0.751929i 0.120310 + 0.0390909i
\(371\) 6.04189 + 1.28424i 0.313679 + 0.0666746i
\(372\) 0 0
\(373\) 2.47795 1.43065i 0.128303 0.0740760i −0.434475 0.900684i \(-0.643066\pi\)
0.562778 + 0.826608i \(0.309733\pi\)
\(374\) −5.55330 12.2545i −0.287154 0.633666i
\(375\) 0 0
\(376\) 4.16911 0.438191i 0.215006 0.0225980i
\(377\) −4.93546 + 1.60363i −0.254189 + 0.0825911i
\(378\) 0 0
\(379\) 23.6747 + 17.2007i 1.21609 + 0.883540i 0.995769 0.0918872i \(-0.0292899\pi\)
0.220320 + 0.975428i \(0.429290\pi\)
\(380\) 6.48085 2.88546i 0.332461 0.148021i
\(381\) 0 0
\(382\) 23.9671 + 21.5801i 1.22627 + 1.10413i
\(383\) −11.5755 + 25.9990i −0.591480 + 1.32849i 0.331434 + 0.943478i \(0.392468\pi\)
−0.922914 + 0.385007i \(0.874199\pi\)
\(384\) 0 0
\(385\) −0.127390 19.2938i −0.00649240 0.983305i
\(386\) 11.1755i 0.568818i
\(387\) 0 0
\(388\) 5.79296 + 17.8289i 0.294093 + 0.905125i
\(389\) −10.6132 + 9.55615i −0.538110 + 0.484516i −0.892791 0.450471i \(-0.851256\pi\)
0.354681 + 0.934987i \(0.384589\pi\)
\(390\) 0 0
\(391\) 4.41869 + 0.464423i 0.223463 + 0.0234869i
\(392\) 20.6420 4.38760i 1.04258 0.221607i
\(393\) 0 0
\(394\) −4.26943 40.6209i −0.215091 2.04645i
\(395\) 4.59175 0.231036
\(396\) 0 0
\(397\) 2.20687 0.110760 0.0553798 0.998465i \(-0.482363\pi\)
0.0553798 + 0.998465i \(0.482363\pi\)
\(398\) 1.76520 + 16.7948i 0.0884815 + 0.841845i
\(399\) 0 0
\(400\) 17.0941 3.63347i 0.854707 0.181673i
\(401\) 31.3702 + 3.29714i 1.56655 + 0.164651i 0.847687 0.530497i \(-0.177995\pi\)
0.718866 + 0.695148i \(0.244661\pi\)
\(402\) 0 0
\(403\) −12.0795 + 10.8764i −0.601722 + 0.541793i
\(404\) −6.42442 19.7723i −0.319627 0.983710i
\(405\) 0 0
\(406\) 14.8976i 0.739355i
\(407\) −2.19528 2.97997i −0.108816 0.147712i
\(408\) 0 0
\(409\) −2.75694 + 6.19219i −0.136322 + 0.306184i −0.968788 0.247893i \(-0.920262\pi\)
0.832466 + 0.554077i \(0.186929\pi\)
\(410\) −17.2279 15.5120i −0.850823 0.766085i
\(411\) 0 0
\(412\) −2.45725 + 1.09404i −0.121060 + 0.0538993i
\(413\) 0.123766 + 0.0899212i 0.00609012 + 0.00442473i
\(414\) 0 0
\(415\) −8.30760 + 2.69930i −0.407804 + 0.132504i
\(416\) 19.3232 2.03095i 0.947400 0.0995757i
\(417\) 0 0
\(418\) −26.9259 5.53773i −1.31699 0.270859i
\(419\) 24.7759 14.3044i 1.21038 0.698815i 0.247541 0.968877i \(-0.420378\pi\)
0.962843 + 0.270062i \(0.0870442\pi\)
\(420\) 0 0
\(421\) 5.47106 + 1.16291i 0.266643 + 0.0566768i 0.339293 0.940681i \(-0.389812\pi\)
−0.0726497 + 0.997358i \(0.523146\pi\)
\(422\) 24.1790 + 7.85624i 1.17702 + 0.382436i
\(423\) 0 0
\(424\) −0.962842 + 1.32524i −0.0467597 + 0.0643592i
\(425\) 5.31955 + 5.90796i 0.258036 + 0.286578i
\(426\) 0 0
\(427\) −5.25104 2.33791i −0.254116 0.113140i
\(428\) 0.270522 + 0.468558i 0.0130762 + 0.0226486i
\(429\) 0 0
\(430\) 4.13248 7.15767i 0.199286 0.345173i
\(431\) 15.7825 11.4667i 0.760216 0.552329i −0.138760 0.990326i \(-0.544312\pi\)
0.898977 + 0.437997i \(0.144312\pi\)
\(432\) 0 0
\(433\) −6.96921 + 21.4490i −0.334919 + 1.03077i 0.631843 + 0.775096i \(0.282299\pi\)
−0.966762 + 0.255678i \(0.917701\pi\)
\(434\) 18.9794 + 42.6284i 0.911040 + 2.04623i
\(435\) 0 0
\(436\) 3.94439 + 18.5569i 0.188902 + 0.888714i
\(437\) 6.07439 6.74629i 0.290577 0.322719i
\(438\) 0 0
\(439\) −25.9695 14.9935i −1.23946 0.715601i −0.270474 0.962727i \(-0.587181\pi\)
−0.968983 + 0.247126i \(0.920514\pi\)
\(440\) 4.68804 + 2.05027i 0.223494 + 0.0977428i
\(441\) 0 0
\(442\) 7.29615 + 10.0423i 0.347043 + 0.477663i
\(443\) −6.55910 + 30.8582i −0.311632 + 1.46612i 0.491794 + 0.870711i \(0.336341\pi\)
−0.803427 + 0.595404i \(0.796992\pi\)
\(444\) 0 0
\(445\) 1.29219 12.2943i 0.0612555 0.582807i
\(446\) −3.05986 + 29.1127i −0.144889 + 1.37852i
\(447\) 0 0
\(448\) 1.70357 8.01468i 0.0804862 0.378658i
