Properties

Label 297.2.t.a.8.6
Level $297$
Weight $2$
Character 297.8
Analytic conductor $2.372$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [297,2,Mod(8,297)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("297.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(297, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([5, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.t (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 8.6
Character \(\chi\) \(=\) 297.8
Dual form 297.2.t.a.260.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0653389 + 0.621658i) q^{2} +(1.57411 - 0.334586i) q^{4} +(1.26871 + 0.133347i) q^{5} +(-3.59877 + 3.24034i) q^{7} +(0.697171 + 2.14567i) q^{8} +0.797419i q^{10} +(3.12186 + 1.11982i) q^{11} +(0.339621 - 0.762800i) q^{13} +(-2.24953 - 2.02548i) q^{14} +(1.65196 - 0.735502i) q^{16} +(-0.199958 - 0.145278i) q^{17} +(2.08556 - 0.677640i) q^{19} +(2.04171 - 0.214592i) q^{20} +(-0.492168 + 2.01390i) q^{22} +(4.19803 - 2.42373i) q^{23} +(-3.29889 - 0.701200i) q^{25} +(0.496392 + 0.161287i) q^{26} +(-4.58066 + 6.30474i) q^{28} +(-5.19962 - 5.77477i) q^{29} +(1.60265 + 0.713544i) q^{31} +(2.82126 + 4.88657i) q^{32} +(0.0772482 - 0.133798i) q^{34} +(-4.99790 + 3.63118i) q^{35} +(0.106959 - 0.329187i) q^{37} +(0.557529 + 1.25223i) q^{38} +(0.598391 + 2.81521i) q^{40} +(-3.25297 + 3.61279i) q^{41} +(-0.366648 - 0.211684i) q^{43} +(5.28881 + 0.718188i) q^{44} +(1.78103 + 2.45137i) q^{46} +(-1.54628 + 7.27468i) q^{47} +(1.71959 - 16.3608i) q^{49} +(0.220361 - 2.09659i) q^{50} +(0.279376 - 1.31436i) q^{52} +(-6.95271 - 9.56959i) q^{53} +(3.81142 + 1.83703i) q^{55} +(-9.46167 - 5.46270i) q^{56} +(3.25019 - 3.60971i) q^{58} +(-1.09220 - 5.13837i) q^{59} +(-5.66802 - 12.7306i) q^{61} +(-0.338865 + 1.04292i) q^{62} +(0.0724543 - 0.0526411i) q^{64} +(0.532599 - 0.922488i) q^{65} +(-0.252454 - 0.437263i) q^{67} +(-0.363363 - 0.161780i) q^{68} +(-2.58391 - 2.86973i) q^{70} +(6.95402 - 9.57138i) q^{71} +(3.85174 + 1.25150i) q^{73} +(0.211631 + 0.0449835i) q^{74} +(3.05616 - 1.76448i) q^{76} +(-14.8635 + 6.08591i) q^{77} +(2.20083 - 0.231316i) q^{79} +(2.19395 - 0.712856i) q^{80} +(-2.45847 - 1.78618i) q^{82} +(3.77042 - 1.67870i) q^{83} +(-0.234317 - 0.210980i) q^{85} +(0.107639 - 0.241761i) q^{86} +(-0.226303 + 7.47919i) q^{88} +13.5225i q^{89} +(1.24952 + 3.84563i) q^{91} +(5.79719 - 5.21981i) q^{92} +(-4.62340 - 0.485939i) q^{94} +(2.73634 - 0.581627i) q^{95} +(0.830936 + 7.90582i) q^{97} +10.2832 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 15 q^{2} + 5 q^{4} + 6 q^{5} - 5 q^{7} + 3 q^{11} - 5 q^{13} + 9 q^{14} + 5 q^{16} - 50 q^{19} + 3 q^{20} - 11 q^{22} + 42 q^{23} - 2 q^{25} - 20 q^{28} - 30 q^{29} - 6 q^{31} - 10 q^{34} - 6 q^{37}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0653389 + 0.621658i 0.0462016 + 0.439579i 0.993032 + 0.117845i \(0.0375988\pi\)
−0.946830 + 0.321733i \(0.895735\pi\)
\(3\) 0 0
\(4\) 1.57411 0.334586i 0.787053 0.167293i
\(5\) 1.26871 + 0.133347i 0.567386 + 0.0596347i 0.383878 0.923384i \(-0.374588\pi\)
0.183508 + 0.983018i \(0.441255\pi\)
\(6\) 0 0
\(7\) −3.59877 + 3.24034i −1.36021 + 1.22474i −0.410396 + 0.911907i \(0.634610\pi\)
−0.949810 + 0.312828i \(0.898724\pi\)
\(8\) 0.697171 + 2.14567i 0.246487 + 0.758609i
\(9\) 0 0
\(10\) 0.797419i 0.252166i
\(11\) 3.12186 + 1.11982i 0.941276 + 0.337639i
\(12\) 0 0
\(13\) 0.339621 0.762800i 0.0941938 0.211563i −0.860304 0.509782i \(-0.829726\pi\)
0.954497 + 0.298219i \(0.0963927\pi\)
\(14\) −2.24953 2.02548i −0.601211 0.541333i
\(15\) 0 0
\(16\) 1.65196 0.735502i 0.412991 0.183875i
\(17\) −0.199958 0.145278i −0.0484969 0.0352351i 0.563273 0.826271i \(-0.309542\pi\)
−0.611770 + 0.791036i \(0.709542\pi\)
\(18\) 0 0
\(19\) 2.08556 0.677640i 0.478461 0.155461i −0.0598507 0.998207i \(-0.519062\pi\)
0.538311 + 0.842746i \(0.319062\pi\)
\(20\) 2.04171 0.214592i 0.456539 0.0479842i
\(21\) 0 0
\(22\) −0.492168 + 2.01390i −0.104931 + 0.429364i
\(23\) 4.19803 2.42373i 0.875349 0.505383i 0.00622685 0.999981i \(-0.498018\pi\)
0.869122 + 0.494598i \(0.164685\pi\)
\(24\) 0 0
\(25\) −3.29889 0.701200i −0.659777 0.140240i
\(26\) 0.496392 + 0.161287i 0.0973504 + 0.0316311i
\(27\) 0 0
\(28\) −4.58066 + 6.30474i −0.865664 + 1.19148i
\(29\) −5.19962 5.77477i −0.965546 1.07235i −0.997343 0.0728530i \(-0.976790\pi\)
0.0317968 0.999494i \(-0.489877\pi\)
\(30\) 0 0
\(31\) 1.60265 + 0.713544i 0.287844 + 0.128156i 0.545579 0.838059i \(-0.316310\pi\)
−0.257736 + 0.966215i \(0.582976\pi\)
\(32\) 2.82126 + 4.88657i 0.498733 + 0.863831i
\(33\) 0 0
\(34\) 0.0772482 0.133798i 0.0132480 0.0229461i
\(35\) −4.99790 + 3.63118i −0.844799 + 0.613782i
\(36\) 0 0
\(37\) 0.106959 0.329187i 0.0175840 0.0541180i −0.941879 0.335951i \(-0.890942\pi\)
0.959464 + 0.281833i \(0.0909424\pi\)
\(38\) 0.557529 + 1.25223i 0.0904431 + 0.203139i
\(39\) 0 0
\(40\) 0.598391 + 2.81521i 0.0946139 + 0.445124i
\(41\) −3.25297 + 3.61279i −0.508029 + 0.564224i −0.941530 0.336930i \(-0.890612\pi\)
0.433501 + 0.901153i \(0.357278\pi\)
\(42\) 0 0
\(43\) −0.366648 0.211684i −0.0559133 0.0322816i 0.471783 0.881715i \(-0.343611\pi\)
−0.527696 + 0.849433i \(0.676944\pi\)
\(44\) 5.28881 + 0.718188i 0.797318 + 0.108271i
\(45\) 0 0
\(46\) 1.78103 + 2.45137i 0.262598 + 0.361435i
\(47\) −1.54628 + 7.27468i −0.225548 + 1.06112i 0.708979 + 0.705230i \(0.249156\pi\)
−0.934527 + 0.355891i \(0.884177\pi\)
\(48\) 0 0
\(49\) 1.71959 16.3608i 0.245656 2.33726i
\(50\) 0.220361 2.09659i 0.0311638 0.296503i
\(51\) 0 0
\(52\) 0.279376 1.31436i 0.0387425 0.182269i
\(53\) −6.95271 9.56959i −0.955029 1.31448i −0.949257 0.314501i \(-0.898163\pi\)
−0.00577155 0.999983i \(-0.501837\pi\)
\(54\) 0 0
\(55\) 3.81142 + 1.83703i 0.513932 + 0.247704i
\(56\) −9.46167 5.46270i −1.26437 0.729984i
\(57\) 0 0
\(58\) 3.25019 3.60971i 0.426771 0.473978i
\(59\) −1.09220 5.13837i −0.142192 0.668959i −0.990278 0.139101i \(-0.955579\pi\)
0.848086 0.529858i \(-0.177755\pi\)
\(60\) 0 0
\(61\) −5.66802 12.7306i −0.725715 1.62998i −0.775597 0.631228i \(-0.782551\pi\)
0.0498815 0.998755i \(-0.484116\pi\)
\(62\) −0.338865 + 1.04292i −0.0430359 + 0.132451i
\(63\) 0 0
\(64\) 0.0724543 0.0526411i 0.00905678 0.00658014i
\(65\) 0.532599 0.922488i 0.0660607 0.114421i
\(66\) 0 0
\(67\) −0.252454 0.437263i −0.0308421 0.0534201i 0.850192 0.526472i \(-0.176486\pi\)
−0.881034 + 0.473052i \(0.843152\pi\)
\(68\) −0.363363 0.161780i −0.0440642 0.0196187i
