Properties

Label 297.2.t.a.8.3
Level $297$
Weight $2$
Character 297.8
Analytic conductor $2.372$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [297,2,Mod(8,297)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(297, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([5, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("297.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.t (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 8.3
Character \(\chi\) \(=\) 297.8
Dual form 297.2.t.a.260.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.120408 - 1.14561i) q^{2} +(0.658378 - 0.139943i) q^{4} +(0.932459 + 0.0980053i) q^{5} +(0.644183 - 0.580025i) q^{7} +(-0.951517 - 2.92847i) q^{8} -1.08003i q^{10} +(1.72444 + 2.83308i) q^{11} +(0.479642 - 1.07729i) q^{13} +(-0.742046 - 0.668141i) q^{14} +(-2.01051 + 0.895139i) q^{16} +(-2.52191 - 1.83228i) q^{17} +(6.59786 - 2.14377i) q^{19} +(0.627625 - 0.0659661i) q^{20} +(3.03796 - 2.31665i) q^{22} +(-2.04949 + 1.18327i) q^{23} +(-4.03086 - 0.856787i) q^{25} +(-1.29191 - 0.419767i) q^{26} +(0.342946 - 0.472024i) q^{28} +(2.42248 + 2.69044i) q^{29} +(-5.80030 - 2.58246i) q^{31} +(-1.81162 - 3.13781i) q^{32} +(-1.79541 + 3.10974i) q^{34} +(0.657520 - 0.477716i) q^{35} +(-2.46847 + 7.59716i) q^{37} +(-3.25036 - 7.30042i) q^{38} +(-0.600245 - 2.82393i) q^{40} +(2.41108 - 2.67778i) q^{41} +(-3.31791 - 1.91560i) q^{43} +(1.53180 + 1.62391i) q^{44} +(1.60234 + 2.20543i) q^{46} +(-0.0333008 + 0.156668i) q^{47} +(-0.653156 + 6.21437i) q^{49} +(-0.496192 + 4.72095i) q^{50} +(0.165027 - 0.776389i) q^{52} +(5.71174 + 7.86153i) q^{53} +(1.33031 + 2.81073i) q^{55} +(-2.31154 - 1.33457i) q^{56} +(2.79050 - 3.09916i) q^{58} +(1.80800 + 8.50597i) q^{59} +(5.51908 + 12.3961i) q^{61} +(-2.26008 + 6.95581i) q^{62} +(-6.93750 + 5.04039i) q^{64} +(0.552827 - 0.957525i) q^{65} +(-3.32149 - 5.75299i) q^{67} +(-1.91678 - 0.853407i) q^{68} +(-0.626445 - 0.695738i) q^{70} +(6.53958 - 9.00097i) q^{71} +(3.29787 + 1.07154i) q^{73} +(9.00058 + 1.91313i) q^{74} +(4.04388 - 2.33473i) q^{76} +(2.75411 + 0.824803i) q^{77} +(-7.50645 + 0.788960i) q^{79} +(-1.96245 + 0.637639i) q^{80} +(-3.35800 - 2.43973i) q^{82} +(-13.1816 + 5.86883i) q^{83} +(-2.17201 - 1.95568i) q^{85} +(-1.79502 + 4.03167i) q^{86} +(6.65574 - 7.74568i) q^{88} +9.28531i q^{89} +(-0.315880 - 0.972179i) q^{91} +(-1.18375 + 1.06585i) q^{92} +(0.183489 + 0.0192855i) q^{94} +(6.36233 - 1.35236i) q^{95} +(1.27346 + 12.1162i) q^{97} +7.19787 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 15 q^{2} + 5 q^{4} + 6 q^{5} - 5 q^{7} + 3 q^{11} - 5 q^{13} + 9 q^{14} + 5 q^{16} - 50 q^{19} + 3 q^{20} - 11 q^{22} + 42 q^{23} - 2 q^{25} - 20 q^{28} - 30 q^{29} - 6 q^{31} - 10 q^{34} - 6 q^{37}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.120408 1.14561i −0.0851414 0.810066i −0.950878 0.309566i \(-0.899816\pi\)
0.865736 0.500500i \(-0.166851\pi\)
\(3\) 0 0
\(4\) 0.658378 0.139943i 0.329189 0.0699713i
\(5\) 0.932459 + 0.0980053i 0.417008 + 0.0438293i 0.310709 0.950505i \(-0.399433\pi\)
0.106299 + 0.994334i \(0.466100\pi\)
\(6\) 0 0
\(7\) 0.644183 0.580025i 0.243478 0.219229i −0.538352 0.842720i \(-0.680953\pi\)
0.781830 + 0.623491i \(0.214286\pi\)
\(8\) −0.951517 2.92847i −0.336412 1.03537i
\(9\) 0 0
\(10\) 1.08003i 0.341536i
\(11\) 1.72444 + 2.83308i 0.519937 + 0.854205i
\(12\) 0 0
\(13\) 0.479642 1.07729i 0.133029 0.298788i −0.834733 0.550655i \(-0.814378\pi\)
0.967762 + 0.251867i \(0.0810447\pi\)
\(14\) −0.742046 0.668141i −0.198320 0.178568i
\(15\) 0 0
\(16\) −2.01051 + 0.895139i −0.502629 + 0.223785i
\(17\) −2.52191 1.83228i −0.611653 0.444392i 0.238343 0.971181i \(-0.423396\pi\)
−0.849996 + 0.526789i \(0.823396\pi\)
\(18\) 0 0
\(19\) 6.59786 2.14377i 1.51365 0.491816i 0.569688 0.821861i \(-0.307064\pi\)
0.943965 + 0.330046i \(0.107064\pi\)
\(20\) 0.627625 0.0659661i 0.140341 0.0147505i
\(21\) 0 0
\(22\) 3.03796 2.31665i 0.647694 0.493912i
\(23\) −2.04949 + 1.18327i −0.427348 + 0.246730i −0.698216 0.715887i \(-0.746023\pi\)
0.270868 + 0.962616i \(0.412689\pi\)
\(24\) 0 0
\(25\) −4.03086 0.856787i −0.806173 0.171357i
\(26\) −1.29191 0.419767i −0.253364 0.0823230i
\(27\) 0 0
\(28\) 0.342946 0.472024i 0.0648106 0.0892042i
\(29\) 2.42248 + 2.69044i 0.449843 + 0.499601i 0.924824 0.380395i \(-0.124212\pi\)
−0.474981 + 0.879996i \(0.657545\pi\)
\(30\) 0 0
\(31\) −5.80030 2.58246i −1.04176 0.463823i −0.186739 0.982410i \(-0.559792\pi\)
−0.855025 + 0.518586i \(0.826458\pi\)
\(32\) −1.81162 3.13781i −0.320251 0.554692i
\(33\) 0 0
\(34\) −1.79541 + 3.10974i −0.307910 + 0.533316i
\(35\) 0.657520 0.477716i 0.111141 0.0807487i
\(36\) 0 0
\(37\) −2.46847 + 7.59716i −0.405813 + 1.24897i 0.514401 + 0.857550i \(0.328014\pi\)
−0.920214 + 0.391415i \(0.871986\pi\)
\(38\) −3.25036 7.30042i −0.527278 1.18429i
\(39\) 0 0
\(40\) −0.600245 2.82393i −0.0949070 0.446503i
\(41\) 2.41108 2.67778i 0.376548 0.418199i −0.524847 0.851197i \(-0.675878\pi\)
0.901395 + 0.432998i \(0.142544\pi\)
\(42\) 0 0
\(43\) −3.31791 1.91560i −0.505976 0.292126i 0.225202 0.974312i \(-0.427696\pi\)
−0.731178 + 0.682187i \(0.761029\pi\)
\(44\) 1.53180 + 1.62391i 0.230927 + 0.244814i
\(45\) 0 0
\(46\) 1.60234 + 2.20543i 0.236252 + 0.325174i
\(47\) −0.0333008 + 0.156668i −0.00485741 + 0.0228523i −0.980510 0.196471i \(-0.937052\pi\)
0.975652 + 0.219324i \(0.0703851\pi\)
\(48\) 0 0
\(49\) −0.653156 + 6.21437i −0.0933081 + 0.887767i
\(50\) −0.496192 + 4.72095i −0.0701721 + 0.667643i
\(51\) 0 0
\(52\) 0.165027 0.776389i 0.0228851 0.107666i
\(53\) 5.71174 + 7.86153i 0.784567 + 1.07986i 0.994763 + 0.102205i \(0.0325898\pi\)
−0.210196 + 0.977659i \(0.567410\pi\)
\(54\) 0 0
\(55\) 1.33031 + 2.81073i 0.179379 + 0.378999i
\(56\) −2.31154 1.33457i −0.308892 0.178339i
\(57\) 0 0
\(58\) 2.79050 3.09916i 0.366410 0.406940i
\(59\) 1.80800 + 8.50597i 0.235382 + 1.10738i 0.924039 + 0.382297i \(0.124867\pi\)
−0.688658 + 0.725086i \(0.741800\pi\)
\(60\) 0 0
\(61\) 5.51908 + 12.3961i 0.706646 + 1.58715i 0.805874 + 0.592087i \(0.201696\pi\)
−0.0992283 + 0.995065i \(0.531637\pi\)
\(62\) −2.26008 + 6.95581i −0.287030 + 0.883389i
\(63\) 0 0
\(64\) −6.93750 + 5.04039i −0.867188 + 0.630049i
\(65\) 0.552827 0.957525i 0.0685698 0.118766i
\(66\) 0 0
\(67\) −3.32149 5.75299i −0.405785 0.702840i 0.588628 0.808404i \(-0.299668\pi\)