\(449\) 22.3362 + 30.7432i 1.05411 + 1.45086i 0.885190 + 0.465229i \(0.154028\pi\)
0.168921 + 0.985630i \(0.445972\pi\)
\(450\) 0 0
\(451\) 7.55911 + 34.4430i 0.355944 + 1.62186i
\(452\) 3.57797 + 2.06574i 0.168294 + 0.0971644i
\(453\) 0 0
\(454\) −17.8660 + 19.8422i −0.838493 + 0.931241i
\(455\) 3.70108 + 17.4122i 0.173509 + 0.816297i
\(456\) 0 0
\(457\) −15.9546 35.8347i −0.746327 1.67628i −0.736603 0.676325i \(-0.763571\pi\)
−0.00972362 0.999953i \(-0.503095\pi\)
\(458\) −12.4473 + 38.3088i −0.581624 + 1.79005i
\(459\) 0 0
\(460\) 2.49706 1.81422i 0.116426 0.0845885i
\(461\) −8.77604 + 15.2006i −0.408741 + 0.707960i −0.994749 0.102345i \(-0.967365\pi\)
0.586008 + 0.810305i \(0.300699\pi\)
\(462\) 0 0
\(463\) −2.53619 4.39282i −0.117867 0.204151i 0.801055 0.598590i \(-0.204272\pi\)
−0.918922 + 0.394439i \(0.870939\pi\)
\(464\) −7.61398 3.38996i −0.353470 0.157375i
\(465\) 0 0
\(466\) −6.27521 6.96932i −0.290693 0.322848i
\(467\) −9.96792 + 13.7197i −0.461260 + 0.634870i −0.974770 0.223214i \(-0.928345\pi\)
0.513509 + 0.858084i \(0.328345\pi\)
\(468\) 0 0
\(469\) 9.69445 + 3.14992i 0.447648 + 0.145450i
\(470\) 6.96389 + 1.48022i 0.321220 + 0.0682774i
\(471\) 0 0
\(472\) −0.0351352 + 0.0202853i −0.00161723 + 0.000933706i
\(473\) −11.4509 + 5.18915i −0.526515 + 0.238597i
\(474\) 0 0
\(475\) 16.1544 1.69790i 0.741215 0.0779048i
\(476\) 13.3036 4.32260i 0.609769 0.198126i
\(477\) 0 0
\(478\) 20.0601 + 14.5745i 0.917526 + 0.666622i
\(479\) −16.5165 + 7.35362i −0.754658 + 0.335996i −0.747750 0.663981i \(-0.768866\pi\)
−0.00690859 + 0.999976i \(0.502199\pi\)
\(480\) 0 0
\(481\) 2.53774 + 2.28499i 0.115711 + 0.104187i
\(482\) 5.20495 11.6905i 0.237079 0.532488i
\(483\) 0 0
\(484\) 7.27040 + 12.2172i 0.330473 + 0.555329i
\(485\) 17.4295i 0.791435i
\(486\) 0 0
\(487\) −8.03498 24.7291i −0.364100 1.12058i −0.950543 0.310594i \(-0.899472\pi\)
0.586443 0.809991i \(-0.300528\pi\)
\(488\) 1.13281 1.01999i 0.0512798 0.0461726i
\(489\) 0 0
\(490\) 35.6435 + 3.74628i 1.61021 + 0.169240i
\(491\) −7.17172 + 1.52440i −0.323655 + 0.0687950i −0.366874 0.930271i \(-0.619572\pi\)
0.0432191 + 0.999066i \(0.486239\pi\)
\(492\) 0 0
\(493\) −0.396312 3.77066i −0.0178490 0.169822i
\(494\) 25.3622 1.14110
\(495\) 0 0
\(496\) −26.1057 −1.17218
\(497\) −1.94582 18.5132i −0.0872818 0.830431i
\(498\) 0 0
\(499\) 9.21321 1.95833i 0.412440 0.0876668i 0.00298137 0.999996i \(-0.499051\pi\)
0.409458 + 0.912329i \(0.365718\pi\)
\(500\) 13.2153 + 1.38898i 0.591007 + 0.0621173i
\(501\) 0 0
\(502\) 9.07311 8.16946i 0.404953 0.364621i
\(503\) −10.3211 31.7652i −0.460196 1.41634i −0.864925 0.501902i \(-0.832634\pi\)
0.404728 0.914437i \(-0.367366\pi\)
\(504\) 0 0
\(505\) 19.3294i 0.860149i
\(506\) −11.9599 + 0.0789666i −0.531681 + 0.00351050i
\(507\) 0 0
\(508\) 11.7239 26.3322i 0.520162 1.16830i
\(509\) −15.2373 13.7197i −0.675379 0.608114i 0.258368 0.966047i \(-0.416815\pi\)
−0.933748 + 0.357932i \(0.883482\pi\)
\(510\) 0 0
\(511\) 31.1557 13.8714i 1.37825 0.613636i
\(512\) 15.0364 + 10.9246i 0.664521 + 0.482803i
\(513\) 0 0
\(514\) −24.4213 + 7.93496i −1.07718 + 0.349996i
\(515\) 2.48714 0.261409i 0.109597 0.0115191i
\(516\) 0 0
\(517\) −7.29928 7.99981i −0.321022 0.351831i
\(518\) 8.48982 4.90160i 0.373021 0.215364i
\(519\) 0 0
\(520\) −4.61766 0.981513i −0.202498 0.0430422i
\(521\) −12.4115 4.03273i −0.543757 0.176677i 0.0242430 0.999706i \(-0.492282\pi\)
−0.568000 + 0.823029i \(0.692282\pi\)
\(522\) 0 0
\(523\) −4.85832 + 6.68690i −0.212439 + 0.292398i −0.901917 0.431909i \(-0.857840\pi\)
0.689478 + 0.724307i \(0.257840\pi\)
\(524\) −13.4039 14.8866i −0.585553 0.650322i
\(525\) 0 0
\(526\) 11.5137 + 5.12621i 0.502020 + 0.223514i
\(527\) −5.93780 10.2846i −0.258655 0.448003i
\(528\) 0 0
\(529\) −9.52516 + 16.4981i −0.414138 + 0.717307i