\(69\) 0 0
\(70\) −2.58391 2.86973i −0.308837 0.342998i
\(71\) 6.95402 9.57138i 0.825290 1.13591i −0.163491 0.986545i \(-0.552276\pi\)
0.988781 0.149370i \(-0.0477244\pi\)
\(72\) 0 0
\(73\) 3.85174 + 1.25150i 0.450812 + 0.146478i 0.525618 0.850720i \(-0.323834\pi\)
−0.0748068 + 0.997198i \(0.523834\pi\)
\(74\) 0.211631 + 0.0449835i 0.0246016 + 0.00522922i
\(75\) 0 0
\(76\) 3.05616 1.76448i 0.350566 0.202399i
\(77\) −14.8635 + 6.08591i −1.69385 + 0.693554i
\(78\) 0 0
\(79\) 2.20083 0.231316i 0.247613 0.0260251i 0.0200909 0.999798i \(-0.493604\pi\)
0.227522 + 0.973773i \(0.426938\pi\)
\(80\) 2.19395 0.712856i 0.245291 0.0796998i
\(81\) 0 0
\(82\) −2.45847 1.78618i −0.271492 0.197251i
\(83\) 3.77042 1.67870i 0.413857 0.184261i −0.189236 0.981932i \(-0.560601\pi\)
0.603094 + 0.797670i \(0.293935\pi\)
\(84\) 0 0
\(85\) −0.234317 0.210980i −0.0254152 0.0228840i
\(86\) 0.107639 0.241761i 0.0116070 0.0260698i
\(87\) 0 0
\(88\) −0.226303 + 7.47919i −0.0241240 + 0.797284i
\(89\) 13.5225i 1.43338i 0.697393 + 0.716689i \(0.254343\pi\)
−0.697393 + 0.716689i \(0.745657\pi\)
\(90\) 0 0
\(91\) 1.24952 + 3.84563i 0.130985 + 0.403131i
\(92\) 5.79719 5.21981i 0.604399 0.544203i
\(93\) 0 0
\(94\) −4.62340 0.485939i −0.476867 0.0501207i
\(95\) 2.73634 0.581627i 0.280743 0.0596737i
\(96\) 0 0
\(97\) 0.830936 + 7.90582i 0.0843687 + 0.802715i 0.952122 + 0.305719i \(0.0988969\pi\)
−0.867753 + 0.496996i \(0.834436\pi\)
\(98\) 10.2832 1.03876
\(99\) 0 0
\(100\) −5.42741 −0.542741
\(101\) 0.563906 + 5.36520i 0.0561107 + 0.533858i 0.986086 + 0.166236i \(0.0531613\pi\)
−0.929975 + 0.367622i \(0.880172\pi\)
\(102\) 0 0
\(103\) −16.0974 + 3.42161i −1.58612 + 0.337141i −0.914764 0.403989i \(-0.867623\pi\)
−0.671361 + 0.741131i \(0.734290\pi\)
\(104\) 1.87349 + 0.196912i 0.183711 + 0.0193088i
\(105\) 0 0
\(106\) 5.49473 4.94748i 0.533695 0.480542i
\(107\) −0.705070 2.16998i −0.0681617 0.209780i 0.911174 0.412022i \(-0.135177\pi\)
−0.979336 + 0.202242i \(0.935177\pi\)
\(108\) 0 0
\(109\) 8.89941i 0.852409i −0.904627 0.426205i \(-0.859850\pi\)
0.904627 0.426205i \(-0.140150\pi\)
\(110\) −0.892968 + 2.48943i −0.0851411 + 0.237358i
\(111\) 0 0
\(112\) −3.56176 + 7.99983i −0.336554 + 0.755913i
\(113\) 5.38119 + 4.84525i 0.506220 + 0.455803i 0.882234 0.470811i \(-0.156039\pi\)
−0.376014 + 0.926614i \(0.622705\pi\)
\(114\) 0 0
\(115\) 5.64929 2.51523i 0.526799 0.234546i
\(116\) −10.1169 7.35037i −0.939332 0.682465i
\(117\) 0 0
\(118\) 3.12295 1.01471i 0.287491 0.0934114i
\(119\) 1.19035 0.125111i 0.109119 0.0114689i
\(120\) 0 0
\(121\) 8.49199 + 6.99185i 0.771999 + 0.635623i
\(122\) 7.54373 4.35537i 0.682977 0.394317i
\(123\) 0 0
\(124\) 2.76148 + 0.586970i 0.247988 + 0.0527114i
\(125\) −10.1582 3.30059i −0.908574 0.295213i
\(126\) 0 0
\(127\) 1.69280 2.32994i 0.150212 0.206749i −0.727279 0.686341i \(-0.759216\pi\)
0.877491 + 0.479593i \(0.159216\pi\)
\(128\) 7.58863 + 8.42802i 0.670746 + 0.744939i
\(129\) 0 0
\(130\) 0.608271 + 0.270820i 0.0533489 + 0.0237525i
\(131\) 0.281682 + 0.487887i 0.0246106 + 0.0426269i 0.878068 0.478535i \(-0.158832\pi\)
−0.853458 + 0.521162i \(0.825499\pi\)
\(132\) 0 0
\(133\) −5.30966 + 9.19661i −0.460406 + 0.797447i
\(134\) 0.255333 0.185510i 0.0220574 0.0160256i
\(135\) 0 0
\(136\) 0.172314 0.530328i 0.0147758 0.0454752i
\(137\) −1.88819 4.24095i −0.161319 0.362329i 0.814742 0.579823i \(-0.196878\pi\)
−0.976062 + 0.217494i \(0.930212\pi\)
\(138\) 0 0
\(139\) 2.18480 + 10.2787i 0.185312 + 0.871825i 0.968300 + 0.249788i \(0.0803611\pi\)
−0.782988 + 0.622036i \(0.786306\pi\)
\(140\) −6.65227 + 7.38809i −0.562219 + 0.624408i
\(141\) 0 0
\(142\) 6.40450 + 3.69764i 0.537453 + 0.310299i
\(143\) 1.91445 2.00104i 0.160094 0.167335i
\(144\) 0 0
\(145\) −5.82678 8.01988i −0.483888 0.666015i
\(146\) −0.526340 + 2.47623i −0.0435602 + 0.204935i
\(147\) 0 0
\(148\) 0.0582238 0.553963i 0.00478597 0.0455354i
\(149\) 1.59142 15.1413i 0.130374 1.24042i −0.712252 0.701924i \(-0.752325\pi\)
0.842625 0.538500i \(-0.181009\pi\)
\(150\) 0 0
\(151\) −1.58872 + 7.47434i −0.129288 + 0.608253i 0.865022 + 0.501733i \(0.167304\pi\)
−0.994311 + 0.106520i \(0.966029\pi\)
\(152\) 2.90799 + 4.00250i 0.235869 + 0.324646i
\(153\) 0 0
\(154\) −4.75452 8.84234i −0.383130 0.712536i
\(155\) 1.93815 + 1.11899i 0.155676 + 0.0898795i
\(156\) 0 0
\(157\) −2.89738 + 3.21787i −0.231236 + 0.256814i −0.847585 0.530659i \(-0.821944\pi\)
0.616349 + 0.787473i \(0.288611\pi\)
\(158\) 0.287599 + 1.35305i 0.0228802 + 0.107643i
\(159\) 0 0
\(160\) 2.92776 + 6.57586i 0.231460 + 0.519867i
\(161\) −7.25399 + 22.3255i −0.571695 + 1.75950i
\(162\) 0 0
\(163\) −5.76502 + 4.18853i −0.451551 + 0.328071i −0.790208 0.612839i \(-0.790027\pi\)
0.338657 + 0.940910i \(0.390027\pi\)
\(164\) −3.91173 + 6.77532i −0.305455 + 0.529064i
\(165\) 0 0
\(166\) 1.28993 + 2.23423i 0.100118 + 0.173410i
\(167\) −7.47107 3.32634i −0.578129 0.257400i 0.0967737 0.995306i \(-0.469148\pi\)
−0.674903 + 0.737907i \(0.735814\pi\)
\(168\) 0 0
\(169\) 8.23218 + 9.14276i 0.633244 + 0.703289i
\(170\) 0.115847 0.159450i 0.00888509 0.0122293i
\(171\) 0 0
\(172\) −0.647970 0.210538i −0.0494072 0.0160534i
\(173\) 6.61744 + 1.40658i 0.503114 + 0.106940i 0.452476 0.891777i \(-0.350541\pi\)
0.0506387 + 0.998717i \(0.483874\pi\)
\(174\) 0 0
\(175\) 14.1440 8.16607i 1.06919 0.617297i
\(176\) 5.98083 0.446225i 0.450822 0.0336355i
\(177\) 0 0
\(178\) −8.40634 + 0.883542i −0.630082 + 0.0662243i
\(179\) 6.85049 2.22586i 0.512030 0.166369i −0.0415954 0.999135i \(-0.513244\pi\)
0.553625 + 0.832766i \(0.313244\pi\)
\(180\) 0 0
\(181\) 0.383330 + 0.278506i 0.0284927 + 0.0207012i 0.601940 0.798541i \(-0.294394\pi\)
−0.573448 + 0.819242i \(0.694394\pi\)
\(182\) −2.30902 + 1.02804i −0.171156 + 0.0762037i
\(183\) 0 0
\(184\) 8.12727 + 7.31783i 0.599151 + 0.539478i
\(185\) 0.179597 0.403382i 0.0132042 0.0296572i
\(186\) 0 0
\(187\) −0.461555 0.677454i −0.0337522 0.0495404i
\(188\) 11.9685i 0.872891i
\(189\) 0 0
\(190\) 0.540363 + 1.66307i 0.0392020 + 0.120651i
\(191\) −0.0301700 + 0.0271652i −0.00218303 + 0.00196561i −0.670221 0.742161i \(-0.733801\pi\)
0.668038 + 0.744127i \(0.267134\pi\)
\(192\) 0 0
\(193\) −11.1756 1.17460i −0.804436 0.0845496i −0.306619 0.951832i \(-0.599198\pi\)
−0.497816 + 0.867283i \(0.665865\pi\)
\(194\) −4.86043 + 1.03312i −0.348958 + 0.0741734i
\(195\) 0 0
\(196\) −2.76729 26.3290i −0.197664 1.88065i
\(197\) 20.8150 1.48301 0.741504 0.670948i \(-0.234113\pi\)