−0.994412 + 0.105565i \(0.966335\pi\)
\(68\) −1.91678 0.853407i −0.232444 0.103491i
\(69\) 0 0
\(70\) −0.626445 0.695738i −0.0748745 0.0831566i
\(71\) 6.53958 9.00097i 0.776106 1.06822i −0.219595 0.975591i \(-0.570474\pi\)
0.995701 0.0926270i \(-0.0295264\pi\)
\(72\) 0 0
\(73\) 3.29787 + 1.07154i 0.385987 + 0.125415i 0.495581 0.868562i \(-0.334955\pi\)
−0.109594 + 0.993976i \(0.534955\pi\)
\(74\) 9.00058 + 1.91313i 1.04630 + 0.222397i
\(75\) 0 0
\(76\) 4.04388 2.33473i 0.463865 0.267812i
\(77\) 2.75411 + 0.824803i 0.313860 + 0.0939950i
\(78\) 0 0
\(79\) −7.50645 + 0.788960i −0.844542 + 0.0887649i −0.516909 0.856040i \(-0.672918\pi\)
−0.327633 + 0.944805i \(0.606251\pi\)
\(80\) −1.96245 + 0.637639i −0.219409 + 0.0712902i
\(81\) 0 0
\(82\) −3.35800 2.43973i −0.370829 0.269423i
\(83\) −13.1816 + 5.86883i −1.44687 + 0.644188i −0.971810 0.235765i \(-0.924240\pi\)
−0.475060 + 0.879953i \(0.657574\pi\)
\(84\) 0 0
\(85\) −2.17201 1.95568i −0.235587 0.212124i
\(86\) −1.79502 + 4.03167i −0.193562 + 0.434747i
\(87\) 0 0
\(88\) 6.65574 7.74568i 0.709505 0.825692i
\(89\) 9.28531i 0.984241i 0.870527 + 0.492120i \(0.163778\pi\)
−0.870527 + 0.492120i \(0.836222\pi\)
\(90\) 0 0
\(91\) −0.315880 0.972179i −0.0331132 0.101912i
\(92\) −1.18375 + 1.06585i −0.123414 + 0.111123i
\(93\) 0 0
\(94\) 0.183489 + 0.0192855i 0.0189255 + 0.00198915i
\(95\) 6.36233 1.35236i 0.652761 0.138749i
\(96\) 0 0
\(97\) 1.27346 + 12.1162i 0.129300 + 1.23021i 0.846136 + 0.532968i \(0.178923\pi\)
−0.716835 + 0.697243i \(0.754410\pi\)
\(98\) 7.19787 0.727095
\(99\) 0 0
\(100\) −2.77373 −0.277373
\(101\) 0.633258 + 6.02504i 0.0630115 + 0.599514i 0.979778 + 0.200090i \(0.0641234\pi\)
−0.916766 + 0.399425i \(0.869210\pi\)
\(102\) 0 0
\(103\) 3.90142 0.829273i 0.384419 0.0817107i −0.0116487 0.999932i \(-0.503708\pi\)
0.396067 + 0.918221i \(0.370375\pi\)
\(104\) −3.61121 0.379554i −0.354108 0.0372183i
\(105\) 0 0
\(106\) 8.31848 7.49000i 0.807963 0.727493i
\(107\) −1.90097 5.85057i −0.183773 0.565596i 0.816152 0.577838i \(-0.196103\pi\)
−0.999925 + 0.0122414i \(0.996103\pi\)
\(108\) 0 0
\(109\) 16.9364i 1.62221i −0.584897 0.811107i \(-0.698865\pi\)
0.584897 0.811107i \(-0.301135\pi\)
\(110\) 3.05981 1.86245i 0.291742 0.177577i
\(111\) 0 0
\(112\) −0.775936 + 1.74278i −0.0733191 + 0.164677i
\(113\) −5.94960 5.35705i −0.559691 0.503948i 0.340029 0.940415i \(-0.389563\pi\)
−0.899721 + 0.436466i \(0.856230\pi\)
\(114\) 0 0
\(115\) −2.02703 + 0.902493i −0.189022 + 0.0841579i
\(116\) 1.97141 + 1.43232i 0.183041 + 0.132987i
\(117\) 0 0
\(118\) 9.52681 3.09545i 0.877014 0.284959i
\(119\) −2.68734 + 0.282451i −0.246348 + 0.0258922i
\(120\) 0 0
\(121\) −5.05264 + 9.77092i −0.459331 + 0.888265i
\(122\) 13.5365 7.81528i 1.22553 0.707562i
\(123\) 0 0
\(124\) −4.18018 0.888525i −0.375392 0.0797919i
\(125\) −8.13317 2.64263i −0.727453 0.236364i
\(126\) 0 0
\(127\) −3.73492 + 5.14068i −0.331421 + 0.456161i −0.941911 0.335862i \(-0.890972\pi\)
0.610490 + 0.792024i \(0.290972\pi\)
\(128\) 1.76081 + 1.95558i 0.155635 + 0.172850i
\(129\) 0 0
\(130\) −1.16351 0.518029i −0.102047 0.0454341i
\(131\) −8.68698 15.0463i −0.758985 1.31460i −0.943369 0.331746i \(-0.892362\pi\)
0.184384 0.982854i \(-0.440971\pi\)
\(132\) 0 0
\(133\) 3.00679 5.20791i 0.260721 0.451583i
\(134\) −6.19073 + 4.49783i −0.534798 + 0.388553i
\(135\) 0 0
\(136\) −2.96612 + 9.12878i −0.254343 + 0.782787i
\(137\) −7.19951 16.1704i −0.615096 1.38153i −0.905386 0.424589i \(-0.860419\pi\)
0.290290 0.956939i \(-0.406248\pi\)
\(138\) 0 0
\(139\) 1.28467 + 6.04390i 0.108964 + 0.512637i 0.998449 + 0.0556722i \(0.0177302\pi\)
−0.889485 + 0.456965i \(0.848936\pi\)
\(140\) 0.366044 0.406533i 0.0309363 0.0343583i
\(141\) 0 0
\(142\) −11.0990 6.40800i −0.931407 0.537748i
\(143\) 3.87917 0.498862i 0.324392 0.0417170i
\(144\) 0 0
\(145\) 1.99518 + 2.74614i 0.165691 + 0.228054i
\(146\) 0.830477 3.90709i 0.0687308 0.323353i
\(147\) 0 0
\(148\) −0.562018 + 5.34724i −0.0461976 + 0.439541i
\(149\) 0.771598 7.34127i 0.0632118 0.601420i −0.916364 0.400346i \(-0.868890\pi\)
0.979576 0.201074i \(-0.0644433\pi\)
\(150\) 0 0
\(151\) 2.80349 13.1894i 0.228145 1.07334i −0.703704 0.710493i \(-0.748472\pi\)
0.931849 0.362845i \(-0.118195\pi\)
\(152\) −12.5560 17.2818i −1.01842 1.40174i
\(153\) 0 0
\(154\) 0.613283 3.25444i 0.0494198 0.262250i
\(155\) −5.15544 2.97650i −0.414095 0.239078i
\(156\) 0 0
\(157\) −1.96206 + 2.17909i −0.156590 + 0.173910i −0.816335 0.577579i \(-0.803998\pi\)
0.659745 + 0.751489i \(0.270664\pi\)
\(158\) 1.80768 + 8.50445i 0.143811 + 0.676578i
\(159\) 0 0
\(160\) −1.38173 3.10343i −0.109236 0.245347i
\(161\) −0.633918 + 1.95100i −0.0499598 + 0.153760i
\(162\) 0 0
\(163\) 17.8134 12.9422i 1.39525 1.01371i 0.399985 0.916522i \(-0.369015\pi\)
0.995266 0.0971873i \(-0.0309846\pi\)
\(164\) 1.21267 2.10040i 0.0946935 0.164014i
\(165\) 0 0
\(166\) 8.31055 + 14.3943i 0.645024 + 1.11721i
\(167\) 0.588990 + 0.262235i 0.0455774 + 0.0202924i 0.429399 0.903115i \(-0.358725\pi\)
−0.383821 + 0.923407i \(0.625392\pi\)
\(168\) 0 0
\(169\) 7.76819 + 8.62745i 0.597553 + 0.663650i
\(170\) −1.97892 + 2.72374i −0.151776 + 0.208902i
\(171\) 0 0
\(172\) −2.45251 0.796869i −0.187002 0.0607607i
\(173\) 13.1988 + 2.80550i 1.00349 + 0.213298i 0.680219 0.733009i \(-0.261885\pi\)
0.323269 + 0.946307i \(0.395218\pi\)
\(174\) 0 0
\(175\) −3.09357 + 1.78607i −0.233852 + 0.135015i
\(176\) −6.00300 4.15233i −0.452493 0.312994i
\(177\) 0 0
\(178\) 10.6373 1.11803i 0.797301 0.0837997i
\(179\) −1.06341 + 0.345524i −0.0794832 + 0.0258256i −0.348489 0.937313i \(-0.613305\pi\)
0.269005 + 0.963139i \(0.413305\pi\)
\(180\) 0 0
\(181\) −18.7897 13.6515i −1.39663 1.01471i −0.995101 0.0988656i \(-0.968479\pi\)
−0.401530 0.915846i \(-0.631521\pi\)
\(182\) −1.07570 + 0.478933i −0.0797362 + 0.0355009i
\(183\) 0 0
\(184\) 5.41530 + 4.87596i 0.399222 + 0.359461i
\(185\) −3.04630 + 6.84211i −0.223969 + 0.503042i
\(186\) 0 0
\(187\) 0.842101 10.3044i 0.0615805 0.753533i
\(188\) 0.107807i 0.00786262i
\(189\) 0 0
\(190\) −2.31534 7.12590i −0.167973 0.516967i
\(191\) 2.22298 2.00158i 0.160849 0.144829i −0.584776 0.811195i \(-0.698818\pi\)
0.745625 + 0.666365i \(0.232151\pi\)
\(192\) 0 0
\(193\) −9.83585 1.03379i −0.708000 0.0744138i −0.256318 0.966593i \(-0.582509\pi\)