\(530\) −2.25067 + 1.63521i −0.0977628 + 0.0710289i
\(531\) 0 0
\(532\) 8.83197 27.1820i 0.382915 1.17849i
\(533\) −13.2328 29.7213i −0.573174 1.28737i
\(534\) 0 0
\(535\) −0.104587 0.492045i −0.00452171 0.0212730i
\(536\) −1.80882 + 2.00890i −0.0781292 + 0.0867712i
\(537\) 0 0
\(538\) 10.8502 + 6.26435i 0.467784 + 0.270075i
\(539\) −40.7532 36.2100i −1.75537 1.55968i
\(540\) 0 0
\(541\) 5.73469 + 7.89312i 0.246554 + 0.339352i 0.914301 0.405036i \(-0.132741\pi\)
−0.667747 + 0.744388i \(0.732741\pi\)
\(542\) 5.14010 24.1823i 0.220786 1.03872i
\(543\) 0 0
\(544\) −1.48382 + 14.1176i −0.0636183 + 0.605287i
\(545\) 1.84375 17.5421i 0.0789777 0.751423i
\(546\) 0 0
\(547\) −1.61861 + 7.61497i −0.0692068 + 0.325592i −0.999109 0.0422157i \(-0.986558\pi\)
0.929902 + 0.367808i \(0.119892\pi\)
\(548\) 13.0215 + 17.9225i 0.556250 + 0.765613i
\(549\) 0 0
\(550\) −15.9978 14.2143i −0.682147 0.606100i
\(551\) −6.70882 3.87334i −0.285805 0.165010i
\(552\) 0 0
\(553\) 12.3784 13.7476i 0.526381 0.584605i
\(554\) 4.39704 + 20.6864i 0.186812 + 0.878883i
\(555\) 0 0
\(556\) −5.45021 12.2414i −0.231140 0.519149i
\(557\) 1.09093 3.35755i 0.0462244 0.142264i −0.925281 0.379283i \(-0.876171\pi\)
0.971505 + 0.237019i \(0.0761705\pi\)
\(558\) 0 0
\(559\) 9.38378 6.81772i 0.396892 0.288359i
\(560\) −14.2948 + 24.7594i −0.604067 + 1.04627i
\(561\) 0 0
\(562\) 19.8149 + 34.3204i 0.835841 + 1.44772i
\(563\) 1.37274 + 0.611183i 0.0578540 + 0.0257583i 0.435460 0.900208i \(-0.356586\pi\)
−0.377606 + 0.925966i \(0.623253\pi\)
\(564\) 0 0
\(565\) −2.57031 2.85461i −0.108134 0.120095i
\(566\) −25.0367 + 34.4601i −1.05237 + 1.44847i
\(567\) 0 0
\(568\) 4.69506 + 1.52552i 0.197000 + 0.0640093i
\(569\) 14.5137 + 3.08499i 0.608447 + 0.129329i 0.501823 0.864970i \(-0.332663\pi\)
0.106624 + 0.994299i \(0.465996\pi\)
\(570\) 0 0
\(571\) −25.8594 + 14.9299i −1.08218 + 0.624798i −0.931484 0.363782i \(-0.881485\pi\)
−0.150697 + 0.988580i \(0.548152\pi\)
\(572\) −8.84097 9.68946i −0.369659 0.405137i
\(573\) 0 0
\(574\) −92.8850 + 9.76261i −3.87695 + 0.407483i
\(575\) 6.72128 2.18388i 0.280297 0.0910740i
\(576\) 0 0
\(577\) −20.6394 14.9954i −0.859228 0.624266i 0.0684465 0.997655i \(-0.478196\pi\)
−0.927675 + 0.373389i \(0.878196\pi\)
\(578\) 19.8949 8.85780i 0.827520 0.368436i
\(579\) 0 0
\(580\) −1.95735 1.76240i −0.0812745 0.0731799i
\(581\) −14.3138 + 32.1494i −0.593838 + 1.33378i
\(582\) 0 0
\(583\) 4.23158 0.0279396i 0.175254 0.00115714i
\(584\) 9.04432i 0.374256i
\(585\) 0 0
\(586\) −0.951344 2.92793i −0.0392996 0.120952i
\(587\) 17.5588 15.8100i 0.724731 0.652550i −0.221827 0.975086i \(-0.571202\pi\)
0.946557 + 0.322536i \(0.104535\pi\)
\(588\) 0 0
\(589\) −24.1314 2.53631i −0.994317 0.104507i
\(590\) −0.0673959 + 0.0143254i −0.00277465 + 0.000589769i
\(591\) 0 0
\(592\) 0.573282 + 5.45441i 0.0235617 + 0.224175i
\(593\) −10.1681 −0.417553 −0.208777 0.977963i \(-0.566948\pi\)
−0.208777 + 0.977963i \(0.566948\pi\)
\(594\) 0 0
\(595\) −13.0056 −0.533178
\(596\) 0.00546573 + 0.0520029i 0.000223885 + 0.00213012i
\(597\) 0 0
\(598\) 10.7935 2.29423i 0.441378 0.0938179i
\(599\) −6.06202 0.637144i −0.247687 0.0260330i −0.0201288 0.999797i \(-0.506408\pi\)
−0.227559 + 0.973764i \(0.573074\pi\)
\(600\) 0 0
\(601\) −10.4219 + 9.38389i −0.425117 + 0.382777i −0.853734 0.520709i \(-0.825667\pi\)
0.428617 + 0.903486i \(0.359001\pi\)
\(602\) −10.2896 31.6680i −0.419371 1.29069i
\(603\) 0 0
\(604\) 3.55632i 0.144705i
\(605\) −2.91870 12.8919i −0.118662 0.524131i
\(606\) 0 0
\(607\) −0.344302 + 0.773316i −0.0139748 + 0.0313879i −0.920398 0.390983i \(-0.872135\pi\)
0.906423 + 0.422371i \(0.138802\pi\)
\(608\) 21.5542 + 19.4075i 0.874140 + 0.787079i
\(609\) 0 0
\(610\) 2.36500 1.05297i 0.0957560 0.0426333i