0.741504 + 0.670948i \(0.234113\pi\)
\(198\) 0 0
\(199\) 14.4111 1.02158 0.510788 0.859707i \(-0.329354\pi\)
0.510788 + 0.859707i \(0.329354\pi\)
\(200\) −0.795343 7.56718i −0.0562392 0.535080i
\(201\) 0 0
\(202\) −3.29848 + 0.701113i −0.232080 + 0.0493302i
\(203\) 37.4245 + 3.93347i 2.62668 + 0.276076i
\(204\) 0 0
\(205\) −4.60885 + 4.14983i −0.321896 + 0.289836i
\(206\) −3.17886 9.78352i −0.221482 0.681650i
\(207\) 0 0
\(208\) 1.50991i 0.104693i
\(209\) 7.26966 + 0.219963i 0.502853 + 0.0152152i
\(210\) 0 0
\(211\) −7.39314 + 16.6053i −0.508965 + 1.14315i 0.458164 + 0.888868i \(0.348507\pi\)
−0.967129 + 0.254286i \(0.918159\pi\)
\(212\) −14.1462 12.7373i −0.971562 0.874799i
\(213\) 0 0
\(214\) 1.30292 0.580097i 0.0890658 0.0396546i
\(215\) −0.436944 0.317458i −0.0297993 0.0216505i
\(216\) 0 0
\(217\) −8.07968 + 2.62525i −0.548484 + 0.178213i
\(218\) 5.53239 0.581478i 0.374701 0.0393827i
\(219\) 0 0
\(220\) 6.61422 + 1.61642i 0.445930 + 0.108979i
\(221\) −0.178728 + 0.103189i −0.0120225 + 0.00694122i
\(222\) 0 0
\(223\) −0.737985 0.156863i −0.0494191 0.0105044i 0.183136 0.983088i \(-0.441375\pi\)
−0.232555 + 0.972583i \(0.574709\pi\)
\(224\) −25.9872 8.44376i −1.73634 0.564172i
\(225\) 0 0
\(226\) −2.66049 + 3.66185i −0.176973 + 0.243582i
\(227\) −11.1196 12.3496i −0.738037 0.819673i 0.250899 0.968013i \(-0.419274\pi\)
−0.988936 + 0.148340i \(0.952607\pi\)
\(228\) 0 0
\(229\) −20.0961 8.94735i −1.32799 0.591258i −0.384640 0.923067i \(-0.625674\pi\)
−0.943347 + 0.331809i \(0.892341\pi\)
\(230\) 1.93273 + 3.34759i 0.127440 + 0.220733i
\(231\) 0 0
\(232\) 8.76573 15.1827i 0.575498 0.996792i
\(233\) 12.5102 9.08916i 0.819568 0.595451i −0.0970210 0.995282i \(-0.530931\pi\)
0.916589 + 0.399832i \(0.130931\pi\)
\(234\) 0 0
\(235\) −2.93185 + 9.02329i −0.191252 + 0.588615i
\(236\) −3.43846 7.72291i −0.223825 0.502719i
\(237\) 0 0
\(238\) 0.155553 + 0.731818i 0.0100830 + 0.0474367i
\(239\) −12.5862 + 13.9784i −0.814132 + 0.904185i −0.996877 0.0789751i \(-0.974835\pi\)
0.182744 + 0.983160i \(0.441502\pi\)
\(240\) 0 0
\(241\) 13.4825 + 7.78412i 0.868483 + 0.501419i 0.866844 0.498580i \(-0.166145\pi\)
0.00163940 + 0.999999i \(0.499478\pi\)
\(242\) −3.79169 + 5.73596i −0.243739 + 0.368721i
\(243\) 0 0
\(244\) −13.1815 18.1428i −0.843862 1.16148i
\(245\) 4.36334 20.5279i 0.278764 1.31148i
\(246\) 0 0
\(247\) 0.191396 1.82101i 0.0121782 0.115868i
\(248\) −0.413713 + 3.93621i −0.0262708 + 0.249950i
\(249\) 0 0
\(250\) 1.38811 6.53056i 0.0877920 0.413029i
\(251\) 8.32155 + 11.4536i 0.525252 + 0.722947i 0.986397 0.164378i \(-0.0525616\pi\)
−0.461146 + 0.887324i \(0.652562\pi\)
\(252\) 0 0
\(253\) 15.8198 2.86550i 0.994582 0.180152i
\(254\) 1.55903 + 0.900107i 0.0978223 + 0.0564778i
\(255\) 0 0
\(256\) −4.62367 + 5.13510i −0.288979 + 0.320944i
\(257\) 3.09474 + 14.5596i 0.193045 + 0.908204i 0.962873 + 0.269953i \(0.0870083\pi\)
−0.769829 + 0.638250i \(0.779658\pi\)
\(258\) 0 0
\(259\) 0.681758 + 1.53125i 0.0423624 + 0.0951475i
\(260\) 0.529714 1.63029i 0.0328515 0.101106i
\(261\) 0 0
\(262\) −0.284894 + 0.206988i −0.0176008 + 0.0127877i
\(263\) −11.9506 + 20.6991i −0.736906 + 1.27636i 0.216976 + 0.976177i \(0.430381\pi\)
−0.953882 + 0.300181i \(0.902953\pi\)
\(264\) 0 0
\(265\) −7.54492 13.0682i −0.463481 0.802773i
\(266\) −6.06407 2.69990i −0.371812 0.165541i
\(267\) 0 0
\(268\) −0.543691 0.603830i −0.0332112 0.0368848i
\(269\) −4.62668 + 6.36807i −0.282093 + 0.388268i −0.926426 0.376477i \(-0.877135\pi\)
0.644332 + 0.764745i \(0.277135\pi\)
\(270\) 0 0
\(271\) −4.67871 1.52020i −0.284211 0.0923458i 0.163442 0.986553i \(-0.447740\pi\)
−0.447654 + 0.894207i \(0.647740\pi\)
\(272\) −0.437176 0.0929245i −0.0265077 0.00563438i
\(273\) 0 0
\(274\) 2.51305 1.45091i 0.151819 0.0876527i
\(275\) −9.51343 5.88321i −0.573682 0.354771i
\(276\) 0 0
\(277\) 26.2641 2.76046i 1.57805 0.165860i 0.725397 0.688331i \(-0.241656\pi\)
0.852657 + 0.522471i \(0.174990\pi\)
\(278\) −6.24706 + 2.02979i −0.374674 + 0.121739i
\(279\) 0 0
\(280\) −11.2757 8.19229i −0.673853 0.489583i
\(281\) −14.5196 + 6.46453i −0.866165 + 0.385641i −0.791209 0.611546i \(-0.790548\pi\)
−0.0749554 + 0.997187i \(0.523881\pi\)
\(282\) 0 0
\(283\) 8.18244 + 7.36750i 0.486396 + 0.437953i 0.875483 0.483248i \(-0.160543\pi\)
−0.389088 + 0.921201i \(0.627210\pi\)
\(284\) 7.74390 17.3931i 0.459516 1.03209i
\(285\) 0 0
\(286\) 1.36905 + 1.05939i 0.0809537 + 0.0626429i
\(287\) 23.5424i 1.38966i
\(288\) 0 0
\(289\) −5.23441 16.1099i −0.307907 0.947639i
\(290\) 4.60491 4.14628i 0.270410 0.243478i
\(291\) 0 0
\(292\) 6.48177 + 0.681262i 0.379317 + 0.0398678i
\(293\) −13.8586 + 2.94575i −0.809631 + 0.172092i −0.594086 0.804402i \(-0.702486\pi\)
−0.215545 + 0.976494i \(0.569153\pi\)
\(294\) 0 0
\(295\) −0.700495 6.66477i −0.0407844 0.388038i
\(296\) 0.780897 0.0453887
\(297\) 0 0
\(298\) 9.51670 0.551288
\(299\) −0.423087 4.02540i −0.0244678 0.232795i
\(300\) 0 0
\(301\) 2.00541 0.426264i 0.115590 0.0245694i
\(302\) −4.75029 0.499276i −0.273348 0.0287301i
\(303\) 0 0
\(304\) 2.94687 2.65337i 0.169014 0.152181i
\(305\) −5.49351 16.9073i −0.314557 0.968108i
\(306\) 0 0
\(307\) 11.5389i 0.658559i −0.944233 0.329279i \(-0.893194\pi\)
0.944233 0.329279i \(-0.106806\pi\)
\(308\) −21.3604 + 14.5530i −1.21712 + 0.829233i
\(309\) 0 0
\(310\) −0.568993 + 1.27798i −0.0323166 + 0.0725844i
\(311\) 20.3343 + 18.3091i 1.15305 + 1.03821i 0.998740 + 0.0501904i \(0.0159828\pi\)
0.154312 + 0.988022i \(0.450684\pi\)
\(312\) 0 0
\(313\) 7.59123 3.37983i 0.429081 0.191039i −0.180821 0.983516i \(-0.557875\pi\)
0.609902 + 0.792477i \(0.291209\pi\)
\(314\) −2.18973 1.59093i −0.123573 0.0897814i
\(315\) 0 0
\(316\) 3.38694 1.10048i 0.190530 0.0619071i
\(317\) −15.1108 + 1.58821i −0.848707 + 0.0892027i −0.518889 0.854842i \(-0.673654\pi\)
−0.329818 + 0.944044i \(0.606987\pi\)
\(318\) 0 0
\(319\) −9.76577 23.8507i −0.546778 1.33538i
\(320\) 0.0989432 0.0571249i 0.00553110 0.00319338i
\(321\) 0 0
\(322\) −14.3528 3.05078i −0.799850 0.170013i
\(323\) −0.515471 0.167487i −0.0286816 0.00931920i
\(324\) 0 0
\(325\) −1.65524 + 2.27825i −0.0918165 + 0.126375i
\(326\) −2.98052 3.31020i −0.165076 0.183335i
\(327\) 0 0
\(328\) −10.0197 4.46108i −0.553248 0.246322i
\(329\) −18.0078 31.1904i −0.992800 1.71958i
\(330\) 0 0
\(331\) −7.20722 + 12.4833i −0.396145 + 0.686142i −0.993247 0.116023i \(-0.962985\pi\)
0.597102 + 0.802165i \(0.296319\pi\)