−0.451682 + 0.892179i \(0.649176\pi\)
\(194\) 13.7270 2.91777i 0.985543 0.209484i
\(195\) 0 0
\(196\) 0.439631 + 4.18281i 0.0314022 + 0.298772i
\(197\) 4.94568 0.352365 0.176183 0.984357i \(-0.443625\pi\)
0.176183 + 0.984357i \(0.443625\pi\)
\(198\) 0 0
\(199\) −7.64868 −0.542200 −0.271100 0.962551i \(-0.587387\pi\)
−0.271100 + 0.962551i \(0.587387\pi\)
\(200\) 1.32636 + 12.6195i 0.0937881 + 0.892334i
\(201\) 0 0
\(202\) 6.82608 1.45093i 0.480282 0.102087i
\(203\) 3.12104 + 0.328035i 0.219054 + 0.0230235i
\(204\) 0 0
\(205\) 2.51067 2.26062i 0.175353 0.157888i
\(206\) −1.41978 4.36965i −0.0989211 0.304448i
\(207\) 0 0
\(208\) 2.59526i 0.179949i
\(209\) 17.4511 + 14.9954i 1.20712 + 1.03726i
\(210\) 0 0
\(211\) 9.56038 21.4730i 0.658163 1.47826i −0.207810 0.978169i \(-0.566634\pi\)
0.865973 0.500090i \(-0.166700\pi\)
\(212\) 4.86064 + 4.37654i 0.333830 + 0.300582i
\(213\) 0 0
\(214\) −6.47357 + 2.88222i −0.442524 + 0.197024i
\(215\) −2.90607 2.11139i −0.198193 0.143995i
\(216\) 0 0
\(217\) −5.23434 + 1.70074i −0.355330 + 0.115454i
\(218\) −19.4025 + 2.03928i −1.31410 + 0.138118i
\(219\) 0 0
\(220\) 1.26919 + 1.66436i 0.0855686 + 0.112211i
\(221\) −3.18352 + 1.83800i −0.214146 + 0.123638i
\(222\) 0 0
\(223\) 20.4423 + 4.34515i 1.36892 + 0.290973i 0.832989 0.553290i \(-0.186628\pi\)
0.535930 + 0.844263i \(0.319961\pi\)
\(224\) −2.98702 0.970542i −0.199579 0.0648470i
\(225\) 0 0
\(226\) −5.42069 + 7.46094i −0.360579 + 0.496294i
\(227\) −7.94758 8.82668i −0.527499 0.585847i 0.419229 0.907881i \(-0.362300\pi\)
−0.946728 + 0.322033i \(0.895634\pi\)
\(228\) 0 0
\(229\) 8.95362 + 3.98641i 0.591672 + 0.263429i 0.680655 0.732604i \(-0.261695\pi\)
−0.0889834 + 0.996033i \(0.528362\pi\)
\(230\) 1.27797 + 2.21351i 0.0842670 + 0.145955i
\(231\) 0 0
\(232\) 5.57383 9.65415i 0.365940 0.633826i
\(233\) 12.6222 9.17056i 0.826907 0.600783i −0.0917755 0.995780i \(-0.529254\pi\)
0.918683 + 0.394997i \(0.129254\pi\)
\(234\) 0 0
\(235\) −0.0464058 + 0.142823i −0.00302718 + 0.00931671i
\(236\) 2.38070 + 5.34713i 0.154970 + 0.348068i
\(237\) 0 0
\(238\) 0.647155 + 3.04462i 0.0419488 + 0.197354i
\(239\) −20.0566 + 22.2751i −1.29736 + 1.44086i −0.466343 + 0.884604i \(0.654429\pi\)
−0.831012 + 0.556255i \(0.812238\pi\)
\(240\) 0 0
\(241\) 1.64353 + 0.948892i 0.105869 + 0.0611235i 0.552000 0.833844i \(-0.313865\pi\)
−0.446131 + 0.894968i \(0.647198\pi\)
\(242\) 11.8020 + 4.61184i 0.758662 + 0.296460i
\(243\) 0 0
\(244\) 5.36837 + 7.38893i 0.343675 + 0.473028i
\(245\) −1.21808 + 5.73063i −0.0778205 + 0.366116i
\(246\) 0 0
\(247\) 0.855136 8.13608i 0.0544110 0.517686i
\(248\) −2.04357 + 19.4432i −0.129767 + 1.23465i
\(249\) 0 0
\(250\) −2.04811 + 9.63561i −0.129534 + 0.609410i
\(251\) −1.59530 2.19574i −0.100694 0.138594i 0.755696 0.654922i \(-0.227299\pi\)
−0.856391 + 0.516328i \(0.827299\pi\)
\(252\) 0 0
\(253\) −6.88652 3.76588i −0.432952 0.236759i
\(254\) 6.33891 + 3.65977i 0.397739 + 0.229635i
\(255\) 0 0
\(256\) −9.44758 + 10.4926i −0.590474 + 0.655788i
\(257\) 1.77181 + 8.33571i 0.110522 + 0.519967i 0.998225 + 0.0595505i \(0.0189667\pi\)
−0.887703 + 0.460417i \(0.847700\pi\)
\(258\) 0 0
\(259\) 2.81640 + 6.32573i 0.175002 + 0.393062i
\(260\) 0.229971 0.707777i 0.0142622 0.0438945i
\(261\) 0 0
\(262\) −16.1911 + 11.7636i −1.00029 + 0.726755i
\(263\) 11.9263 20.6569i 0.735407 1.27376i −0.219138 0.975694i \(-0.570324\pi\)
0.954545 0.298068i \(-0.0963422\pi\)
\(264\) 0 0
\(265\) 4.55549 + 7.89033i 0.279841 + 0.484699i
\(266\) −6.32825 2.81752i −0.388010 0.172753i
\(267\) 0 0
\(268\) −2.99188 3.32282i −0.182758 0.202974i
\(269\) −14.1414 + 19.4640i −0.862219 + 1.18674i 0.118817 + 0.992916i \(0.462090\pi\)
−0.981036 + 0.193826i \(0.937910\pi\)
\(270\) 0 0
\(271\) 12.2868 + 3.99222i 0.746370 + 0.242510i 0.657418 0.753526i \(-0.271648\pi\)
0.0889514 + 0.996036i \(0.471648\pi\)
\(272\) 6.71048 + 1.42636i 0.406883 + 0.0864856i
\(273\) 0 0
\(274\) −17.6580 + 10.1949i −1.06676 + 0.615894i
\(275\) −4.52363 12.8972i −0.272785 0.777731i
\(276\) 0 0
\(277\) −6.63747 + 0.697626i −0.398807 + 0.0419163i −0.301809 0.953368i \(-0.597591\pi\)
−0.0969976 + 0.995285i \(0.530924\pi\)
\(278\) 6.76925 2.19946i 0.405993 0.131915i
\(279\) 0 0
\(280\) −2.02462 1.47097i −0.120994 0.0879073i
\(281\) −0.560682 + 0.249632i −0.0334475 + 0.0148918i −0.423392 0.905946i \(-0.639161\pi\)
0.389945 + 0.920838i \(0.372494\pi\)
\(282\) 0 0
\(283\) −14.0498 12.6505i −0.835176 0.751995i 0.135912 0.990721i \(-0.456604\pi\)
−0.971087 + 0.238726i \(0.923270\pi\)
\(284\) 3.04590 6.84120i 0.180741 0.405951i
\(285\) 0 0
\(286\) −1.03858 4.38394i −0.0614128 0.259228i
\(287\) 3.12347i 0.184372i
\(288\) 0 0
\(289\) −2.25049 6.92628i −0.132381 0.407428i
\(290\) 2.90576 2.61635i 0.170632 0.153638i
\(291\) 0 0
\(292\) 2.32120 + 0.243968i 0.135838 + 0.0142771i
\(293\) 2.05683 0.437193i 0.120161 0.0255411i −0.147438 0.989071i \(-0.547103\pi\)
0.267600 + 0.963530i \(0.413769\pi\)
\(294\) 0 0
\(295\) 0.852255 + 8.10866i 0.0496202 + 0.472105i
\(296\) 24.5968 1.42966
\(297\) 0 0
\(298\) −8.50312 −0.492572
\(299\) 0.291712 + 2.77545i 0.0168701 + 0.160509i
\(300\) 0 0
\(301\) −3.24843 + 0.690476i −0.187237 + 0.0397984i
\(302\) −15.4474 1.62359i −0.888900 0.0934272i
\(303\) 0 0
\(304\) −11.3461 + 10.2161i −0.650744 + 0.585933i
\(305\) 3.93143 + 12.0997i 0.225113 + 0.692827i
\(306\) 0 0
\(307\) 17.6110i 1.00511i 0.864545 + 0.502556i \(0.167607\pi\)
−0.864545 + 0.502556i \(0.832393\pi\)
\(308\) 1.92867 + 0.157615i 0.109896 + 0.00898096i
\(309\) 0 0
\(310\) −2.78914 + 6.26450i −0.158412 + 0.355800i
\(311\) 8.17812 + 7.36361i 0.463739 + 0.417552i 0.867596 0.497270i \(-0.165664\pi\)
−0.403857 + 0.914822i \(0.632331\pi\)
\(312\) 0 0
\(313\) −3.56418 + 1.58687i −0.201459 + 0.0896954i −0.504986 0.863127i \(-0.668502\pi\)
0.303527 + 0.952823i \(0.401836\pi\)
\(314\) 2.73263 + 1.98537i 0.154211 + 0.112041i
\(315\) 0 0
\(316\) −4.83167 + 1.56991i −0.271803 + 0.0883141i
\(317\) 21.4837 2.25803i 1.20665 0.126824i 0.520227 0.854028i \(-0.325847\pi\)
0.686421 + 0.727204i \(0.259181\pi\)
\(318\) 0 0
\(319\) −3.44480 + 11.5026i −0.192872 + 0.644019i
\(320\) −6.96292 + 4.02004i −0.389239 + 0.224727i
\(321\) 0 0
\(322\) 2.31141 + 0.491305i 0.128810 + 0.0273794i
\(323\) −20.5672 6.68269i −1.14439 0.371835i