\(611\) 8.08321 + 5.87280i 0.327012 + 0.237588i
\(612\) 0 0
\(613\) −24.1513 + 7.84724i −0.975462 + 0.316947i −0.753019 0.657999i \(-0.771403\pi\)
−0.222443 + 0.974946i \(0.571403\pi\)
\(614\) −4.24581 + 0.446253i −0.171347 + 0.0180093i
\(615\) 0 0
\(616\) 18.7764 8.50876i 0.756521 0.342828i
\(617\) −8.73291 + 5.04195i −0.351574 + 0.202981i −0.665378 0.746507i \(-0.731730\pi\)
0.313805 + 0.949488i \(0.398396\pi\)
\(618\) 0 0
\(619\) 25.4818 + 5.41633i 1.02420 + 0.217701i 0.689241 0.724532i \(-0.257944\pi\)
0.334960 + 0.942232i \(0.391277\pi\)
\(620\) −7.84611 2.54935i −0.315107 0.102385i
\(621\) 0 0
\(622\) 11.3121 15.5698i 0.453574 0.624291i
\(623\) −33.3253 37.0115i −1.33515 1.48284i
\(624\) 0 0
\(625\) 4.95643 + 2.20675i 0.198257 + 0.0882698i
\(626\) −22.9845 39.8103i −0.918646 1.59114i
\(627\) 0 0
\(628\) −1.36344 + 2.36155i −0.0544073 + 0.0942362i
\(629\) −2.01842 + 1.46647i −0.0804798 + 0.0584720i
\(630\) 0 0
\(631\) 3.44605 10.6058i 0.137185 0.422212i −0.858739 0.512414i \(-0.828751\pi\)
0.995923 + 0.0902022i \(0.0287513\pi\)
\(632\) 1.99541 + 4.48177i 0.0793733 + 0.178275i
\(633\) 0 0
\(634\) −10.1152 47.5883i −0.401726 1.88997i
\(635\) −17.9323 + 19.9158i −0.711621 + 0.790335i
\(636\) 0 0
\(637\) 43.5588 + 25.1487i 1.72586 + 0.996426i
\(638\) 2.18783 + 9.96884i 0.0866172 + 0.394670i
\(639\) 0 0
\(640\) −6.80053 9.36013i −0.268815 0.369991i
\(641\) −2.29516 + 10.7979i −0.0906534 + 0.426491i 0.909293 + 0.416156i \(0.136623\pi\)
−0.999947 + 0.0103346i \(0.996710\pi\)
\(642\) 0 0
\(643\) −3.84039 + 36.5389i −0.151450 + 1.44095i 0.609831 + 0.792532i \(0.291237\pi\)
−0.761281 + 0.648422i \(0.775429\pi\)
\(644\) 1.29981 12.3669i 0.0512196 0.487322i
\(645\) 0 0
\(646\) −3.85255 + 18.1248i −0.151576 + 0.713111i
\(647\) 1.59821 + 2.19975i 0.0628321 + 0.0864810i 0.839277 0.543705i \(-0.182979\pi\)
−0.776445 + 0.630186i \(0.782979\pi\)
\(648\) 0 0
\(649\) 0.0960246 + 0.0419955i 0.00376930 + 0.00164847i
\(650\) 17.0991 + 9.87215i 0.670681 + 0.387218i
\(651\) 0 0
\(652\) 12.6230 14.0192i 0.494353 0.549035i
\(653\) −9.19912 43.2784i −0.359989 1.69362i −0.669575 0.742745i \(-0.733524\pi\)
0.309586 0.950872i \(-0.399810\pi\)
\(654\) 0 0
\(655\) 7.57534 + 17.0145i 0.295993 + 0.664811i
\(656\) 16.1465 49.6939i 0.630416 1.94022i
\(657\) 0 0
\(658\) 23.2048 16.8593i 0.904618 0.657244i
\(659\) 4.58714 7.94516i 0.178690 0.309499i −0.762742 0.646702i \(-0.776148\pi\)
0.941432 + 0.337203i \(0.109481\pi\)
\(660\) 0 0
\(661\) 4.94816 + 8.57046i 0.192461 + 0.333352i 0.946065 0.323976i \(-0.105020\pi\)
−0.753604 + 0.657328i \(0.771686\pi\)
\(662\) 28.7164 + 12.7854i 1.11610 + 0.496918i
\(663\) 0 0
\(664\) −6.24484 6.93560i −0.242347 0.269153i
\(665\) −15.6193 + 21.4981i −0.605691 + 0.833662i
\(666\) 0 0
\(667\) −3.20547 1.04152i −0.124116 0.0403278i
\(668\) 1.12801 + 0.239766i 0.0436440 + 0.00927682i
\(669\) 0 0
\(670\) −3.97588 + 2.29547i −0.153602 + 0.0886819i
\(671\) −3.85712 0.793275i −0.148902 0.0306241i
\(672\) 0 0
\(673\) 17.5860 1.84836i 0.677891 0.0712492i 0.240675 0.970606i \(-0.422631\pi\)
0.437216 + 0.899357i \(0.355965\pi\)
\(674\) −22.4408 + 7.29146i −0.864387 + 0.280856i
\(675\) 0 0
\(676\) −3.80243 2.76263i −0.146247 0.106255i
\(677\) 10.8673 4.83844i 0.417665 0.185956i −0.187134 0.982334i \(-0.559920\pi\)
0.604799 + 0.796378i \(0.293253\pi\)
\(678\) 0 0
\(679\) −52.1835 46.9862i −2.00262 1.80316i
\(680\) 1.40285 3.15085i 0.0537969 0.120830i
\(681\) 0 0
\(682\) 18.9605 + 25.7379i 0.726037 + 0.985554i
\(683\) 18.2564i 0.698561i 0.937018 + 0.349280i \(0.113574\pi\)
−0.937018 + 0.349280i \(0.886426\pi\)
\(684\) 0 0
\(685\) −6.36490 19.5892i −0.243190 0.748463i
\(686\) 61.6066 55.4709i 2.35215 2.11789i
\(687\) 0 0
\(688\) 18.5265 + 1.94722i 0.706318 + 0.0742370i