\(332\) 5.37337 3.90398i 0.294902 0.214259i
\(333\) 0 0
\(334\) 1.57969 4.86179i 0.0864369 0.266025i
\(335\) −0.261984 0.588425i −0.0143137 0.0321491i
\(336\) 0 0
\(337\) −1.60984 7.57372i −0.0876938 0.412567i −0.999995 0.00304781i \(-0.999030\pi\)
0.912302 0.409519i \(-0.134303\pi\)
\(338\) −5.14579 + 5.71498i −0.279894 + 0.310854i
\(339\) 0 0
\(340\) −0.439431 0.253705i −0.0238315 0.0137591i
\(341\) 4.20419 + 4.02226i 0.227670 + 0.217818i
\(342\) 0 0
\(343\) 26.9014 + 37.0266i 1.45254 + 1.99925i
\(344\) 0.198589 0.934287i 0.0107072 0.0503734i
\(345\) 0 0
\(346\) −0.442036 + 4.20569i −0.0237640 + 0.226099i
\(347\) 0.905345 8.61378i 0.0486014 0.462412i −0.942973 0.332870i \(-0.891983\pi\)
0.991574 0.129541i \(-0.0413505\pi\)
\(348\) 0 0
\(349\) −3.48542 + 16.3976i −0.186570 + 0.877745i 0.780879 + 0.624682i \(0.214771\pi\)
−0.967450 + 0.253063i \(0.918562\pi\)
\(350\) 6.00066 + 8.25920i 0.320749 + 0.441473i
\(351\) 0 0
\(352\) 3.33549 + 18.4145i 0.177782 + 0.981495i
\(353\) −10.1385 5.85345i −0.539617 0.311548i 0.205307 0.978698i \(-0.434181\pi\)
−0.744924 + 0.667150i \(0.767514\pi\)
\(354\) 0 0
\(355\) 10.0990 11.2160i 0.535998 0.595286i
\(356\) 4.52443 + 21.2858i 0.239794 + 1.12814i
\(357\) 0 0
\(358\) 1.83133 + 4.11323i 0.0967887 + 0.217391i
\(359\) −5.55436 + 17.0946i −0.293148 + 0.902217i 0.690689 + 0.723152i \(0.257307\pi\)
−0.983837 + 0.179065i \(0.942693\pi\)
\(360\) 0 0
\(361\) −11.4810 + 8.34140i −0.604261 + 0.439021i
\(362\) −0.148089 + 0.256498i −0.00778339 + 0.0134812i
\(363\) 0 0
\(364\) 3.25357 + 5.63535i 0.170534 + 0.295373i
\(365\) 4.71986 + 2.10142i 0.247049 + 0.109993i
\(366\) 0 0
\(367\) −18.3798 20.4128i −0.959418 1.06554i −0.997801 0.0662788i \(-0.978887\pi\)
0.0383829 0.999263i \(-0.487779\pi\)
\(368\) 5.15233 7.09157i 0.268584 0.369674i
\(369\) 0 0
\(370\) 0.262500 + 0.0852915i 0.0136467 + 0.00443409i
\(371\) 56.0300 + 11.9095i 2.90893 + 0.618312i
\(372\) 0 0
\(373\) −14.6976 + 8.48568i −0.761015 + 0.439372i −0.829660 0.558269i \(-0.811466\pi\)
0.0686452 + 0.997641i \(0.478132\pi\)
\(374\) 0.390988 0.331193i 0.0202175 0.0171256i
\(375\) 0 0
\(376\) −16.6871 + 1.75388i −0.860571 + 0.0904497i
\(377\) −6.17089 + 2.00505i −0.317817 + 0.103265i
\(378\) 0 0
\(379\) 12.4374 + 9.03634i 0.638869 + 0.464165i 0.859461 0.511201i \(-0.170799\pi\)
−0.220593 + 0.975366i \(0.570799\pi\)
\(380\) 4.11269 1.83109i 0.210976 0.0939327i
\(381\) 0 0
\(382\) −0.0188588 0.0169805i −0.000964898 0.000868798i
\(383\) −3.37198 + 7.57359i −0.172300 + 0.386993i −0.978968 0.204012i \(-0.934602\pi\)
0.806668 + 0.591005i \(0.201268\pi\)
\(384\) 0 0
\(385\) −19.6690 + 5.73928i −1.00243 + 0.292501i
\(386\) 7.02414i 0.357519i
\(387\) 0 0
\(388\) 3.95316 + 12.1666i 0.200691 + 0.617665i
\(389\) 18.7155 16.8515i 0.948912 0.854405i −0.0405525 0.999177i \(-0.512912\pi\)
0.989465 + 0.144773i \(0.0462451\pi\)
\(390\) 0 0
\(391\) −1.19154 0.125236i −0.0602589 0.00633347i
\(392\) 36.3038 7.71662i 1.83362 0.389748i
\(393\) 0 0
\(394\) 1.36003 + 12.9398i 0.0685173 + 0.651899i
\(395\) 2.82307 0.142044
\(396\) 0 0
\(397\) −26.0948 −1.30966 −0.654830 0.755776i \(-0.727260\pi\)
−0.654830 + 0.755776i \(0.727260\pi\)
\(398\) 0.941605 + 8.95878i 0.0471984 + 0.449063i
\(399\) 0 0
\(400\) −5.96537 + 1.26798i −0.298269 + 0.0633990i
\(401\) −4.20361 0.441818i −0.209918 0.0220633i −0.00101451 0.999999i \(-0.500323\pi\)
−0.208904 + 0.977936i \(0.566990\pi\)
\(402\) 0 0
\(403\) 1.08858 0.980164i 0.0542262 0.0488255i
\(404\) 2.68277 + 8.25672i 0.133473 + 0.410787i
\(405\) 0 0
\(406\) 23.5222i 1.16739i
\(407\) 0.702543 0.907900i 0.0348238 0.0450029i
\(408\) 0 0
\(409\) 10.2885 23.1083i 0.508733 1.14263i −0.458488 0.888700i \(-0.651609\pi\)
0.967222 0.253933i \(-0.0817244\pi\)
\(410\) −2.88091 2.59398i −0.142278 0.128108i
\(411\) 0 0
\(412\) −24.1942 + 10.7719i −1.19196 + 0.530696i
\(413\) 20.5807 + 14.9527i 1.01271 + 0.735775i
\(414\) 0 0
\(415\) 5.00743 1.62701i 0.245805 0.0798669i
\(416\) 4.68563 0.492480i 0.229732 0.0241458i
\(417\) 0 0
\(418\) 0.338250 + 4.53362i 0.0165443 + 0.221746i
\(419\) −13.4153 + 7.74533i −0.655381 + 0.378384i −0.790515 0.612443i \(-0.790187\pi\)
0.135134 + 0.990827i \(0.456854\pi\)
\(420\) 0 0
\(421\) 28.3961 + 6.03577i 1.38394 + 0.294165i 0.838919 0.544257i \(-0.183188\pi\)
0.545021 + 0.838422i \(0.316522\pi\)
\(422\) −10.8059 3.51104i −0.526021 0.170915i
\(423\) 0 0
\(424\) 15.6860 21.5899i 0.761778 1.04850i
\(425\) 0.557769 + 0.619466i 0.0270558 + 0.0300485i
\(426\) 0 0
\(427\) 61.6493 + 27.4481i 2.98342 + 1.32830i
\(428\) −1.83590 3.17988i −0.0887417 0.153705i
\(429\) 0 0
\(430\) 0.168801 0.292372i 0.00814032 0.0140994i
\(431\) 3.88324 2.82134i 0.187049 0.135899i −0.490320 0.871542i \(-0.663120\pi\)
0.677369 + 0.735643i \(0.263120\pi\)
\(432\) 0 0
\(433\) 8.34981 25.6981i 0.401266 1.23497i −0.522706 0.852513i \(-0.675078\pi\)
0.923973 0.382458i \(-0.124922\pi\)
\(434\) −2.15992 4.85127i −0.103680 0.232868i
\(435\) 0 0
\(436\) −2.97762 14.0086i −0.142602 0.670891i
\(437\) 7.11282 7.89959i 0.340252 0.377889i
\(438\) 0 0
\(439\) −27.6193 15.9460i −1.31820 0.761061i −0.334758 0.942304i \(-0.608654\pi\)
−0.983438 + 0.181243i \(0.941988\pi\)
\(440\) −1.28444 + 9.45877i −0.0612334 + 0.450929i
\(441\) 0 0
\(442\) −0.0758259 0.104365i −0.00360667 0.00496416i
\(443\) −2.32617 + 10.9438i −0.110520 + 0.519954i 0.887706 + 0.460410i \(0.152298\pi\)
−0.998226 + 0.0595433i \(0.981036\pi\)
\(444\) 0 0
\(445\) −1.80318 + 17.1561i −0.0854790 + 0.813278i
\(446\) 0.0492964 0.469024i 0.00233425 0.0222089i
\(447\) 0 0
\(448\) −0.0901707 + 0.424220i −0.00426017 + 0.0200425i
\(449\) −14.9366 20.5585i −0.704903 0.970216i −0.999892 0.0147150i \(-0.995316\pi\)
0.294989 0.955501i \(-0.404684\pi\)
\(450\) 0 0
\(451\) −14.2010 + 7.63587i −0.668699 + 0.359559i
\(452\) 10.0917 + 5.82646i 0.474675 + 0.274054i
\(453\) 0 0
\(454\) 6.95070 7.71953i 0.326212 0.362296i
\(455\) 1.07248 + 5.04562i 0.0502786 + 0.236542i
\(456\) 0 0
\(457\) −6.07199 13.6379i −0.284036 0.637955i 0.714030 0.700115i \(-0.246868\pi\)
−0.998066 + 0.0621597i \(0.980201\pi\)
\(458\) 4.24914 13.0775i 0.198549 0.611072i
\(459\) 0 0
\(460\) 8.05102 5.84941i 0.375381 0.272730i
\(461\) 6.50819 11.2725i 0.303117 0.525013i −0.673724 0.738983i \(-0.735306\pi\)
0.976840 + 0.213970i \(0.0686395\pi\)
\(462\) 0 0
\(463\) 2.01632 + 3.49236i 0.0937062 + 0.162304i 0.909068 0.416648i \(-0.136795\pi\)