\(324\) 0 0
\(325\) −2.85638 + 3.93148i −0.158444 + 0.218079i
\(326\) −16.9715 18.8488i −0.939965 1.04394i
\(327\) 0 0
\(328\) −10.1360 4.51283i −0.559666 0.249179i
\(329\) 0.0694194 + 0.120238i 0.00382722 + 0.00662893i
\(330\) 0 0
\(331\) 3.42603 5.93405i 0.188311 0.326165i −0.756376 0.654137i \(-0.773032\pi\)
0.944687 + 0.327972i \(0.106365\pi\)
\(332\) −7.85719 + 5.70858i −0.431219 + 0.313299i
\(333\) 0 0
\(334\) 0.229499 0.706326i 0.0125576 0.0386485i
\(335\) −2.53333 5.68995i −0.138411 0.310875i
\(336\) 0 0
\(337\) −0.153680 0.723009i −0.00837150 0.0393848i 0.973764 0.227562i \(-0.0730754\pi\)
−0.982135 + 0.188177i \(0.939742\pi\)
\(338\) 8.94831 9.93811i 0.486724 0.540562i
\(339\) 0 0
\(340\) −1.70368 0.983622i −0.0923952 0.0533444i
\(341\) −2.68594 20.8860i −0.145452 1.13104i
\(342\) 0 0
\(343\) 6.75032 + 9.29102i 0.364483 + 0.501668i
\(344\) −2.45272 + 11.5391i −0.132242 + 0.622147i
\(345\) 0 0
\(346\) 1.62475 15.4585i 0.0873472 0.831053i
\(347\) 1.24436 11.8393i 0.0668008 0.635567i −0.908984 0.416832i \(-0.863140\pi\)
0.975784 0.218735i \(-0.0701930\pi\)
\(348\) 0 0
\(349\) −2.11800 + 9.96440i −0.113374 + 0.533382i 0.884402 + 0.466726i \(0.154566\pi\)
−0.997776 + 0.0666564i \(0.978767\pi\)
\(350\) 2.41863 + 3.32896i 0.129281 + 0.177940i
\(351\) 0 0
\(352\) 5.76564 10.5434i 0.307310 0.561965i
\(353\) −27.2712 15.7451i −1.45150 0.838025i −0.452935 0.891544i \(-0.649623\pi\)
−0.998567 + 0.0535191i \(0.982956\pi\)
\(354\) 0 0
\(355\) 6.98003 7.75211i 0.370462 0.411439i
\(356\) 1.29941 + 6.11324i 0.0688686 + 0.324001i
\(357\) 0 0
\(358\) 0.523878 + 1.17665i 0.0276878 + 0.0621878i
\(359\) −8.57599 + 26.3942i −0.452624 + 1.39303i 0.421279 + 0.906931i \(0.361581\pi\)
−0.873903 + 0.486101i \(0.838419\pi\)
\(360\) 0 0
\(361\) 23.5646 17.1207i 1.24024 0.901090i
\(362\) −13.3769 + 23.1694i −0.703073 + 1.21776i
\(363\) 0 0
\(364\) −0.344018 0.595856i −0.0180314 0.0312313i
\(365\) 2.97011 + 1.32238i 0.155463 + 0.0692165i
\(366\) 0 0
\(367\) −11.2990 12.5488i −0.589800 0.655040i 0.372179 0.928161i \(-0.378611\pi\)
−0.961980 + 0.273121i \(0.911944\pi\)
\(368\) 3.06133 4.21357i 0.159583 0.219647i
\(369\) 0 0
\(370\) 8.20517 + 2.66602i 0.426567 + 0.138600i
\(371\) 8.23929 + 1.75131i 0.427762 + 0.0909237i
\(372\) 0 0
\(373\) 5.20412 3.00460i 0.269459 0.155572i −0.359183 0.933267i \(-0.616944\pi\)
0.628642 + 0.777695i \(0.283611\pi\)
\(374\) −11.9062 + 0.276019i −0.615655 + 0.0142726i
\(375\) 0 0
\(376\) 0.490483 0.0515518i 0.0252947 0.00265858i
\(377\) 4.06031 1.31928i 0.209117 0.0679462i
\(378\) 0 0
\(379\) −6.88315 5.00090i −0.353563 0.256879i 0.396799 0.917906i \(-0.370121\pi\)
−0.750362 + 0.661027i \(0.770121\pi\)
\(380\) 3.99957 1.78072i 0.205173 0.0913491i
\(381\) 0 0
\(382\) −2.56069 2.30566i −0.131016 0.117968i
\(383\) 4.11794 9.24903i 0.210417 0.472604i −0.777247 0.629196i \(-0.783384\pi\)
0.987663 + 0.156592i \(0.0500509\pi\)
\(384\) 0 0
\(385\) 2.48726 + 1.03901i 0.126762 + 0.0529530i
\(386\) 11.3925i 0.579863i
\(387\) 0 0
\(388\) 2.53398 + 7.79880i 0.128644 + 0.395924i
\(389\) 6.93488 6.24419i 0.351612 0.316593i −0.474331 0.880347i \(-0.657310\pi\)
0.825943 + 0.563754i \(0.190643\pi\)
\(390\) 0 0
\(391\) 7.33672 + 0.771120i 0.371034 + 0.0389972i
\(392\) 18.8201 4.00033i 0.950557 0.202047i
\(393\) 0 0
\(394\) −0.595501 5.66581i −0.0300009 0.285439i
\(395\) −7.07678 −0.356071
\(396\) 0 0
\(397\) 10.3328 0.518587 0.259294 0.965799i \(-0.416510\pi\)
0.259294 + 0.965799i \(0.416510\pi\)
\(398\) 0.920963 + 8.76238i 0.0461637 + 0.439218i
\(399\) 0 0
\(400\) 8.87105 1.88560i 0.443553 0.0942800i
\(401\) 14.7518 + 1.55048i 0.736671 + 0.0774273i 0.465431 0.885084i \(-0.345899\pi\)
0.271241 + 0.962512i \(0.412566\pi\)
\(402\) 0 0
\(403\) −5.56414 + 5.00997i −0.277169 + 0.249564i
\(404\) 1.26008 + 3.87814i 0.0626915 + 0.192944i
\(405\) 0 0
\(406\) 3.61498i 0.179409i
\(407\) −25.7800 + 6.10747i −1.27787 + 0.302736i
\(408\) 0 0
\(409\) 3.55322 7.98066i 0.175695 0.394618i −0.804136 0.594446i \(-0.797371\pi\)
0.979831 + 0.199827i \(0.0640381\pi\)
\(410\) −2.89209 2.60405i −0.142830 0.128605i
\(411\) 0 0
\(412\) 2.45256 1.09195i 0.120829 0.0537965i
\(413\) 6.09836 + 4.43072i 0.300081 + 0.218021i
\(414\) 0 0
\(415\) −12.8665 + 4.18058i −0.631591 + 0.205216i
\(416\) −4.24927 + 0.446616i −0.208338 + 0.0218972i
\(417\) 0 0
\(418\) 15.0776 21.7976i 0.737471 1.06616i
\(419\) 30.4601 17.5861i 1.48807 0.859139i 0.488165 0.872752i \(-0.337667\pi\)
0.999907 + 0.0136128i \(0.00433321\pi\)
\(420\) 0 0
\(421\) 1.56053 + 0.331701i 0.0760557 + 0.0161661i 0.245782 0.969325i \(-0.420955\pi\)
−0.169727 + 0.985491i \(0.554288\pi\)
\(422\) −25.7507 8.36692i −1.25353 0.407295i
\(423\) 0 0
\(424\) 17.5874 24.2070i 0.854121 1.17560i
\(425\) 8.59561 + 9.54640i 0.416949 + 0.463068i
\(426\) 0 0
\(427\) 10.7453 + 4.78412i 0.520002 + 0.231520i
\(428\) −2.07030 3.58586i −0.100072 0.173329i
\(429\) 0 0
\(430\) −2.06890 + 3.58345i −0.0997714 + 0.172809i
\(431\) 23.8660 17.3397i 1.14959 0.835223i 0.161160 0.986928i \(-0.448477\pi\)
0.988426 + 0.151706i \(0.0484766\pi\)
\(432\) 0 0
\(433\) 3.54190 10.9008i 0.170213 0.523861i −0.829170 0.558997i \(-0.811186\pi\)
0.999383 + 0.0351356i \(0.0111863\pi\)
\(434\) 2.57864 + 5.79172i 0.123779 + 0.278011i
\(435\) 0 0
\(436\) −2.37013 11.1506i −0.113508 0.534015i
\(437\) −10.9856 + 12.2007i −0.525511 + 0.583639i
\(438\) 0 0
\(439\) 2.63084 + 1.51891i 0.125563 + 0.0724938i 0.561466 0.827500i \(-0.310238\pi\)
−0.435903 + 0.899994i \(0.643571\pi\)
\(440\) 6.96532 6.57023i 0.332059 0.313223i
\(441\) 0 0
\(442\) 2.48895 + 3.42575i 0.118387 + 0.162946i
\(443\) 3.44135 16.1903i 0.163503 0.769223i −0.817607 0.575776i \(-0.804700\pi\)
0.981111 0.193447i \(-0.0619667\pi\)
\(444\) 0 0
\(445\) −0.910010 + 8.65817i −0.0431386 + 0.410436i
\(446\) 2.51641 23.9420i 0.119155 1.13369i
\(447\) 0 0
\(448\) −1.54547 + 7.27086i −0.0730165 + 0.343516i
\(449\) 0.152765 + 0.210263i 0.00720943 + 0.00992293i 0.812606 0.582813i \(-0.198048\pi\)
−0.805397 + 0.592736i \(0.798048\pi\)
\(450\) 0 0
\(451\) 11.7441 + 2.21312i 0.553009 + 0.104212i
\(452\) −4.66676 2.69436i −0.219506 0.126732i
\(453\) 0 0
\(454\) −9.15496 + 10.1676i −0.429663 + 0.477190i
\(455\) −0.199266 0.937475i −0.00934175 0.0439495i
\(456\) 0 0