\(689\) −3.81889 + 0.811731i −0.145488 + 0.0309245i
\(690\) 0 0
\(691\) −1.88403 17.9254i −0.0716720 0.681914i −0.970086 0.242763i \(-0.921946\pi\)
0.898414 0.439150i \(-0.144721\pi\)
\(692\) −17.1216 −0.650864
\(693\) 0 0
\(694\) 38.5698 1.46409
\(695\) 1.30227 + 12.3903i 0.0493980 + 0.469991i
\(696\) 0 0
\(697\) 23.2500 4.94193i 0.880655 0.187189i
\(698\) −16.8384 1.76979i −0.637343 0.0669875i
\(699\) 0 0
\(700\) 16.5350 14.8881i 0.624962 0.562719i
\(701\) −2.60431 8.01524i −0.0983635 0.302732i 0.889752 0.456444i \(-0.150877\pi\)
−0.988116 + 0.153712i \(0.950877\pi\)
\(702\) 0 0
\(703\) 5.09762i 0.192260i
\(704\) −0.0370623 5.61327i −0.00139684 0.211558i
\(705\) 0 0
\(706\) 6.73185 15.1200i 0.253356 0.569048i
\(707\) 57.8717 + 52.1079i 2.17649 + 1.95972i
\(708\) 0 0
\(709\) 18.9224 8.42480i 0.710646 0.316400i −0.0193869 0.999812i \(-0.506171\pi\)
0.730033 + 0.683412i \(0.239505\pi\)
\(710\) 6.78282 + 4.92801i 0.254555 + 0.184945i
\(711\) 0 0
\(712\) 12.5614 4.08144i 0.470758 0.152959i
\(713\) −10.4991 + 1.10350i −0.393194 + 0.0413264i
\(714\) 0 0
\(715\) 5.03373 + 11.1080i 0.188251 + 0.415415i
\(716\) −22.5476 + 13.0179i −0.842644 + 0.486501i
\(717\) 0 0
\(718\) −13.8817 2.95065i −0.518061 0.110117i
\(719\) −34.3009 11.1450i −1.27921 0.415640i −0.410906 0.911678i \(-0.634788\pi\)
−0.868301 + 0.496038i \(0.834788\pi\)
\(720\) 0 0
\(721\) 5.92214 8.15112i 0.220552 0.303564i
\(722\) 2.26460 + 2.51510i 0.0842798 + 0.0936022i
\(723\) 0 0
\(724\) −5.30880 2.36363i −0.197300 0.0878437i
\(725\) −3.01536 5.22276i −0.111988 0.193968i
\(726\) 0 0
\(727\) 10.4928 18.1741i 0.389158 0.674042i −0.603178 0.797606i \(-0.706099\pi\)
0.992337 + 0.123565i \(0.0394327\pi\)
\(728\) −15.3868 + 11.1792i −0.570273 + 0.414327i
\(729\) 0 0
\(730\) −4.74653 + 14.6083i −0.175677 + 0.540678i
\(731\) 3.44679 + 7.74161i 0.127484 + 0.286334i
\(732\) 0 0
\(733\) −8.44604 39.7355i −0.311962 1.46766i −0.802714 0.596364i \(-0.796611\pi\)
0.490752 0.871299i \(-0.336722\pi\)
\(734\) −29.7517 + 33.0426i −1.09816 + 1.21963i
\(735\) 0 0
\(736\) 10.9285 + 6.30956i 0.402829 + 0.232573i
\(737\) 6.94971 + 0.684083i 0.255996 + 0.0251985i
\(738\) 0 0
\(739\) −0.159730 0.219850i −0.00587578 0.00808731i 0.806069 0.591822i \(-0.201591\pi\)
−0.811945 + 0.583734i \(0.801591\pi\)
\(740\) −0.360351 + 1.69532i −0.0132468 + 0.0623212i
\(741\) 0 0
\(742\) −1.17155 + 11.1466i −0.0430091 + 0.409204i
\(743\) 2.14939 20.4500i 0.0788533 0.750239i −0.881637 0.471927i \(-0.843558\pi\)
0.960491 0.278312i \(-0.0897749\pi\)
\(744\) 0 0
\(745\) 0.0101079 0.0475538i 0.000370324 0.00174224i
\(746\) 3.05169 + 4.20029i 0.111730 + 0.153783i
\(747\) 0 0
\(748\) 8.26740 4.84624i 0.302286 0.177196i
\(749\) −1.75511 1.01331i −0.0641304 0.0370257i
\(750\) 0 0
\(751\) −34.8745 + 38.7320i −1.27259 + 1.41335i −0.406351 + 0.913717i \(0.633199\pi\)
−0.866237 + 0.499634i \(0.833468\pi\)
\(752\) 3.33630 + 15.6961i 0.121662 + 0.572376i
\(753\) 0 0
\(754\) −3.82996 8.60223i −0.139479 0.313275i
\(755\) −1.02176 + 3.14467i −0.0371858 + 0.114446i
\(756\) 0 0
\(757\) 30.2153 21.9527i 1.09819 0.797884i 0.117429 0.993081i \(-0.462535\pi\)
0.980764 + 0.195197i \(0.0625347\pi\)
\(758\) −26.5495 + 45.9851i −0.964322 + 1.67025i
\(759\) 0 0
\(760\) −3.52355 6.10297i −0.127813 0.221378i
\(761\) 40.7814 + 18.1571i 1.47833 + 0.658193i 0.978182 0.207749i \(-0.0666138\pi\)
0.500144 + 0.865942i \(0.333280\pi\)
\(762\) 0 0
\(763\) −47.5502 52.8099i −1.72143 1.91185i
\(764\) −13.5025 + 18.5846i −0.488503 + 0.672367i
\(765\) 0 0
\(766\) −49.1124 15.9576i −1.77450 0.576571i
\(767\) −0.0945829 0.0201042i −0.00341519 0.000725921i
\(768\) 0 0
\(769\) −19.3337 + 11.1623i −0.697192 + 0.402524i −0.806301 0.591506i \(-0.798534\pi\)
0.109109 + 0.994030i \(0.465200\pi\)