−0.815362 + 0.578952i \(0.803462\pi\)
\(464\) −12.8369 5.71538i −0.595940 0.265330i
\(465\) 0 0
\(466\) 6.46775 + 7.18317i 0.299613 + 0.332754i
\(467\) −24.7492 + 34.0643i −1.14525 + 1.57631i −0.390085 + 0.920779i \(0.627554\pi\)
−0.755170 + 0.655529i \(0.772446\pi\)
\(468\) 0 0
\(469\) 2.32540 + 0.755569i 0.107377 + 0.0348889i
\(470\) −5.80097 1.23303i −0.267579 0.0568756i
\(471\) 0 0
\(472\) 10.2638 5.92582i 0.472430 0.272758i
\(473\) −0.907575 1.07143i −0.0417303 0.0492644i
\(474\) 0 0
\(475\) −7.35519 + 0.773062i −0.337479 + 0.0354705i
\(476\) 1.83188 0.595214i 0.0839641 0.0272816i
\(477\) 0 0
\(478\) −9.51213 6.91097i −0.435075 0.316100i
\(479\) −6.79274 + 3.02432i −0.310368 + 0.138185i −0.556009 0.831176i \(-0.687668\pi\)
0.245641 + 0.969361i \(0.421001\pi\)
\(480\) 0 0
\(481\) −0.214779 0.193387i −0.00979306 0.00881771i
\(482\) −3.95813 + 8.89010i −0.180288 + 0.404933i
\(483\) 0 0
\(484\) 15.7067 + 8.16461i 0.713940 + 0.371119i
\(485\) 10.1410i 0.460480i
\(486\) 0 0
\(487\) 4.00699 + 12.3322i 0.181574 + 0.558827i 0.999873 0.0159664i \(-0.00508249\pi\)
−0.818299 + 0.574793i \(0.805082\pi\)
\(488\) 23.3641 21.0371i 1.05764 0.952305i
\(489\) 0 0
\(490\) 13.0464 + 1.37124i 0.589378 + 0.0619461i
\(491\) 31.4996 6.69545i 1.42156 0.302162i 0.567944 0.823067i \(-0.307739\pi\)
0.853614 + 0.520905i \(0.174406\pi\)
\(492\) 0 0
\(493\) 0.200760 + 1.91010i 0.00904176 + 0.0860266i
\(494\) 1.14455 0.0514957
\(495\) 0 0
\(496\) 3.17233 0.142442
\(497\) 5.98869 + 56.9786i 0.268630 + 2.55584i
\(498\) 0 0
\(499\) 25.3022 5.37816i 1.13268 0.240759i 0.396825 0.917894i \(-0.370112\pi\)
0.735859 + 0.677135i \(0.236779\pi\)
\(500\) −17.0943 1.79669i −0.764482 0.0803503i
\(501\) 0 0
\(502\) −6.57652 + 5.92153i −0.293525 + 0.264291i
\(503\) 0.339066 + 1.04354i 0.0151182 + 0.0465290i 0.958331 0.285660i \(-0.0922128\pi\)
−0.943213 + 0.332189i \(0.892213\pi\)
\(504\) 0 0
\(505\) 6.88210i 0.306250i
\(506\) 2.81501 + 9.64727i 0.125142 + 0.428874i
\(507\) 0 0
\(508\) 1.88508 4.23396i 0.0836369 0.187852i
\(509\) −5.20389 4.68561i −0.230658 0.207686i 0.545695 0.837984i \(-0.316266\pi\)
−0.776353 + 0.630298i \(0.782933\pi\)
\(510\) 0 0
\(511\) −17.9168 + 7.97708i −0.792593 + 0.352885i
\(512\) 14.8558 + 10.7934i 0.656539 + 0.477003i
\(513\) 0 0
\(514\) −8.84890 + 2.87518i −0.390308 + 0.126819i
\(515\) −20.8793 + 2.19450i −0.920050 + 0.0967012i
\(516\) 0 0
\(517\) −12.9736 + 20.9790i −0.570579 + 0.922653i
\(518\) −0.907371 + 0.523871i −0.0398676 + 0.0230176i
\(519\) 0 0
\(520\) 2.35067 + 0.499650i 0.103084 + 0.0219111i
\(521\) 7.27467 + 2.36368i 0.318709 + 0.103555i 0.464003 0.885834i \(-0.346413\pi\)
−0.145294 + 0.989389i \(0.546413\pi\)
\(522\) 0 0
\(523\) −18.3418 + 25.2453i −0.802029 + 1.10390i 0.190476 + 0.981692i \(0.438997\pi\)
−0.992505 + 0.122206i \(0.961003\pi\)
\(524\) 0.606637 + 0.673739i 0.0265011 + 0.0294324i
\(525\) 0 0
\(526\) −13.6486 6.07674i −0.595106 0.264958i
\(527\) −0.216799 0.375508i −0.00944393 0.0163574i
\(528\) 0 0
\(529\) 0.248947 0.431189i 0.0108238 0.0187473i
\(530\) 7.63097 5.54423i 0.331468 0.240826i
\(531\) 0 0
\(532\) −5.28091 + 16.2530i −0.228956 + 0.704656i
\(533\) 1.65106 + 3.70835i 0.0715155 + 0.160626i
\(534\) 0 0
\(535\) −0.605171 2.84711i −0.0261638 0.123091i
\(536\) 0.762218 0.846529i 0.0329228 0.0365645i
\(537\) 0 0
\(538\) −4.26107 2.46013i −0.183708 0.106064i
\(539\) 23.6896 49.1506i 1.02038 2.11707i
\(540\) 0 0
\(541\) −16.7402 23.0409i −0.719717 0.990605i −0.999533 0.0305514i \(-0.990274\pi\)
0.279817 0.960053i \(-0.409726\pi\)
\(542\) 0.639346 3.00789i 0.0274623 0.129200i
\(543\) 0 0
\(544\) 0.145777 1.38697i 0.00625013 0.0594661i
\(545\) 1.18671 11.2908i 0.0508331 0.483645i
\(546\) 0 0
\(547\) 8.39019 39.4727i 0.358739 1.68773i −0.315265 0.949004i \(-0.602093\pi\)
0.674003 0.738729i \(-0.264573\pi\)
\(548\) −4.39118 6.04394i −0.187582 0.258185i
\(549\) 0 0
\(550\) 3.03575 6.29851i 0.129445 0.268569i
\(551\) −14.7573 8.52016i −0.628684 0.362971i
\(552\) 0 0
\(553\) −7.17073 + 7.96390i −0.304930 + 0.338659i
\(554\) 3.43213 + 16.1469i 0.145817 + 0.686016i
\(555\) 0 0
\(556\) 6.87820 + 15.4487i 0.291701 + 0.655171i
\(557\) 5.23145 16.1007i 0.221664 0.682211i −0.776950 0.629563i \(-0.783234\pi\)
0.998613 0.0526476i \(-0.0167660\pi\)
\(558\) 0 0
\(559\) −0.285994 + 0.207787i −0.0120963 + 0.00878845i
\(560\) −5.58560 + 9.67455i −0.236035 + 0.408824i
\(561\) 0 0
\(562\) −4.96742 8.60382i −0.209538 0.362930i
\(563\) −21.2668 9.46858i −0.896288 0.399053i −0.0937095 0.995600i \(-0.529872\pi\)
−0.802579 + 0.596546i \(0.796539\pi\)
\(564\) 0 0
\(565\) 6.18109 + 6.86480i 0.260041 + 0.288804i
\(566\) −4.04544 + 5.56807i −0.170042 + 0.234043i
\(567\) 0 0
\(568\) 25.3852 + 8.24815i 1.06514 + 0.346085i
\(569\) −22.2560 4.73066i −0.933020 0.198320i −0.283768 0.958893i \(-0.591585\pi\)
−0.649252 + 0.760573i \(0.724918\pi\)
\(570\) 0 0
\(571\) −25.0248 + 14.4481i −1.04726 + 0.604634i −0.921880 0.387475i \(-0.873347\pi\)
−0.125377 + 0.992109i \(0.540014\pi\)
\(572\) 2.34402 3.79040i 0.0980085 0.158484i
\(573\) 0 0
\(574\) 14.6353 1.53823i 0.610866 0.0642046i
\(575\) −15.5483 + 5.05196i −0.648410 + 0.210681i
\(576\) 0 0
\(577\) 25.9942 + 18.8859i 1.08215 + 0.786229i 0.978057 0.208339i \(-0.0668056\pi\)
0.104094 + 0.994567i \(0.466806\pi\)
\(578\) 9.67282 4.30662i 0.402336 0.179132i
\(579\) 0 0
\(580\) −11.8553 10.6746i −0.492265 0.443238i
\(581\) −8.12930 + 18.2587i −0.337260 + 0.757499i
\(582\) 0 0
\(583\) −10.9891 37.6607i −0.455124 1.55975i
\(584\) 9.13707i 0.378095i
\(585\) 0 0
\(586\) −2.73676 8.42287i −0.113054 0.347945i
\(587\) −2.75704 + 2.48245i −0.113795 + 0.102462i −0.724064 0.689733i \(-0.757728\pi\)
0.610269 + 0.792194i \(0.291061\pi\)
\(588\) 0 0
\(589\) 3.82594 + 0.402123i 0.157645 + 0.0165692i
\(590\) 4.09744 0.870937i 0.168689 0.0358559i
\(591\) 0 0
\(592\) −0.0654247 0.622474i −0.00268894 0.0255835i
\(593\) −38.2706 −1.57159 −0.785793 0.618490i \(-0.787745\pi\)
−0.785793 + 0.618490i \(0.787745\pi\)
\(594\) 0 0
\(595\) 1.52690 0.0625968
\(596\) −2.56102 24.3665i −0.104903 0.998090i
\(597\) 0 0
\(598\) 2.47478 0.526031i 0.101201 0.0215110i
\(599\) −12.4319 1.30664i −0.507953 0.0533880i −0.152914 0.988240i \(-0.548866\pi\)
−0.355039 + 0.934852i \(0.615532\pi\)
\(600\) 0 0
\(601\) −16.9896 + 15.2975i −0.693021 + 0.623998i −0.938450 0.345416i \(-0.887738\pi\)
0.245429 + 0.969415i \(0.421071\pi\)
\(602\) 0.396022 + 1.21883i 0.0161406 + 0.0496758i