\(457\) −2.21261 4.96960i −0.103501 0.232468i 0.854370 0.519665i \(-0.173943\pi\)
−0.957872 + 0.287197i \(0.907277\pi\)
\(458\) 3.48877 10.7373i 0.163019 0.501722i
\(459\) 0 0
\(460\) −1.20826 + 0.877849i −0.0563352 + 0.0409299i
\(461\) −14.6816 + 25.4292i −0.683789 + 1.18436i 0.290026 + 0.957019i \(0.406336\pi\)
−0.973816 + 0.227339i \(0.926997\pi\)
\(462\) 0 0
\(463\) −10.1913 17.6519i −0.473632 0.820354i 0.525913 0.850539i \(-0.323724\pi\)
−0.999544 + 0.0301843i \(0.990391\pi\)
\(464\) −7.27874 3.24070i −0.337907 0.150446i
\(465\) 0 0
\(466\) −12.0257 13.3559i −0.557078 0.618698i
\(467\) −0.293731 + 0.404285i −0.0135922 + 0.0187081i −0.815759 0.578392i \(-0.803680\pi\)
0.802167 + 0.597100i \(0.203680\pi\)
\(468\) 0 0
\(469\) −5.47653 1.77943i −0.252882 0.0821665i
\(470\) 0.169206 + 0.0359659i 0.00780490 + 0.00165898i
\(471\) 0 0
\(472\) 23.1891 13.3883i 1.06737 0.616244i
\(473\) −0.294496 12.7032i −0.0135409 0.584094i
\(474\) 0 0
\(475\) −28.4318 + 2.98831i −1.30454 + 0.137113i
\(476\) −1.72976 + 0.562032i −0.0792833 + 0.0257607i
\(477\) 0 0
\(478\) 27.9335 + 20.2949i 1.27765 + 0.928267i
\(479\) −9.81779 + 4.37116i −0.448586 + 0.199724i −0.618580 0.785722i \(-0.712292\pi\)
0.169994 + 0.985445i \(0.445625\pi\)
\(480\) 0 0
\(481\) 7.00039 + 6.30318i 0.319190 + 0.287400i
\(482\) 0.889163 1.99709i 0.0405003 0.0909651i
\(483\) 0 0
\(484\) −1.95918 + 7.14004i −0.0890535 + 0.324547i
\(485\) 11.4226i 0.518675i
\(486\) 0 0
\(487\) 9.43244 + 29.0301i 0.427425 + 1.31548i 0.900653 + 0.434539i \(0.143089\pi\)
−0.473228 + 0.880940i \(0.656911\pi\)
\(488\) 31.0500 27.9575i 1.40557 1.26558i
\(489\) 0 0
\(490\) 6.71172 + 0.705430i 0.303204 + 0.0318681i
\(491\) −24.5241 + 5.21275i −1.10676 + 0.235248i −0.724818 0.688940i \(-0.758076\pi\)
−0.381937 + 0.924188i \(0.624743\pi\)
\(492\) 0 0
\(493\) −1.17966 11.2237i −0.0531291 0.505490i
\(494\) −9.42371 −0.423993
\(495\) 0 0
\(496\) 13.9732 0.627417
\(497\) −1.00810 9.59139i −0.0452193 0.430233i
\(498\) 0 0
\(499\) −4.86170 + 1.03339i −0.217640 + 0.0462607i −0.315441 0.948945i \(-0.602152\pi\)
0.0978013 + 0.995206i \(0.468819\pi\)
\(500\) −5.72452 0.601671i −0.256008 0.0269075i
\(501\) 0 0
\(502\) −2.32337 + 2.09197i −0.103697 + 0.0933693i
\(503\) −11.3085 34.8039i −0.504219 1.55183i −0.802079 0.597218i \(-0.796273\pi\)
0.297860 0.954610i \(-0.403727\pi\)
\(504\) 0 0
\(505\) 5.68017i 0.252764i
\(506\) −3.48503 + 8.34269i −0.154928 + 0.370878i
\(507\) 0 0
\(508\) −1.73959 + 3.90718i −0.0771818 + 0.173353i
\(509\) 10.3681 + 9.33549i 0.459559 + 0.413788i 0.866121 0.499835i \(-0.166606\pi\)
−0.406562 + 0.913623i \(0.633273\pi\)
\(510\) 0 0
\(511\) 2.74595 1.22258i 0.121474 0.0540836i
\(512\) 17.4158 + 12.6533i 0.769677 + 0.559203i
\(513\) 0 0
\(514\) 9.33611 3.03349i 0.411798 0.133801i
\(515\) 3.71919 0.390903i 0.163887 0.0172252i
\(516\) 0 0
\(517\) −0.501277 + 0.175820i −0.0220461 + 0.00773255i
\(518\) 6.90769 3.98815i 0.303506 0.175229i
\(519\) 0 0
\(520\) −3.33011 0.707836i −0.146035 0.0310407i
\(521\) 6.74242 + 2.19075i 0.295391 + 0.0959783i 0.452963 0.891529i \(-0.350367\pi\)
−0.157573 + 0.987507i \(0.550367\pi\)
\(522\) 0 0
\(523\) 7.47929 10.2944i 0.327047 0.450141i −0.613556 0.789651i \(-0.710261\pi\)
0.940602 + 0.339510i \(0.110261\pi\)
\(524\) −7.82493 8.69046i −0.341834 0.379645i
\(525\) 0 0
\(526\) −25.1008 11.1756i −1.09445 0.487278i
\(527\) 9.89606 + 17.1405i 0.431079 + 0.746651i
\(528\) 0 0
\(529\) −8.69973 + 15.0684i −0.378249 + 0.655147i
\(530\) 8.49070 6.16886i 0.368813 0.267958i
\(531\) 0 0
\(532\) 1.25079 3.84955i 0.0542288 0.166899i
\(533\) −1.72830 3.88182i −0.0748609 0.168140i
\(534\) 0 0
\(535\) −1.19918 5.64172i −0.0518453 0.243913i
\(536\) −13.6870 + 15.2010i −0.591188 + 0.656581i
\(537\) 0 0
\(538\) 24.0009 + 13.8569i 1.03475 + 0.597414i
\(539\) −18.7321 + 8.86584i −0.806849 + 0.381879i
\(540\) 0 0
\(541\) 2.30481 + 3.17230i 0.0990915 + 0.136388i 0.855684 0.517499i \(-0.173137\pi\)
−0.756592 + 0.653887i \(0.773137\pi\)
\(542\) 3.09409 14.5565i 0.132902 0.625257i
\(543\) 0 0
\(544\) −1.18060 + 11.2327i −0.0506178 + 0.481596i
\(545\) 1.65986 15.7925i 0.0711006 0.676477i
\(546\) 0 0
\(547\) 2.24588 10.5660i 0.0960269 0.451771i −0.903695 0.428177i \(-0.859156\pi\)
0.999722 0.0235938i \(-0.00751083\pi\)
\(548\) −7.00292 9.63869i −0.299150 0.411745i
\(549\) 0 0
\(550\) −14.2305 + 6.73523i −0.606789 + 0.287191i
\(551\) 21.7509 + 12.5579i 0.926618 + 0.534983i
\(552\) 0 0
\(553\) −4.37791 + 4.86217i −0.186168 + 0.206760i
\(554\) 1.59841 + 7.51993i 0.0679100 + 0.319491i
\(555\) 0 0
\(556\) 1.69160 + 3.79939i 0.0717397 + 0.161130i
\(557\) −7.06108 + 21.7318i −0.299188 + 0.920805i 0.682595 + 0.730797i \(0.260851\pi\)
−0.981783 + 0.190008i \(0.939149\pi\)
\(558\) 0 0
\(559\) −3.65507 + 2.65556i −0.154593 + 0.112318i
\(560\) −0.894330 + 1.54903i −0.0377924 + 0.0654583i
\(561\) 0 0
\(562\) 0.353491 + 0.612264i 0.0149111 + 0.0258268i
\(563\) −9.90656 4.41068i −0.417512 0.185888i 0.187219 0.982318i \(-0.440053\pi\)
−0.604731 + 0.796430i \(0.706719\pi\)
\(564\) 0 0
\(565\) −5.02274 5.57832i −0.211308 0.234682i
\(566\) −12.8008 + 17.6188i −0.538058 + 0.740574i
\(567\) 0 0
\(568\) −32.5816 10.5864i −1.36709 0.444195i
\(569\) −16.4533 3.49726i −0.689758 0.146613i −0.150320 0.988637i \(-0.548030\pi\)
−0.539439 + 0.842025i \(0.681364\pi\)
\(570\) 0 0
\(571\) 14.1246 8.15487i 0.591098 0.341271i −0.174434 0.984669i \(-0.555809\pi\)
0.765532 + 0.643398i \(0.222476\pi\)
\(572\) 2.48415 0.871301i 0.103867 0.0364309i
\(573\) 0 0
\(574\) −3.57827 + 0.376091i −0.149354 + 0.0156977i
\(575\) 9.27503 3.01364i 0.386795 0.125677i
\(576\) 0 0
\(577\) 6.51886 + 4.73623i 0.271384 + 0.197172i 0.715150 0.698971i \(-0.246358\pi\)
−0.443767 + 0.896142i \(0.646358\pi\)
\(578\) −7.66382 + 3.41215i −0.318773 + 0.141927i
\(579\) 0 0
\(580\) 1.69789 + 1.52878i 0.0705009 + 0.0634793i
\(581\) −5.08730 + 11.4263i −0.211057 + 0.474042i
\(582\) 0 0
\(583\) −12.4228 + 29.7385i −0.514499 + 1.23164i
\(584\) 10.6773i 0.441830i
\(585\) 0 0
\(586\) −0.748511 2.30368i −0.0309207 0.0951642i
\(587\) 11.6957 10.5309i 0.482733 0.434655i −0.391488 0.920183i \(-0.628039\pi\)
0.874221 + 0.485528i \(0.161373\pi\)
\(588\) 0 0
\(589\) −43.8057 4.60417i −1.80498 0.189711i
\(590\) 9.18672 1.95270i 0.378211 0.0803913i
\(591\) 0 0
\(592\) −1.83762 17.4838i −0.0755258 0.718580i