\(770\) 34.7929 3.88931i 1.25385 0.140161i
\(771\) 0 0
\(772\) 7.91650 0.832058i 0.284921 0.0299464i
\(773\) 19.1268 6.21468i 0.687944 0.223526i 0.0558738 0.998438i \(-0.482206\pi\)
0.632070 + 0.774911i \(0.282206\pi\)
\(774\) 0 0
\(775\) −15.2820 11.1030i −0.548946 0.398832i
\(776\) 17.0121 7.57426i 0.610698 0.271900i
\(777\) 0 0
\(778\) −19.2577 17.3397i −0.690423 0.621659i
\(779\) 19.7535 44.3671i 0.707742 1.58962i
\(780\) 0 0
\(781\) −4.02087 12.1025i −0.143878 0.433061i
\(782\) 8.06192i 0.288294i
\(783\) 0 0
\(784\) 24.9624 + 76.8265i 0.891516 + 2.74380i
\(785\) 1.88412 1.69647i 0.0672471 0.0605495i
\(786\) 0 0
\(787\) 34.6278 + 3.63953i 1.23435 + 0.129735i 0.699139 0.714985i \(-0.253567\pi\)
0.535208 + 0.844721i \(0.320233\pi\)
\(788\) 28.4572 6.04876i 1.01374 0.215478i
\(789\) 0 0
\(790\) 0.870908 + 8.28613i 0.0309855 + 0.294807i
\(791\) −15.4756 −0.550249
\(792\) 0 0
\(793\) 3.63312 0.129016
\(794\) 0.418572 + 3.98245i 0.0148546 + 0.141332i
\(795\) 0 0
\(796\) −11.7657 + 2.50087i −0.417023 + 0.0886409i
\(797\) −0.782420 0.0822356i −0.0277147 0.00291294i 0.0906609 0.995882i \(-0.471102\pi\)
−0.118376 + 0.992969i \(0.537769\pi\)
\(798\) 0 0
\(799\) −5.42477 + 4.88448i −0.191914 + 0.172800i
\(800\) 6.97744 + 21.4743i 0.246690 + 0.759233i
\(801\) 0 0
\(802\) 57.2351i 2.02104i
\(803\) 18.8110 13.8577i 0.663825 0.489026i
\(804\) 0 0
\(805\) −4.70247 + 10.5619i −0.165740 + 0.372259i
\(806\) −21.9183 19.7353i −0.772040 0.695148i
\(807\) 0 0
\(808\) −18.8665 + 8.39990i −0.663720 + 0.295507i
\(809\) 24.9035 + 18.0934i 0.875560 + 0.636131i 0.932073 0.362270i \(-0.117998\pi\)
−0.0565132 + 0.998402i \(0.517998\pi\)
\(810\) 0 0
\(811\) 41.4535 13.4691i 1.45563 0.472963i 0.528898 0.848686i \(-0.322606\pi\)
0.926732 + 0.375723i \(0.122606\pi\)
\(812\) −10.5532 + 1.10918i −0.370343 + 0.0389247i
\(813\) 0 0
\(814\) 4.96119 4.52675i 0.173890 0.158662i
\(815\) −15.1897 + 8.76976i −0.532071 + 0.307191i
\(816\) 0 0
\(817\) 16.9363 + 3.59992i 0.592526 + 0.125945i
\(818\) −11.6971 3.80063i −0.408981 0.132886i
\(819\) 0 0
\(820\) 9.70574 13.3588i 0.338939 0.466510i
\(821\) 26.0695 + 28.9531i 0.909833 + 1.01047i 0.999894 + 0.0145354i \(0.00462691\pi\)
−0.0900617 + 0.995936i \(0.528706\pi\)
\(822\) 0 0
\(823\) 34.3311 + 15.2852i 1.19671 + 0.532809i 0.905703 0.423913i \(-0.139344\pi\)
0.291005 + 0.956721i \(0.406010\pi\)
\(824\) 1.33597 + 2.31397i 0.0465408 + 0.0806111i
\(825\) 0 0
\(826\) −0.138795 + 0.240399i −0.00482928 + 0.00836456i
\(827\) 36.8905 26.8025i 1.28281 0.932015i 0.283175 0.959068i \(-0.408612\pi\)
0.999634 + 0.0270532i \(0.00861234\pi\)
\(828\) 0 0
\(829\) 8.83146 27.1804i 0.306729 0.944016i −0.672297 0.740282i \(-0.734692\pi\)
0.979026 0.203734i \(-0.0653078\pi\)
\(830\) −6.44676 14.4797i −0.223770 0.502596i
\(831\) 0 0
\(832\) 1.07678 + 5.06583i 0.0373305 + 0.175626i
\(833\) −24.5888 + 27.3086i −0.851950 + 0.946187i
\(834\) 0 0
\(835\) −0.928554 0.536101i −0.0321339 0.0185525i
\(836\) 1.91808 19.4861i 0.0663382 0.673941i
\(837\) 0 0
\(838\) 30.5125 + 41.9968i 1.05404 + 1.45076i
\(839\) 1.18333 5.56715i 0.0408532 0.192199i −0.952989 0.303005i \(-0.902010\pi\)
0.993842 + 0.110806i \(0.0353433\pi\)
\(840\) 0 0
\(841\) 2.73069 25.9808i 0.0941617 0.895888i
\(842\) −1.06087 + 10.0935i −0.0365599 + 0.347844i
\(843\) 0 0
\(844\) −3.76499 + 17.7129i −0.129596 + 0.609703i
\(845\) 2.56856 + 3.53532i 0.0883612 + 0.121619i
\(846\) 0 0
\(847\) −46.4662 26.0153i −1.59660 0.893895i
\(848\) −5.43030 3.13518i −0.186477 0.107663i
\(849\) 0 0
\(850\) −9.65237 + 10.7200i −0.331074 + 0.367694i
\(851\) 0.461122 + 2.16941i 0.0158071 + 0.0743664i
\(852\) 0 0
\(853\) 10.1942 + 22.8965i 0.349042 + 0.783962i 0.999698 + 0.0245888i \(0.00782763\pi\)