\(603\) 0 0
\(604\) 12.2970i 0.500356i
\(605\) 9.84156 + 10.0030i 0.400116 + 0.406682i
\(606\) 0 0
\(607\) 12.3631 27.7681i 0.501805 1.12707i −0.468120 0.883665i \(-0.655068\pi\)
0.969924 0.243407i \(-0.0782650\pi\)
\(608\) 9.19525 + 8.27944i 0.372916 + 0.335775i
\(609\) 0 0
\(610\) 10.1516 4.51979i 0.411026 0.183001i
\(611\) 5.02398 + 3.65013i 0.203248 + 0.147669i
\(612\) 0 0
\(613\) 1.41405 0.459451i 0.0571128 0.0185571i −0.280321 0.959906i \(-0.590441\pi\)
0.337434 + 0.941349i \(0.390441\pi\)
\(614\) 7.17324 0.753938i 0.289488 0.0304265i
\(615\) 0 0
\(616\) −23.4207 27.6492i −0.943649 1.11402i
\(617\) 29.1210 16.8130i 1.17237 0.676867i 0.218132 0.975919i \(-0.430004\pi\)
0.954237 + 0.299052i \(0.0966705\pi\)
\(618\) 0 0
\(619\) −2.76364 0.587430i −0.111080 0.0236108i 0.152036 0.988375i \(-0.451417\pi\)
−0.263116 + 0.964764i \(0.584750\pi\)
\(620\) 3.42525 + 1.11293i 0.137561 + 0.0446964i
\(621\) 0 0
\(622\) −10.0534 + 13.8373i −0.403103 + 0.554824i
\(623\) −43.8174 48.6642i −1.75551 1.94969i
\(624\) 0 0
\(625\) 2.95737 + 1.31671i 0.118295 + 0.0526683i
\(626\) 2.59710 + 4.49831i 0.103801 + 0.179789i
\(627\) 0 0
\(628\) −3.48413 + 6.03469i −0.139032 + 0.240810i
\(629\) −0.0692110 + 0.0502848i −0.00275962 + 0.00200498i
\(630\) 0 0
\(631\) 2.32895 7.16777i 0.0927140 0.285344i −0.893937 0.448192i \(-0.852068\pi\)
0.986651 + 0.162848i \(0.0520680\pi\)
\(632\) 2.03068 + 4.56099i 0.0807762 + 0.181426i
\(633\) 0 0
\(634\) −1.97465 9.28998i −0.0784232 0.368952i
\(635\) 2.45837 2.73030i 0.0975574 0.108348i
\(636\) 0 0
\(637\) −11.8960 6.86818i −0.471338 0.272127i
\(638\) 14.1889 7.62935i 0.561743 0.302049i
\(639\) 0 0
\(640\) 8.50394 + 11.7047i 0.336148 + 0.462668i
\(641\) 4.00545 18.8441i 0.158206 0.744299i −0.825484 0.564425i \(-0.809098\pi\)
0.983690 0.179874i \(-0.0575689\pi\)
\(642\) 0 0
\(643\) 1.96220 18.6691i 0.0773816 0.736237i −0.885194 0.465222i \(-0.845974\pi\)
0.962575 0.271014i \(-0.0873590\pi\)
\(644\) −3.94874 + 37.5698i −0.155602 + 1.48046i
\(645\) 0 0
\(646\) 0.0704391 0.331390i 0.00277139 0.0130384i
\(647\) 1.43599 + 1.97647i 0.0564545 + 0.0777030i 0.836311 0.548256i \(-0.184708\pi\)
−0.779856 + 0.625959i \(0.784708\pi\)
\(648\) 0 0
\(649\) 2.34439 17.2643i 0.0920254 0.677685i
\(650\) −1.52444 0.880138i −0.0597936 0.0345219i
\(651\) 0 0
\(652\) −7.67332 + 8.52209i −0.300511 + 0.333751i
\(653\) 4.15170 + 19.5322i 0.162469 + 0.764355i 0.981630 + 0.190792i \(0.0611057\pi\)
−0.819162 + 0.573563i \(0.805561\pi\)
\(654\) 0 0
\(655\) 0.292315 + 0.656550i 0.0114217 + 0.0256535i
\(656\) −2.71658 + 8.36077i −0.106065 + 0.326433i
\(657\) 0 0
\(658\) 18.2131 13.2326i 0.710022 0.515861i
\(659\) 17.8420 30.9032i 0.695024 1.20382i −0.275148 0.961402i \(-0.588727\pi\)
0.970172 0.242416i \(-0.0779398\pi\)
\(660\) 0 0
\(661\) 4.45874 + 7.72277i 0.173425 + 0.300381i 0.939615 0.342233i \(-0.111183\pi\)
−0.766190 + 0.642614i \(0.777850\pi\)
\(662\) −8.23124 3.66478i −0.319916 0.142436i
\(663\) 0 0
\(664\) 6.23056 + 6.91974i 0.241793 + 0.268538i
\(665\) −7.96278 + 10.9598i −0.308783 + 0.425004i
\(666\) 0 0
\(667\) −35.8246 11.6401i −1.38714 0.450708i
\(668\) −12.8732 2.73628i −0.498079 0.105870i
\(669\) 0 0
\(670\) 0.348681 0.201311i 0.0134707 0.00777733i
\(671\) −3.43876 46.0902i −0.132752 1.77929i
\(672\) 0 0
\(673\) 10.8735 1.14285i 0.419142 0.0440536i 0.107390 0.994217i \(-0.465751\pi\)
0.311752 + 0.950163i \(0.399084\pi\)
\(674\) 4.60308 1.49563i 0.177304 0.0576096i
\(675\) 0 0
\(676\) 16.0174 + 11.6373i 0.616052 + 0.447588i
\(677\) −21.7120 + 9.66682i −0.834461 + 0.371526i −0.779069 0.626939i \(-0.784308\pi\)
−0.0553924 + 0.998465i \(0.517641\pi\)
\(678\) 0 0
\(679\) −28.6079 25.7587i −1.09787 0.988528i
\(680\) 0.289335 0.649856i 0.0110955 0.0249208i
\(681\) 0 0
\(682\) −2.22577 + 2.87638i −0.0852293 + 0.110142i
\(683\) 24.2759i 0.928892i 0.885602 + 0.464446i \(0.153746\pi\)
−0.885602 + 0.464446i \(0.846254\pi\)
\(684\) 0 0
\(685\) −1.83006 5.63234i −0.0699229 0.215201i
\(686\) −21.2602 + 19.1428i −0.811717 + 0.730874i
\(687\) 0 0
\(688\) −0.761384 0.0800247i −0.0290275 0.00305091i
\(689\) −9.66097 + 2.05350i −0.368054 + 0.0782322i
\(690\) 0 0
\(691\) 3.41070 + 32.4506i 0.129749 + 1.23448i 0.844675 + 0.535280i \(0.179794\pi\)
−0.714926 + 0.699200i \(0.753540\pi\)
\(692\) 10.8872 0.413868
\(693\) 0 0
\(694\) 5.41398 0.205512
\(695\) 1.40125 + 13.3320i 0.0531525 + 0.505712i
\(696\) 0 0
\(697\) 1.17532 0.249821i 0.0445183 0.00946266i
\(698\) −10.4215 1.09534i −0.394458 0.0414592i
\(699\) 0 0
\(700\) 19.5320 17.5867i 0.738239 0.664713i
\(701\) −11.0658 34.0571i −0.417951 1.28632i −0.909585 0.415518i \(-0.863600\pi\)
0.491634 0.870802i \(-0.336400\pi\)
\(702\) 0 0
\(703\) 0.759020i 0.0286270i
\(704\) 0.285141 0.0832021i 0.0107466 0.00313580i
\(705\) 0 0
\(706\) 2.97641 6.68513i 0.112019 0.251598i
\(707\) −19.4145 17.4809i −0.730157 0.657436i
\(708\) 0 0
\(709\) 3.35991 1.49593i 0.126184 0.0561807i −0.342673 0.939455i \(-0.611332\pi\)
0.468857 + 0.883274i \(0.344666\pi\)
\(710\) 7.63240 + 5.54527i 0.286439 + 0.208110i
\(711\) 0 0
\(712\) −29.0147 + 9.42746i −1.08737 + 0.353309i
\(713\) 8.45739 0.888907i 0.316732 0.0332898i
\(714\) 0 0
\(715\) 2.69572 2.28346i 0.100814 0.0853966i
\(716\) 10.0387 5.79582i 0.375162 0.216600i
\(717\) 0 0
\(718\) −10.9899 2.33597i −0.410139 0.0871778i
\(719\) −12.2052 3.96571i −0.455177 0.147896i 0.0724502 0.997372i \(-0.476918\pi\)
−0.527627 + 0.849476i \(0.676918\pi\)
\(720\) 0 0
\(721\) 46.8436 64.4747i 1.74455 2.40116i
\(722\) −5.93565 6.59221i −0.220902 0.245337i
\(723\) 0 0
\(724\) 0.696587 + 0.310140i 0.0258884 + 0.0115263i
\(725\) 13.1037 + 22.6963i 0.486659 + 0.842918i
\(726\) 0 0
\(727\) 20.9562 36.2973i 0.777224 1.34619i −0.156312 0.987708i \(-0.549961\pi\)
0.933536 0.358484i \(-0.116706\pi\)
\(728\) −7.38033 + 5.36212i −0.273533 + 0.198733i
\(729\) 0 0
\(730\) −0.997974 + 3.07145i −0.0369367 + 0.113679i
\(731\) 0.0425611 + 0.0955939i 0.00157418 + 0.00353567i
\(732\) 0 0
\(733\) 5.40762 + 25.4408i 0.199735 + 0.939679i 0.957786 + 0.287483i \(0.0928186\pi\)
−0.758051 + 0.652196i \(0.773848\pi\)
\(734\) 11.4889 12.7597i 0.424063 0.470970i
\(735\) 0 0
\(736\) 23.6875 + 13.6760i 0.873131 + 0.504102i
\(737\) −0.298468 1.64777i −0.0109942 0.0606966i
\(738\) 0 0
\(739\) −17.3756 23.9154i −0.639171 0.879744i 0.359400 0.933184i \(-0.382981\pi\)
−0.998571 + 0.0534398i \(0.982981\pi\)
\(740\) 0.147739 0.695056i 0.00543098 0.0255508i