\(593\) −22.2880 −0.915258 −0.457629 0.889143i \(-0.651301\pi\)
−0.457629 + 0.889143i \(0.651301\pi\)
\(594\) 0 0
\(595\) −2.53351 −0.103864
\(596\) −0.519352 4.94131i −0.0212735 0.202404i
\(597\) 0 0
\(598\) 3.14445 0.668374i 0.128586 0.0273318i
\(599\) 28.4493 + 2.99015i 1.16241 + 0.122174i 0.666025 0.745930i \(-0.267994\pi\)
0.496383 + 0.868104i \(0.334661\pi\)
\(600\) 0 0
\(601\) 5.29836 4.77067i 0.216125 0.194600i −0.553956 0.832546i \(-0.686882\pi\)
0.770081 + 0.637946i \(0.220216\pi\)
\(602\) 1.18215 + 3.63829i 0.0481809 + 0.148286i
\(603\) 0 0
\(604\) 9.07594i 0.369295i
\(605\) −5.66898 + 8.61579i −0.230477 + 0.350282i
\(606\) 0 0
\(607\) −1.85819 + 4.17355i −0.0754215 + 0.169399i −0.947321 0.320285i \(-0.896221\pi\)
0.871900 + 0.489684i \(0.162888\pi\)
\(608\) −18.6795 16.8191i −0.757555 0.682106i
\(609\) 0 0
\(610\) 13.3881 5.96078i 0.542070 0.241345i
\(611\) 0.152805 + 0.111019i 0.00618182 + 0.00449135i
\(612\) 0 0
\(613\) −37.1400 + 12.0675i −1.50007 + 0.487402i −0.940038 0.341069i \(-0.889211\pi\)
−0.560032 + 0.828471i \(0.689211\pi\)
\(614\) 20.1753 2.12051i 0.814208 0.0855767i
\(615\) 0 0
\(616\) −0.205171 8.85013i −0.00826656 0.356582i
\(617\) −27.0174 + 15.5985i −1.08768 + 0.627972i −0.932958 0.359986i \(-0.882782\pi\)
−0.154722 + 0.987958i \(0.549448\pi\)
\(618\) 0 0
\(619\) −31.5210 6.69999i −1.26693 0.269295i −0.475046 0.879961i \(-0.657569\pi\)
−0.791889 + 0.610665i \(0.790902\pi\)
\(620\) −3.81077 1.23819i −0.153044 0.0497270i
\(621\) 0 0
\(622\) 7.45109 10.2556i 0.298762 0.411210i
\(623\) 5.38571 + 5.98144i 0.215774 + 0.239641i
\(624\) 0 0
\(625\) 11.4984 + 5.11940i 0.459935 + 0.204776i
\(626\) 2.24709 + 3.89207i 0.0898117 + 0.155558i
\(627\) 0 0
\(628\) −0.986830 + 1.70924i −0.0393788 + 0.0682061i
\(629\) 20.1453 14.6365i 0.803248 0.583594i
\(630\) 0 0
\(631\) −0.555911 + 1.71092i −0.0221305 + 0.0681105i −0.961512 0.274764i \(-0.911400\pi\)
0.939381 + 0.342874i \(0.111400\pi\)
\(632\) 9.45297 + 21.2317i 0.376019 + 0.844552i
\(633\) 0 0
\(634\) −5.17364 24.3400i −0.205471 0.966667i
\(635\) −3.98647 + 4.42743i −0.158198 + 0.175697i
\(636\) 0 0
\(637\) 6.38142 + 3.68432i 0.252841 + 0.145978i
\(638\) 13.5922 + 2.56138i 0.538120 + 0.101406i
\(639\) 0 0
\(640\) 1.45023 + 1.99606i 0.0573252 + 0.0789014i
\(641\) −1.60208 + 7.53719i −0.0632783 + 0.297701i −0.998395 0.0566398i \(-0.981961\pi\)
0.935116 + 0.354341i \(0.115295\pi\)
\(642\) 0 0
\(643\) −2.21750 + 21.0981i −0.0874496 + 0.832028i 0.859606 + 0.510958i \(0.170709\pi\)
−0.947056 + 0.321070i \(0.895958\pi\)
\(644\) −0.144330 + 1.37321i −0.00568740 + 0.0541120i
\(645\) 0 0
\(646\) −5.17928 + 24.3666i −0.203776 + 0.958690i
\(647\) 29.4465 + 40.5296i 1.15766 + 1.59338i 0.719511 + 0.694482i \(0.244366\pi\)
0.438150 + 0.898902i \(0.355634\pi\)
\(648\) 0 0
\(649\) −20.9803 + 19.7902i −0.823548 + 0.776834i
\(650\) 4.84786 + 2.79891i 0.190149 + 0.109782i
\(651\) 0 0
\(652\) 9.91677 11.0137i 0.388371 0.431329i
\(653\) 3.66275 + 17.2319i 0.143334 + 0.674335i 0.989867 + 0.141998i \(0.0453527\pi\)
−0.846533 + 0.532337i \(0.821314\pi\)
\(654\) 0 0
\(655\) −6.62563 14.8814i −0.258885 0.581465i
\(656\) −2.45053 + 7.54197i −0.0956772 + 0.294464i
\(657\) 0 0
\(658\) 0.129387 0.0940050i 0.00504402 0.00366470i
\(659\) −10.5664 + 18.3016i −0.411609 + 0.712928i −0.995066 0.0992163i \(-0.968366\pi\)
0.583457 + 0.812144i \(0.301700\pi\)
\(660\) 0 0
\(661\) 5.51647 + 9.55480i 0.214566 + 0.371639i 0.953138 0.302535i \(-0.0978331\pi\)
−0.738572 + 0.674174i \(0.764500\pi\)
\(662\) −7.21061 3.21037i −0.280248 0.124775i
\(663\) 0 0
\(664\) 29.7292 + 33.0177i 1.15372 + 1.28133i
\(665\) 3.31411 4.56147i 0.128515 0.176886i
\(666\) 0 0
\(667\) −8.14837 2.64757i −0.315506 0.102514i
\(668\) 0.424476 + 0.0902251i 0.0164235 + 0.00349091i
\(669\) 0 0
\(670\) −6.21341 + 3.58731i −0.240045 + 0.138590i
\(671\) −25.6017 + 37.0122i −0.988341 + 1.42884i
\(672\) 0 0
\(673\) 30.9325 3.25113i 1.19236 0.125322i 0.512515 0.858678i \(-0.328714\pi\)
0.679844 + 0.733356i \(0.262047\pi\)
\(674\) −0.809780 + 0.263113i −0.0311915 + 0.0101347i
\(675\) 0 0
\(676\) 6.32175 + 4.59302i 0.243144 + 0.176655i
\(677\) 19.5106 8.68666i 0.749852 0.333856i 0.00402196 0.999992i \(-0.498720\pi\)
0.745830 + 0.666136i \(0.232053\pi\)
\(678\) 0 0
\(679\) 7.84802 + 7.06639i 0.301179 + 0.271183i
\(680\) −3.66046 + 8.22152i −0.140372 + 0.315281i
\(681\) 0 0
\(682\) −23.6037 + 5.59188i −0.903832 + 0.214124i
\(683\) 17.2570i 0.660321i 0.943925 + 0.330161i \(0.107103\pi\)
−0.943925 + 0.330161i \(0.892897\pi\)
\(684\) 0 0
\(685\) −5.12846 15.7838i −0.195949 0.603068i
\(686\) 9.83106 8.85193i 0.375352 0.337968i
\(687\) 0 0
\(688\) 8.38543 + 0.881344i 0.319691 + 0.0336009i
\(689\) 11.2088 2.38250i 0.427020 0.0907659i
\(690\) 0 0
\(691\) −2.19032 20.8395i −0.0833236 0.792771i −0.953776 0.300518i \(-0.902840\pi\)
0.870452 0.492253i \(-0.163826\pi\)
\(692\) 9.08243 0.345262
\(693\) 0 0
\(694\) −13.7130 −0.520539
\(695\) 0.605568 + 5.76159i 0.0229705 + 0.218550i
\(696\) 0 0
\(697\) −10.9870 + 2.33535i −0.416161 + 0.0884578i
\(698\) 11.6703 + 1.22660i 0.441728 + 0.0464275i
\(699\) 0 0
\(700\) −1.78679 + 1.60883i −0.0675344 + 0.0608082i
\(701\) −15.1348 46.5802i −0.571634 1.75931i −0.647364 0.762181i \(-0.724128\pi\)
0.0757293 0.997128i \(-0.475872\pi\)
\(702\) 0 0
\(703\) 55.4168i 2.09008i
\(704\) −26.2431 10.9626i −0.989074 0.413170i
\(705\) 0 0
\(706\) −14.7540 + 33.1380i −0.555273 + 1.24716i
\(707\) 3.90261 + 3.51393i 0.146773 + 0.132155i
\(708\) 0 0
\(709\) 37.9596 16.9007i 1.42560 0.634719i 0.458404 0.888744i \(-0.348421\pi\)
0.967198 + 0.254025i \(0.0817546\pi\)
\(710\) −9.72133 7.06296i −0.364835 0.265068i
\(711\) 0 0
\(712\) 27.1917 8.83513i 1.01905 0.331111i
\(713\) 14.9434 1.57062i 0.559635 0.0588200i
\(714\) 0 0
\(715\) 3.66606 0.0849893i 0.137103 0.00317842i
\(716\) −0.651774 + 0.376302i −0.0243579 + 0.0140631i
\(717\) 0 0
\(718\) 31.2700 + 6.64664i 1.16699 + 0.248050i
\(719\) 27.4285 + 8.91207i 1.02291 + 0.332364i 0.771984 0.635642i \(-0.219264\pi\)
0.250927 + 0.968006i \(0.419264\pi\)
\(720\) 0 0
\(721\) 2.03223 2.79713i 0.0756843 0.104170i
\(722\) −22.4510 24.9343i −0.835539 0.927960i
\(723\) 0 0
\(724\) −14.2812 6.35839i −0.530756 0.236308i
\(725\) −7.45956 12.9203i −0.277041 0.479849i
\(726\) 0 0