−0.650655 + 0.759373i \(0.725506\pi\)
\(854\) 3.22297 9.91929i 0.110288 0.339431i
\(855\) 0 0
\(856\) 0.434810 0.315908i 0.0148615 0.0107975i
\(857\) −17.9582 + 31.1045i −0.613440 + 1.06251i 0.377216 + 0.926126i \(0.376882\pi\)
−0.990656 + 0.136385i \(0.956452\pi\)
\(858\) 0 0
\(859\) 7.86620 + 13.6247i 0.268391 + 0.464868i 0.968447 0.249221i \(-0.0801746\pi\)
−0.700055 + 0.714089i \(0.746841\pi\)
\(860\) 5.37803 + 2.39445i 0.183389 + 0.0816502i
\(861\) 0 0
\(862\) 23.6858 + 26.3058i 0.806742 + 0.895978i
\(863\) 16.0883 22.1436i 0.547652 0.753778i −0.442039 0.896996i \(-0.645745\pi\)
0.989691 + 0.143217i \(0.0457448\pi\)
\(864\) 0 0
\(865\) 15.1397 + 4.91919i 0.514765 + 0.167257i
\(866\) −40.0281 8.50823i −1.36021 0.289121i
\(867\) 0 0
\(868\) −28.7841 + 16.6185i −0.976995 + 0.564068i
\(869\) 6.26413 11.0171i 0.212496 0.373731i
\(870\) 0 0
\(871\) −6.40761 + 0.673467i −0.217114 + 0.0228196i
\(872\) 17.9232 5.82361i 0.606957 0.197212i
\(873\) 0 0
\(874\) 13.3263 + 9.68210i 0.450768 + 0.327502i
\(875\) −45.4710 + 20.2450i −1.53720 + 0.684405i
\(876\) 0 0
\(877\) −38.6754 34.8235i −1.30597 1.17590i −0.972437 0.233168i \(-0.925091\pi\)
−0.333538 0.942737i \(-0.608242\pi\)
\(878\) 22.1312 49.7076i 0.746893 1.67755i
\(879\) 0 0
\(880\) −5.92938 + 18.6673i −0.199880 + 0.629273i
\(881\) 39.9758i 1.34682i −0.739270 0.673409i \(-0.764829\pi\)
0.739270 0.673409i \(-0.235171\pi\)
\(882\) 0 0
\(883\) −5.74452 17.6798i −0.193318 0.594973i −0.999992 0.00397571i \(-0.998734\pi\)
0.806674 0.590997i \(-0.201266\pi\)
\(884\) −6.57054 + 5.91614i −0.220991 + 0.198981i
\(885\) 0 0
\(886\) −56.9297 5.98356i −1.91259 0.201021i
\(887\) −53.3355 + 11.3368i −1.79083 + 0.380653i −0.979100 0.203379i \(-0.934808\pi\)
−0.811731 + 0.584032i \(0.801474\pi\)
\(888\) 0 0
\(889\) 11.2858 + 107.377i 0.378514 + 3.60132i
\(890\) 22.4310 0.751890
\(891\) 0 0
\(892\) −20.8507 −0.698132
\(893\) 1.55903 + 14.8332i 0.0521710 + 0.496374i
\(894\) 0 0
\(895\) 23.6779 5.03288i 0.791463 0.168231i
\(896\) −46.3566 4.87228i −1.54867 0.162771i
\(897\) 0 0
\(898\) −51.2417 + 46.1382i −1.70996 + 1.53965i
\(899\) 2.78384 + 8.56777i 0.0928461 + 0.285751i
\(900\) 0 0
\(901\) 2.85243i 0.0950281i
\(902\) −60.7210 + 20.1737i −2.02179 + 0.671709i
\(903\) 0 0
\(904\) 1.66928 3.74926i 0.0555193 0.124698i
\(905\) 4.01520 + 3.61531i 0.133470 + 0.120177i
\(906\) 0 0
\(907\) −11.3582 + 5.05700i −0.377143 + 0.167915i −0.586549 0.809914i \(-0.699514\pi\)
0.209406 + 0.977829i \(0.432847\pi\)
\(908\) −15.3860 11.1786i −0.510603 0.370975i
\(909\) 0 0
\(910\) −30.7195 + 9.98139i −1.01834 + 0.330880i
\(911\) 44.7416 4.70253i 1.48235 0.155802i 0.671481 0.741022i \(-0.265659\pi\)
0.810874 + 0.585220i \(0.198992\pi\)
\(912\) 0 0
\(913\) −4.85681 + 23.6151i −0.160737 + 0.781546i
\(914\) 61.6402 35.5880i 2.03887 1.17715i
\(915\) 0 0
\(916\) −28.0640 5.96518i −0.927260 0.197095i
\(917\) 71.3622 + 23.1870i 2.35659 + 0.765702i
\(918\) 0 0
\(919\) 13.6185 18.7442i 0.449232 0.618315i −0.523000 0.852333i \(-0.675187\pi\)
0.972232 + 0.234017i \(0.0751872\pi\)
\(920\) −2.05159 2.27852i −0.0676390 0.0751207i
\(921\) 0 0
\(922\) −29.0950 12.9539i −0.958192 0.426615i
\(923\) 5.88304 + 10.1897i 0.193643 + 0.335399i
\(924\) 0 0
\(925\) −1.98423 + 3.43678i −0.0652410 + 0.113001i
\(926\) 7.44610 5.40991i 0.244694 0.177781i
\(927\) 0 0
\(928\) 3.32763 10.2414i 0.109235 0.336190i
\(929\) 4.70492 + 10.5674i 0.154364 + 0.346706i 0.974129 0.225993i \(-0.0725628\pi\)
−0.819765 + 0.572700i \(0.805896\pi\)
\(930\) 0 0
\(931\) 15.6105 + 73.4417i 0.511614 + 2.40696i
\(932\) 4.46972 4.96413i 0.146411 0.162605i
\(933\) 0 0
\(934\) −26.6487 15.3856i −0.871971 0.503433i
\(935\) −8.70280 + 1.90998i −0.284612 + 0.0624630i
\(936\) 0 0
\(937\) 15.1544 + 20.8582i 0.495071 + 0.681407i 0.981313 0.192417i \(-0.0616326\pi\)