\(741\) 0 0
\(742\) −3.74272 + 35.6096i −0.137400 + 1.30727i
\(743\) −1.56007 + 14.8431i −0.0572334 + 0.544539i 0.927910 + 0.372805i \(0.121604\pi\)
−0.985143 + 0.171735i \(0.945063\pi\)
\(744\) 0 0
\(745\) 4.03810 18.9978i 0.147945 0.696024i
\(746\) −6.23552 8.58246i −0.228299 0.314226i
\(747\) 0 0
\(748\) −0.953203 0.911955i −0.0348525 0.0333444i
\(749\) 9.56888 + 5.52460i 0.349639 + 0.201864i
\(750\) 0 0
\(751\) −12.1248 + 13.4659i −0.442439 + 0.491378i −0.922576 0.385815i \(-0.873920\pi\)
0.480137 + 0.877194i \(0.340587\pi\)
\(752\) 2.79614 + 13.1548i 0.101965 + 0.479706i
\(753\) 0 0
\(754\) −1.64965 3.70518i −0.0600768 0.134935i
\(755\) −3.01231 + 9.27095i −0.109629 + 0.337404i
\(756\) 0 0
\(757\) 5.28836 3.84222i 0.192209 0.139648i −0.487519 0.873112i \(-0.662098\pi\)
0.679728 + 0.733465i \(0.262098\pi\)
\(758\) −4.80486 + 8.32227i −0.174520 + 0.302278i
\(759\) 0 0
\(760\) 3.15568 + 5.46580i 0.114469 + 0.198265i
\(761\) 29.7819 + 13.2597i 1.07959 + 0.480665i 0.867934 0.496679i \(-0.165447\pi\)
0.211657 + 0.977344i \(0.432114\pi\)
\(762\) 0 0
\(763\) 28.8372 + 32.0269i 1.04398 + 1.15945i
\(764\) −0.0384017 + 0.0528554i −0.00138932 + 0.00191224i
\(765\) 0 0
\(766\) −4.92851 1.60137i −0.178074 0.0578598i
\(767\) −4.29049 0.911971i −0.154920 0.0329294i
\(768\) 0 0
\(769\) −34.9046 + 20.1522i −1.25869 + 0.726707i −0.972821 0.231560i \(-0.925617\pi\)
−0.285873 + 0.958268i \(0.592284\pi\)
\(770\) −4.85302 11.8524i −0.174891 0.427131i
\(771\) 0 0
\(772\) −17.9845 + 1.89025i −0.647278 + 0.0680316i
\(773\) 9.02009 2.93080i 0.324430 0.105414i −0.142274 0.989827i \(-0.545441\pi\)
0.466704 + 0.884414i \(0.345441\pi\)
\(774\) 0 0
\(775\) −4.78661 3.47767i −0.171940 0.124922i
\(776\) −16.3840 + 7.29463i −0.588151 + 0.261862i
\(777\) 0 0
\(778\) 11.6987 + 10.5336i 0.419419 + 0.377647i
\(779\) −4.33610 + 9.73905i −0.155357 + 0.348938i
\(780\) 0 0
\(781\) 32.4277 22.0932i 1.16035 0.790558i
\(782\) 0.748915i 0.0267812i
\(783\) 0 0
\(784\) −9.19272 28.2923i −0.328311 1.01044i
\(785\) −4.10504 + 3.69620i −0.146515 + 0.131923i
\(786\) 0 0
\(787\) 41.0059 + 4.30989i 1.46170 + 0.153631i 0.801742 0.597670i \(-0.203907\pi\)
0.659959 + 0.751301i \(0.270574\pi\)
\(788\) 32.7650 6.96442i 1.16721 0.248097i
\(789\) 0 0
\(790\) 0.184456 + 1.75498i 0.00656265 + 0.0624395i
\(791\) −35.0659 −1.24680
\(792\) 0 0
\(793\) −11.6359 −0.413202
\(794\) −1.70501 16.2221i −0.0605084 0.575699i
\(795\) 0 0
\(796\) 22.6846 4.82176i 0.804034 0.170903i
\(797\) −12.7001 1.33483i −0.449861 0.0472823i −0.123110 0.992393i \(-0.539287\pi\)
−0.326750 + 0.945111i \(0.605954\pi\)
\(798\) 0 0
\(799\) 1.36604 1.22999i 0.0483271 0.0435139i
\(800\) −5.88056 18.0985i −0.207909 0.639878i
\(801\) 0 0
\(802\) 2.64208i 0.0932950i
\(803\) 10.6231 + 8.22028i 0.374881 + 0.290087i
\(804\) 0 0
\(805\) −12.1803 + 27.3574i −0.429298 + 0.964220i
\(806\) 0.680454 + 0.612684i 0.0239680 + 0.0215809i
\(807\) 0 0
\(808\) −11.1188 + 4.95042i −0.391159 + 0.174155i
\(809\) 33.5935 + 24.4071i 1.18108 + 0.858107i 0.992293 0.123910i \(-0.0395435\pi\)
0.188790 + 0.982017i \(0.439543\pi\)
\(810\) 0 0
\(811\) 5.10222 1.65781i 0.179163 0.0582137i −0.218061 0.975935i \(-0.569973\pi\)
0.397225 + 0.917721i \(0.369973\pi\)
\(812\) 60.2262 6.33002i 2.11352 0.222140i
\(813\) 0 0
\(814\) 0.610307 + 0.377421i 0.0213913 + 0.0132286i
\(815\) −7.87269 + 4.54530i −0.275768 + 0.159215i
\(816\) 0 0
\(817\) −0.908113 0.193025i −0.0317709 0.00675310i
\(818\) 15.0377 + 4.88605i 0.525782 + 0.170837i
\(819\) 0 0
\(820\) −5.86634 + 8.07432i −0.204861 + 0.281968i
\(821\) 21.3407 + 23.7013i 0.744797 + 0.827181i 0.989818 0.142337i \(-0.0454617\pi\)
−0.245022 + 0.969518i \(0.578795\pi\)
\(822\) 0 0
\(823\) −23.8606 10.6234i −0.831727 0.370309i −0.0537135 0.998556i \(-0.517106\pi\)
−0.778013 + 0.628248i \(0.783772\pi\)
\(824\) −18.5643 32.1543i −0.646718 1.12015i
\(825\) 0 0
\(826\) −7.95077 + 13.7711i −0.276643 + 0.479159i
\(827\) 31.8832 23.1645i 1.10869 0.805508i 0.126231 0.992001i \(-0.459712\pi\)
0.982456 + 0.186493i \(0.0597120\pi\)
\(828\) 0 0
\(829\) −10.5153 + 32.3627i −0.365211 + 1.12400i 0.584638 + 0.811294i \(0.301237\pi\)
−0.949849 + 0.312710i \(0.898763\pi\)
\(830\) 1.33863 + 3.00660i 0.0464644 + 0.104361i
\(831\) 0 0
\(832\) −0.0155477 0.0731461i −0.000539019 0.00253589i
\(833\) −2.72072 + 3.02166i −0.0942672 + 0.104694i
\(834\) 0 0
\(835\) −9.03509 5.21641i −0.312672 0.180521i
\(836\) 11.5168 2.08609i 0.398317 0.0721488i
\(837\) 0 0
\(838\) −5.69149 7.83367i −0.196609 0.270610i
\(839\) −11.8515 + 55.7569i −0.409159 + 1.92494i −0.0301584 + 0.999545i \(0.509601\pi\)
−0.379001 + 0.925396i \(0.623732\pi\)
\(840\) 0 0
\(841\) −3.28052 + 31.2121i −0.113122 + 1.07628i
\(842\) −1.89682 + 18.0470i −0.0653687 + 0.621941i
\(843\) 0 0
\(844\) −6.08169 + 28.6121i −0.209340 + 0.984869i
\(845\) 9.22511 + 12.6973i 0.317353 + 0.436800i
\(846\) 0 0
\(847\) −53.2167 + 2.35493i −1.82855 + 0.0809163i
\(848\) −18.5241 10.6949i −0.636120 0.367264i
\(849\) 0 0
\(850\) −0.348652 + 0.387217i −0.0119587 + 0.0132814i
\(851\) −0.348843 1.64118i −0.0119582 0.0562588i
\(852\) 0 0
\(853\) 13.1547 + 29.5460i 0.450410 + 1.01164i 0.985937 + 0.167118i \(0.0534462\pi\)
−0.535527 + 0.844518i \(0.679887\pi\)
\(854\) −13.0352 + 40.1182i −0.446056 + 1.37282i
\(855\) 0 0
\(856\) 4.16452 3.02570i 0.142340 0.103416i
\(857\) 16.8286 29.1480i 0.574855 0.995678i −0.421202 0.906967i \(-0.638392\pi\)
0.996057 0.0887115i \(-0.0282749\pi\)
\(858\) 0 0
\(859\) 19.0213 + 32.9458i 0.648998 + 1.12410i 0.983363 + 0.181653i \(0.0581449\pi\)
−0.334365 + 0.942444i \(0.608522\pi\)
\(860\) −0.794013 0.353517i −0.0270756 0.0120548i
\(861\) 0 0
\(862\) 2.00763 + 2.22970i 0.0683803 + 0.0759440i
\(863\) −9.20216 + 12.6657i −0.313245 + 0.431145i −0.936390 0.350962i \(-0.885855\pi\)
0.623145 + 0.782107i \(0.285855\pi\)
\(864\) 0 0
\(865\) 8.20807 + 2.66696i 0.279083 + 0.0906795i
\(866\) 16.5210 + 3.51165i 0.561406 + 0.119331i
\(867\) 0 0
\(868\) −11.8399 + 6.83576i −0.401872 + 0.232021i
\(869\) 7.12971 + 1.74240i 0.241859 + 0.0591069i
\(870\) 0 0
\(871\) −0.419282 + 0.0440684i −0.0142068 + 0.00149320i
\(872\) 19.0952 6.20441i 0.646646 0.210108i
\(873\) 0 0
\(874\) 5.37559 + 3.90559i 0.181832 + 0.132109i
\(875\) 47.2519 21.0379i 1.59741 0.711211i
\(876\) 0 0
\(877\) −10.9549 9.86381i −0.369920 0.333077i 0.463115 0.886298i \(-0.346732\pi\)
−0.833034 + 0.553221i \(0.813398\pi\)