\(727\) −9.19217 + 15.9213i −0.340919 + 0.590489i −0.984604 0.174802i \(-0.944071\pi\)
0.643685 + 0.765291i \(0.277405\pi\)
\(728\) −2.54643 + 1.85009i −0.0943770 + 0.0685689i
\(729\) 0 0
\(730\) 1.15730 3.56181i 0.0428336 0.131828i
\(731\) 4.85757 + 10.9103i 0.179664 + 0.403532i
\(732\) 0 0
\(733\) 6.56061 + 30.8652i 0.242322 + 1.14003i 0.916053 + 0.401057i \(0.131357\pi\)
−0.673732 + 0.738976i \(0.735310\pi\)
\(734\) −13.0155 + 14.4551i −0.480409 + 0.533549i
\(735\) 0 0
\(736\) 7.42577 + 4.28727i 0.273718 + 0.158031i
\(737\) 10.5710 19.3307i 0.389386 0.712055i
\(738\) 0 0
\(739\) −26.9990 37.1609i −0.993173 1.36698i −0.929422 0.369019i \(-0.879694\pi\)
−0.0637507 0.997966i \(-0.520306\pi\)
\(740\) −1.04812 + 4.93100i −0.0385296 + 0.181267i
\(741\) 0 0
\(742\) 1.01424 9.64986i 0.0372340 0.354257i
\(743\) −2.27001 + 21.5977i −0.0832787 + 0.792344i 0.870568 + 0.492049i \(0.163752\pi\)
−0.953846 + 0.300295i \(0.902915\pi\)
\(744\) 0 0
\(745\) 1.43897 6.76981i 0.0527197 0.248027i
\(746\) −4.06871 5.60010i −0.148966 0.205034i
\(747\) 0 0
\(748\) −0.887605 6.90204i −0.0324541 0.252364i
\(749\) −4.61805 2.66623i −0.168740 0.0974220i
\(750\) 0 0
\(751\) 11.3807 12.6396i 0.415288 0.461224i −0.498813 0.866709i \(-0.666231\pi\)
0.914102 + 0.405485i \(0.132897\pi\)
\(752\) −0.0732877 0.344791i −0.00267253 0.0125733i
\(753\) 0 0
\(754\) −2.00027 4.49267i −0.0728454 0.163613i
\(755\) 3.90677 12.0238i 0.142182 0.437591i
\(756\) 0 0
\(757\) −18.8951 + 13.7281i −0.686756 + 0.498957i −0.875592 0.483051i \(-0.839528\pi\)
0.188836 + 0.982009i \(0.439528\pi\)
\(758\) −4.90028 + 8.48753i −0.177986 + 0.308281i
\(759\) 0 0
\(760\) −10.0142 17.3451i −0.363253 0.629173i
\(761\) −18.5426 8.25571i −0.672170 0.299269i 0.0421271 0.999112i \(-0.486587\pi\)
−0.714297 + 0.699843i \(0.753253\pi\)
\(762\) 0 0
\(763\) −9.82355 10.9102i −0.355636 0.394974i
\(764\) 1.18346 1.62889i 0.0428159 0.0589310i
\(765\) 0 0
\(766\) −11.0916 3.60388i −0.400755 0.130213i
\(767\) 10.0306 + 2.13208i 0.362185 + 0.0769848i
\(768\) 0 0
\(769\) −20.3619 + 11.7559i −0.734268 + 0.423930i −0.819981 0.572390i \(-0.806016\pi\)
0.0857137 + 0.996320i \(0.472683\pi\)
\(770\) 0.890813 2.97452i 0.0321027 0.107194i
\(771\) 0 0
\(772\) −6.62038 + 0.695830i −0.238273 + 0.0250435i
\(773\) −12.8627 + 4.17933i −0.462638 + 0.150320i −0.531056 0.847337i \(-0.678205\pi\)
0.0684183 + 0.997657i \(0.478205\pi\)
\(774\) 0 0
\(775\) 21.1676 + 15.3792i 0.760362 + 0.552436i
\(776\) 34.2701 15.2580i 1.23022 0.547731i
\(777\) 0 0
\(778\) −7.98841 7.19279i −0.286398 0.257874i
\(779\) 10.1674 22.8364i 0.364286 0.818200i
\(780\) 0 0
\(781\) 36.7775 + 3.00554i 1.31600 + 0.107547i
\(782\) 8.49784i 0.303882i
\(783\) 0 0
\(784\) −4.24954 13.0787i −0.151769 0.467098i
\(785\) −2.04310 + 1.83962i −0.0729215 + 0.0656588i
\(786\) 0 0
\(787\) 46.0880 + 4.84404i 1.64286 + 0.172671i 0.880356 0.474313i \(-0.157303\pi\)
0.762503 + 0.646984i \(0.223970\pi\)
\(788\) 3.25613 0.692112i 0.115995 0.0246555i
\(789\) 0 0
\(790\) 0.852102 + 8.10721i 0.0303164 + 0.288442i
\(791\) −6.93985 −0.246753
\(792\) 0 0
\(793\) 16.0014 0.568226
\(794\) −1.24415 11.8373i −0.0441533 0.420090i
\(795\) 0 0
\(796\) −5.03572 + 1.07038i −0.178486 + 0.0379384i
\(797\) 48.4746 + 5.09489i 1.71706 + 0.180470i 0.911291 0.411762i \(-0.135087\pi\)
0.805767 + 0.592232i \(0.201753\pi\)
\(798\) 0 0
\(799\) 0.371040 0.334086i 0.0131265 0.0118191i
\(800\) 4.61394 + 14.2003i 0.163127 + 0.502055i
\(801\) 0 0
\(802\) 17.0865i 0.603345i
\(803\) 2.65121 + 11.1909i 0.0935590 + 0.394919i
\(804\) 0 0
\(805\) −0.782311 + 1.75710i −0.0275728 + 0.0619296i
\(806\) 6.40942 + 5.77107i 0.225762 + 0.203277i
\(807\) 0 0
\(808\) 17.0416 7.58741i 0.599521 0.266924i
\(809\) −4.11235 2.98780i −0.144583 0.105045i 0.513143 0.858303i \(-0.328481\pi\)
−0.657725 + 0.753258i \(0.728481\pi\)
\(810\) 0 0
\(811\) 5.95516 1.93495i 0.209114 0.0679453i −0.202587 0.979264i \(-0.564935\pi\)
0.411701 + 0.911319i \(0.364935\pi\)
\(812\) 2.10073 0.220796i 0.0737212 0.00774841i
\(813\) 0 0
\(814\) 10.1009 + 28.7984i 0.354036 + 1.00938i
\(815\) 17.8786 10.3222i 0.626261 0.361572i
\(816\) 0 0
\(817\) −25.9977 5.52598i −0.909544 0.193330i
\(818\) −9.57054 3.10966i −0.334626 0.108727i
\(819\) 0 0
\(820\) 1.33661 1.83969i 0.0466766 0.0642448i
\(821\) −23.0033 25.5477i −0.802820 0.891621i 0.193163 0.981167i \(-0.438125\pi\)
−0.995983 + 0.0895452i \(0.971459\pi\)
\(822\) 0 0
\(823\) 9.65088 + 4.29685i 0.336408 + 0.149779i 0.567987 0.823038i \(-0.307722\pi\)
−0.231579 + 0.972816i \(0.574389\pi\)
\(824\) −6.14077 10.6361i −0.213924 0.370527i
\(825\) 0 0
\(826\) 4.34157 7.51982i 0.151063 0.261648i
\(827\) −22.4299 + 16.2963i −0.779965 + 0.566678i −0.904969 0.425479i \(-0.860106\pi\)
0.125004 + 0.992156i \(0.460106\pi\)
\(828\) 0 0
\(829\) 7.49749 23.0749i 0.260399 0.801425i −0.732319 0.680962i \(-0.761562\pi\)
0.992718 0.120463i \(-0.0384379\pi\)
\(830\) 6.33853 + 14.2366i 0.220014 + 0.494158i
\(831\) 0 0
\(832\) 2.10246 + 9.89132i 0.0728898 + 0.342920i
\(833\) 13.0336 14.4753i 0.451589 0.501540i
\(834\) 0 0
\(835\) 0.523508 + 0.302248i 0.0181168 + 0.0104597i
\(836\) 13.5879 + 7.43051i 0.469947 + 0.256990i
\(837\) 0 0
\(838\) −23.8144 32.7778i −0.822656 1.13229i
\(839\) −4.51778 + 21.2545i −0.155971 + 0.733786i 0.828746 + 0.559625i \(0.189055\pi\)
−0.984717 + 0.174161i \(0.944279\pi\)
\(840\) 0 0
\(841\) 1.66129 15.8061i 0.0572857 0.545037i
\(842\) 0.192099 1.82770i 0.00662015 0.0629866i
\(843\) 0 0
\(844\) 3.28936 15.4752i 0.113224 0.532679i
\(845\) 6.39798 + 8.80607i 0.220097 + 0.302938i
\(846\) 0 0
\(847\) 2.41255 + 9.22492i 0.0828963 + 0.316972i
\(848\) −18.5207 10.6929i −0.636003 0.367196i
\(849\) 0 0
\(850\) 9.90144 10.9967i 0.339617 0.377182i
\(851\) −3.93042 18.4912i −0.134733 0.633869i
\(852\) 0 0
\(853\) −16.6944 37.4962i −0.571604 1.28384i −0.935803 0.352523i \(-0.885324\pi\)
0.364199 0.931321i \(-0.381343\pi\)
\(854\) 4.18690 12.8860i 0.143273 0.440948i
\(855\) 0 0
\(856\) −15.3244 + 11.1338i −0.523778 + 0.380547i
\(857\) −3.74660 + 6.48930i −0.127981 + 0.221670i −0.922894 0.385053i \(-0.874183\pi\)
0.794913 + 0.606723i \(0.207516\pi\)
\(858\) 0 0
\(859\) −0.815011 1.41164i −0.0278078 0.0481646i 0.851787 0.523889i \(-0.175519\pi\)
−0.879594 + 0.475724i \(0.842186\pi\)
\(860\) −2.20877 0.983407i −0.0753184 0.0335339i