−0.486242 + 0.873824i \(0.661633\pi\)
\(938\) −3.84552 + 18.0917i −0.125561 + 0.590716i
\(939\) 0 0
\(940\) −0.530071 + 5.04329i −0.0172890 + 0.164494i
\(941\) −6.18370 + 58.8340i −0.201583 + 1.91793i 0.162756 + 0.986666i \(0.447962\pi\)
−0.364339 + 0.931267i \(0.618705\pi\)
\(942\) 0 0
\(943\) 4.39318 20.6683i 0.143062 0.673052i
\(944\) −0.0912824 0.125639i −0.00297099 0.00408921i
\(945\) 0 0
\(946\) −11.5361 19.6798i −0.375069 0.639845i
\(947\) −0.104615 0.0603997i −0.00339954 0.00196272i 0.498299 0.867005i \(-0.333958\pi\)
−0.501699 + 0.865042i \(0.667291\pi\)
\(948\) 0 0
\(949\) −14.4239 + 16.0194i −0.468221 + 0.520012i
\(950\) 6.12794 + 28.8297i 0.198817 + 0.935359i
\(951\) 0 0
\(952\) −5.65178 12.6941i −0.183175 0.411418i
\(953\) −2.50261 + 7.70223i −0.0810674 + 0.249500i −0.983373 0.181597i \(-0.941873\pi\)
0.902306 + 0.431097i \(0.141873\pi\)
\(954\) 0 0
\(955\) 17.2791 12.5540i 0.559138 0.406237i
\(956\) −8.83074 + 15.2953i −0.285607 + 0.494685i
\(957\) 0 0
\(958\) −16.4028 28.4104i −0.529949 0.917899i
\(959\) −75.8077 33.7517i −2.44796 1.08990i
\(960\) 0 0
\(961\) −1.86203 2.06800i −0.0600656 0.0667096i
\(962\) −3.64210 + 5.01292i −0.117426 + 0.161623i
\(963\) 0 0
\(964\) 8.66885 + 2.81668i 0.279205 + 0.0907192i
\(965\) −7.23921 1.53874i −0.233038 0.0495338i
\(966\) 0 0
\(967\) 8.61320 4.97284i 0.276982 0.159916i −0.355074 0.934838i \(-0.615544\pi\)
0.632056 + 0.774922i \(0.282211\pi\)
\(968\) 11.3148 8.45117i 0.363671 0.271631i
\(969\) 0 0
\(970\) 31.4528 3.30582i 1.00989 0.106144i
\(971\) −36.6171 + 11.8976i −1.17510 + 0.381813i −0.830544 0.556953i \(-0.811970\pi\)
−0.344555 + 0.938766i \(0.611970\pi\)
\(972\) 0 0
\(973\) 40.6068 + 29.5025i 1.30179 + 0.945808i
\(974\) 43.1015 19.1900i 1.38106 0.614887i
\(975\) 0 0
\(976\) 4.33624 + 3.90437i 0.138800 + 0.124976i
\(977\) 8.26143 18.5555i 0.264307 0.593642i −0.731827 0.681490i \(-0.761332\pi\)
0.996134 + 0.0878477i \(0.0279989\pi\)
\(978\) 0 0
\(979\) −27.7354 19.8725i −0.886426 0.635127i
\(980\) 25.5281i 0.815464i
\(981\) 0 0
\(982\) −4.11112 12.6527i −0.131191 0.403765i
\(983\) 7.22568 6.50603i 0.230464 0.207510i −0.545806 0.837912i \(-0.683776\pi\)
0.776269 + 0.630401i \(0.217110\pi\)
\(984\) 0 0
\(985\) −26.9011 2.82742i −0.857139 0.0900889i
\(986\) 6.72924 1.43034i 0.214303 0.0455515i
\(987\) 0 0
\(988\) 1.88832 + 17.9661i 0.0600753 + 0.571579i
\(989\) 7.53327 0.239544
\(990\) 0 0
\(991\) −22.9196 −0.728065 −0.364032 0.931386i \(-0.618600\pi\)
−0.364032 + 0.931386i \(0.618600\pi\)
\(992\) −3.52566 33.5444i −0.111940 1.06504i
\(993\) 0 0
\(994\) 33.0393 7.02272i 1.04794 0.222747i
\(995\) 11.1223 + 1.16900i 0.352600 + 0.0370598i
\(996\) 0 0
\(997\) 15.9789 14.3875i 0.506057 0.455656i −0.376122 0.926570i \(-0.622743\pi\)
0.882179 + 0.470914i \(0.156076\pi\)
\(998\) 5.28139 + 16.2544i 0.167179 + 0.514525i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.t.a.8.8 80
3.2 odd 2 99.2.p.a.74.3 yes 80
9.2 odd 6 891.2.k.a.404.5 80
9.4 even 3 99.2.p.a.41.3 yes 80
9.5 odd 6 inner 297.2.t.a.206.8 80
9.7 even 3 891.2.k.a.404.16 80
11.7 odd 10 inner 297.2.t.a.62.8 80
33.29 even 10 99.2.p.a.29.3 80
99.7 odd 30 891.2.k.a.161.5 80
99.29 even 30 891.2.k.a.161.16 80
99.40 odd 30 99.2.p.a.95.3 yes 80
99.95 even 30 inner 297.2.t.a.260.8 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.3 80 33.29 even 10
99.2.p.a.41.3 yes 80 9.4 even 3
99.2.p.a.74.3 yes 80 3.2 odd 2
99.2.p.a.95.3 yes 80 99.40 odd 30
297.2.t.a.8.8 80 1.1 even 1 trivial
297.2.t.a.62.8 80 11.7 odd 10 inner
297.2.t.a.206.8 80 9.5 odd 6 inner
297.2.t.a.260.8 80 99.95 even 30 inner
891.2.k.a.161.5 80 99.7 odd 30
891.2.k.a.161.16 80 99.29 even 30
891.2.k.a.404.5 80 9.2 odd 6
891.2.k.a.404.16 80 9.7 even 3