\(878\) 8.10835 18.2116i 0.273643 0.614613i
\(879\) 0 0
\(880\) 7.64746 + 0.231395i 0.257796 + 0.00780031i
\(881\) 29.1468i 0.981981i 0.871165 + 0.490990i \(0.163365\pi\)
−0.871165 + 0.490990i \(0.836635\pi\)
\(882\) 0 0
\(883\) 0.109578 + 0.337245i 0.00368758 + 0.0113492i 0.952883 0.303337i \(-0.0981008\pi\)
−0.949196 + 0.314686i \(0.898101\pi\)
\(884\) −0.246811 + 0.222230i −0.00830115 + 0.00747439i
\(885\) 0 0
\(886\) −6.95527 0.731028i −0.233667 0.0245594i
\(887\) 2.52234 0.536141i 0.0846920 0.0180018i −0.165371 0.986231i \(-0.552882\pi\)
0.250063 + 0.968230i \(0.419549\pi\)
\(888\) 0 0
\(889\) 1.45781 + 13.8702i 0.0488935 + 0.465190i
\(890\) −10.7831 −0.361449
\(891\) 0 0
\(892\) −1.21415 −0.0406528
\(893\) 1.70475 + 16.2196i 0.0570473 + 0.542769i
\(894\) 0 0
\(895\) 8.98812 1.91048i 0.300440 0.0638605i
\(896\) −54.6194 5.74073i −1.82471 0.191784i
\(897\) 0 0
\(898\) 11.8044 10.6287i 0.393919 0.354686i
\(899\) −4.21260 12.9651i −0.140498 0.432409i
\(900\) 0 0
\(901\) 2.92359i 0.0973989i
\(902\) −5.67478 8.32926i −0.188950 0.277334i
\(903\) 0 0
\(904\) −6.64470 + 14.9242i −0.220999 + 0.496373i
\(905\) 0.449198 + 0.404460i 0.0149319 + 0.0134447i
\(906\) 0 0
\(907\) 17.1306 7.62703i 0.568812 0.253251i −0.102118 0.994772i \(-0.532562\pi\)
0.670930 + 0.741521i \(0.265895\pi\)
\(908\) −21.6355 15.7191i −0.718000 0.521657i
\(909\) 0 0
\(910\) −3.06658 + 0.996391i −0.101656 + 0.0330301i
\(911\) −12.1823 + 1.28041i −0.403619 + 0.0424220i −0.304163 0.952620i \(-0.598377\pi\)
−0.0994555 + 0.995042i \(0.531710\pi\)
\(912\) 0 0
\(913\) 13.6506 1.01846i 0.451768 0.0337060i
\(914\) 8.08139 4.66579i 0.267309 0.154331i
\(915\) 0 0
\(916\) −34.6270 7.36020i −1.14411 0.243188i
\(917\) −2.59463 0.843046i −0.0856822 0.0278398i
\(918\) 0 0
\(919\) −14.4656 + 19.9102i −0.477175 + 0.656775i −0.977959 0.208797i \(-0.933045\pi\)
0.500784 + 0.865572i \(0.333045\pi\)
\(920\) 9.33537 + 10.3680i 0.307778 + 0.341822i
\(921\) 0 0
\(922\) 7.43289 + 3.30934i 0.244789 + 0.108987i
\(923\) −4.93933 8.55517i −0.162580 0.281597i
\(924\) 0 0
\(925\) −0.583673 + 1.01095i −0.0191910 + 0.0332399i
\(926\) −2.03931 + 1.48165i −0.0670160 + 0.0486899i
\(927\) 0 0
\(928\) 13.5493 41.7004i 0.444777 1.36888i
\(929\) −7.85739 17.6480i −0.257793 0.579012i 0.737563 0.675278i \(-0.235977\pi\)
−0.995356 + 0.0962666i \(0.969310\pi\)
\(930\) 0 0
\(931\) −7.50044 35.2868i −0.245817 1.15648i
\(932\) 16.6512 18.4930i 0.545428 0.605759i
\(933\) 0 0
\(934\) −22.7934 13.1598i −0.745824 0.430602i
\(935\) −0.495244 0.921043i −0.0161962 0.0301213i
\(936\) 0 0
\(937\) 29.8196 + 41.0432i 0.974165 + 1.34082i 0.939915 + 0.341409i \(0.110904\pi\)
0.0342499 + 0.999413i \(0.489096\pi\)
\(938\) −0.317767 + 1.49497i −0.0103754 + 0.0488126i
\(939\) 0 0
\(940\) −1.59596 + 15.1846i −0.0520546 + 0.495266i
\(941\) 3.15903 30.0561i 0.102981 0.979802i −0.813998 0.580867i \(-0.802713\pi\)
0.916979 0.398934i \(-0.130620\pi\)
\(942\) 0 0
\(943\) −4.89963 + 23.0509i −0.159554 + 0.750642i
\(944\) −5.58355 7.68510i −0.181729 0.250129i
\(945\) 0 0
\(946\) 0.606763 0.634207i 0.0197276 0.0206199i
\(947\) 9.86510 + 5.69562i 0.320573 + 0.185083i 0.651648 0.758522i \(-0.274078\pi\)
−0.331075 + 0.943604i \(0.607411\pi\)
\(948\) 0 0
\(949\) 2.26278 2.51307i 0.0734529 0.0815777i
\(950\) −0.961160 4.52190i −0.0311842 0.146710i
\(951\) 0 0
\(952\) 1.09833 + 2.46688i 0.0355970 + 0.0799521i
\(953\) 14.8543 45.7168i 0.481178 1.48091i −0.356263 0.934386i \(-0.615949\pi\)
0.837441 0.546527i \(-0.184051\pi\)
\(954\) 0 0
\(955\) −0.0418995 + 0.0304418i −0.00135584 + 0.000985073i
\(956\) −15.1350 + 26.2146i −0.489501 + 0.847840i
\(957\) 0 0
\(958\) −2.32392 4.02515i −0.0750826 0.130047i
\(959\) 20.5373 + 9.14381i 0.663185 + 0.295269i
\(960\) 0 0
\(961\) −18.6837 20.7504i −0.602701 0.669367i
\(962\) 0.106188 0.146155i 0.00342362 0.00471221i
\(963\) 0 0
\(964\) 23.8273 + 7.74196i 0.767426 + 0.249352i
\(965\) −14.0220 2.98046i −0.451383 0.0959445i
\(966\) 0 0
\(967\) 11.4552 6.61368i 0.368375 0.212681i −0.304373 0.952553i \(-0.598447\pi\)
0.672748 + 0.739871i \(0.265114\pi\)
\(968\) −9.08185 + 23.0955i −0.291902 + 0.742319i
\(969\) 0 0
\(970\) −6.30425 + 0.662604i −0.202417 + 0.0212749i
\(971\) −25.6742 + 8.34206i −0.823925 + 0.267710i −0.690484 0.723347i \(-0.742603\pi\)
−0.133441 + 0.991057i \(0.542603\pi\)
\(972\) 0 0
\(973\) −41.1690 29.9110i −1.31982 0.958903i
\(974\) −7.40462 + 3.29675i −0.237259 + 0.105635i
\(975\) 0 0
\(976\) −18.7267 16.8616i −0.599428 0.539727i
\(977\) −16.0691 + 36.0917i −0.514095 + 1.15468i 0.450940 + 0.892554i \(0.351089\pi\)
−0.965035 + 0.262122i \(0.915578\pi\)
\(978\) 0 0
\(979\) −15.1427 + 42.2152i −0.483964 + 1.34920i
\(980\) 33.7730i 1.07884i
\(981\) 0 0
\(982\) 6.22044 + 19.1445i 0.198502 + 0.610927i
\(983\) 24.8132 22.3419i 0.791419 0.712597i −0.170671 0.985328i \(-0.554594\pi\)
0.962090 + 0.272731i \(0.0879269\pi\)
\(984\) 0 0
\(985\) 26.4083 + 2.77562i 0.841438 + 0.0884387i
\(986\) −1.17431 + 0.249608i −0.0373977 + 0.00794913i
\(987\) 0 0
\(988\) −0.308008 2.93050i −0.00979903 0.0932315i
\(989\) −2.05226 −0.0652582
\(990\) 0 0
\(991\) 0.780068 0.0247797 0.0123898 0.999923i \(-0.496056\pi\)
0.0123898 + 0.999923i \(0.496056\pi\)
\(992\) 1.03470 + 9.84453i 0.0328518 + 0.312564i
\(993\) 0 0
\(994\) −35.0299 + 7.44584i −1.11108 + 0.236168i
\(995\) 18.2836 + 1.92168i 0.579628 + 0.0609213i
\(996\) 0 0
\(997\) 32.6031 29.3560i 1.03255 0.929714i 0.0349820 0.999388i \(-0.488863\pi\)
0.997570 + 0.0696741i \(0.0221959\pi\)
\(998\) 4.99660 + 15.3779i 0.158164 + 0.486780i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.t.a.8.6 80
3.2 odd 2 99.2.p.a.74.5 yes 80
9.2 odd 6 891.2.k.a.404.8 80
9.4 even 3 99.2.p.a.41.5 yes 80
9.5 odd 6 inner 297.2.t.a.206.6 80
9.7 even 3 891.2.k.a.404.13 80
11.7 odd 10 inner 297.2.t.a.62.6 80
33.29 even 10 99.2.p.a.29.5 80
99.7 odd 30 891.2.k.a.161.8 80
99.29 even 30 891.2.k.a.161.13 80
99.40 odd 30 99.2.p.a.95.5 yes 80
99.95 even 30 inner 297.2.t.a.260.6 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.5 80 33.29 even 10
99.2.p.a.41.5 yes 80 9.4 even 3
99.2.p.a.74.5 yes 80 3.2 odd 2
99.2.p.a.95.5 yes 80 99.40 odd 30
297.2.t.a.8.6 80 1.1 even 1 trivial
297.2.t.a.62.6 80 11.7 odd 10 inner
297.2.t.a.206.6 80 9.5 odd 6 inner
297.2.t.a.260.6 80 99.95 even 30 inner
891.2.k.a.161.8 80 99.7 odd 30
891.2.k.a.161.13 80 99.29 even 30
891.2.k.a.404.8 80 9.2 odd 6
891.2.k.a.404.13 80 9.7 even 3