\(861\) 0 0
\(862\) −22.7381 25.2532i −0.774463 0.860129i
\(863\) −11.2828 + 15.5294i −0.384070 + 0.528626i −0.956657 0.291217i \(-0.905940\pi\)
0.572587 + 0.819844i \(0.305940\pi\)
\(864\) 0 0
\(865\) 12.0324 + 3.90957i 0.409114 + 0.132929i
\(866\) −12.9146 2.74508i −0.438855 0.0932814i
\(867\) 0 0
\(868\) −3.20817 + 1.85224i −0.108892 + 0.0628690i
\(869\) −15.1796 19.9058i −0.514932 0.675259i
\(870\) 0 0
\(871\) −7.79079 + 0.818845i −0.263981 + 0.0277455i
\(872\) −49.5978 + 16.1153i −1.67959 + 0.545733i
\(873\) 0 0
\(874\) 15.3000 + 11.1161i 0.517529 + 0.376007i
\(875\) −6.77204 + 3.01511i −0.228937 + 0.101929i
\(876\) 0 0
\(877\) 41.7575 + 37.5986i 1.41005 + 1.26962i 0.916579 + 0.399854i \(0.130939\pi\)
0.493472 + 0.869762i \(0.335728\pi\)
\(878\) 1.42330 3.19679i 0.0480342 0.107887i
\(879\) 0 0
\(880\) −5.19060 4.46020i −0.174975 0.150353i
\(881\) 16.2929i 0.548922i −0.961598 0.274461i \(-0.911501\pi\)
0.961598 0.274461i \(-0.0884994\pi\)
\(882\) 0 0
\(883\) −9.20073 28.3169i −0.309629 0.952941i −0.977909 0.209031i \(-0.932969\pi\)
0.668280 0.743910i \(-0.267031\pi\)
\(884\) −1.83874 + 1.65561i −0.0618436 + 0.0556842i
\(885\) 0 0
\(886\) −18.9621 1.99299i −0.637043 0.0669559i
\(887\) 1.10473 0.234817i 0.0370931 0.00788437i −0.189328 0.981914i \(-0.560631\pi\)
0.226421 + 0.974030i \(0.427298\pi\)
\(888\) 0 0
\(889\) 0.575749 + 5.47789i 0.0193100 + 0.183722i
\(890\) 10.0284 0.336154
\(891\) 0 0
\(892\) 14.0668 0.470992
\(893\) 0.116147 + 1.10506i 0.00388670 + 0.0369794i
\(894\) 0 0
\(895\) −1.02545 + 0.217966i −0.0342771 + 0.00728581i
\(896\) 2.26857 + 0.238436i 0.0757876 + 0.00796559i
\(897\) 0 0
\(898\) 0.222485 0.200326i 0.00742441 0.00668497i
\(899\) −7.10316 21.8613i −0.236904 0.729114i
\(900\) 0 0
\(901\) 30.2916i 1.00916i
\(902\) 1.12128 13.7206i 0.0373346 0.456846i
\(903\) 0 0
\(904\) −10.0268 + 22.5205i −0.333486 + 0.749022i
\(905\) −16.1827 14.5710i −0.537932 0.484356i
\(906\) 0 0
\(907\) 24.3607 10.8461i 0.808882 0.360138i 0.0397359 0.999210i \(-0.487348\pi\)
0.769146 + 0.639073i \(0.220682\pi\)
\(908\) −6.46774 4.69909i −0.214639 0.155945i
\(909\) 0 0
\(910\) −1.04998 + 0.341161i −0.0348066 + 0.0113094i
\(911\) −3.89697 + 0.409588i −0.129112 + 0.0135703i −0.168864 0.985639i \(-0.554010\pi\)
0.0397518 + 0.999210i \(0.487343\pi\)
\(912\) 0 0
\(913\) −39.3577 27.2241i −1.30255 0.900986i
\(914\) −5.42679 + 3.13316i −0.179502 + 0.103636i
\(915\) 0 0
\(916\) 6.45273 + 1.37157i 0.213204 + 0.0453180i
\(917\) −14.3232 4.65390i −0.472994 0.153685i
\(918\) 0 0
\(919\) −7.16542 + 9.86236i −0.236365 + 0.325329i −0.910678 0.413117i \(-0.864440\pi\)
0.674313 + 0.738446i \(0.264440\pi\)
\(920\) 4.57168 + 5.07736i 0.150724 + 0.167396i
\(921\) 0 0
\(922\) 30.8997 + 13.7574i 1.01763 + 0.453077i
\(923\) −6.56003 11.3623i −0.215926 0.373995i
\(924\) 0 0
\(925\) 16.4592 28.5082i 0.541175 0.937343i
\(926\) −18.9950 + 13.8007i −0.624216 + 0.453519i
\(927\) 0 0
\(928\) 4.05348 12.4753i 0.133062 0.409522i
\(929\) 1.91994 + 4.31226i 0.0629912 + 0.141481i 0.942298 0.334775i \(-0.108660\pi\)
−0.879307 + 0.476256i \(0.841994\pi\)
\(930\) 0 0
\(931\) 9.01277 + 42.4017i 0.295382 + 1.38966i
\(932\) 7.02682 7.80407i 0.230171 0.255631i
\(933\) 0 0
\(934\) 0.498520 + 0.287821i 0.0163121 + 0.00941778i
\(935\) 1.79511 9.52591i 0.0587064 0.311530i
\(936\) 0 0
\(937\) −17.0091 23.4110i −0.555662 0.764803i 0.435105 0.900380i \(-0.356711\pi\)
−0.990767 + 0.135577i \(0.956711\pi\)
\(938\) −1.37911 + 6.48820i −0.0450295 + 0.211847i
\(939\) 0 0
\(940\) −0.0105656 + 0.100525i −0.000344613 + 0.00327877i
\(941\) 5.95507 56.6587i 0.194130 1.84702i −0.271992 0.962299i \(-0.587683\pi\)
0.466122 0.884720i \(-0.345651\pi\)
\(942\) 0 0
\(943\) −1.77295 + 8.34105i −0.0577350 + 0.271622i
\(944\) −11.2490 15.4830i −0.366125 0.503928i
\(945\) 0 0
\(946\) −14.5174 + 1.86695i −0.472002 + 0.0606997i
\(947\) −0.812966 0.469366i −0.0264179 0.0152524i 0.486733 0.873551i \(-0.338188\pi\)
−0.513151 + 0.858298i \(0.671522\pi\)
\(948\) 0 0
\(949\) 2.73617 3.03882i 0.0888197 0.0986443i
\(950\) 6.84685 + 32.2119i 0.222141 + 1.04509i
\(951\) 0 0
\(952\) 3.38420 + 7.60103i 0.109682 + 0.246351i
\(953\) 3.50554 10.7889i 0.113556 0.349488i −0.878087 0.478500i \(-0.841181\pi\)
0.991643 + 0.129012i \(0.0411806\pi\)
\(954\) 0 0
\(955\) 2.26900 1.64853i 0.0734232 0.0533451i
\(956\) −10.0876 + 17.4722i −0.326256 + 0.565092i
\(957\) 0 0
\(958\) 6.18978 + 10.7210i 0.199983 + 0.346380i
\(959\) −14.0170 6.24078i −0.452633 0.201525i
\(960\) 0 0
\(961\) 6.23130 + 6.92056i 0.201010 + 0.223244i
\(962\) 6.37807 8.77866i 0.205637 0.283035i
\(963\) 0 0
\(964\) 1.21485 + 0.394730i 0.0391278 + 0.0127134i
\(965\) −9.07021 1.92793i −0.291980 0.0620623i
\(966\) 0 0
\(967\) −14.9869 + 8.65272i −0.481948 + 0.278253i −0.721228 0.692698i \(-0.756422\pi\)
0.239280 + 0.970951i \(0.423089\pi\)
\(968\) 33.4215 + 5.49929i 1.07421 + 0.176754i
\(969\) 0 0
\(970\) 13.0858 1.37538i 0.420161 0.0441607i
\(971\) 23.6890 7.69701i 0.760215 0.247009i 0.0968441 0.995300i \(-0.469125\pi\)
0.663371 + 0.748291i \(0.269125\pi\)
\(972\) 0 0
\(973\) 4.33318 + 3.14824i 0.138915 + 0.100928i
\(974\) 32.1213 14.3013i 1.02923 0.458244i
\(975\) 0 0
\(976\) −22.1924 19.9821i −0.710360 0.639611i
\(977\) −3.04616 + 6.84178i −0.0974552 + 0.218888i −0.955694 0.294363i \(-0.904892\pi\)
0.858238 + 0.513251i \(0.171559\pi\)
\(978\) 0 0
\(979\) −26.3060 + 16.0119i −0.840743 + 0.511743i
\(980\) 3.94338i 0.125967i
\(981\) 0 0
\(982\) 8.92466 + 27.4673i 0.284797 + 0.876516i
\(983\) −3.96119 + 3.56667i −0.126342 + 0.113759i −0.729880 0.683575i \(-0.760424\pi\)
0.603538 + 0.797335i \(0.293757\pi\)
\(984\) 0 0
\(985\) 4.61165 + 0.484703i 0.146939 + 0.0154439i
\(986\) −12.7159 + 2.70285i −0.404957 + 0.0860762i
\(987\) 0 0
\(988\) −0.575581 5.47628i −0.0183117 0.174224i
\(989\) 9.06669 0.288304
\(990\) 0 0
\(991\) −23.5423 −0.747846 −0.373923 0.927460i \(-0.621988\pi\)
−0.373923 + 0.927460i \(0.621988\pi\)
\(992\) 2.40464 + 22.8786i 0.0763475 + 0.726398i
\(993\) 0 0
\(994\) −10.8666 + 2.30976i −0.344667 + 0.0732612i
\(995\) −7.13207 0.749611i −0.226102 0.0237643i
\(996\) 0 0
\(997\) 10.5563 9.50498i 0.334323 0.301026i −0.484821 0.874613i \(-0.661115\pi\)
0.819144 + 0.573588i \(0.194449\pi\)
\(998\) 1.76924 + 5.44517i 0.0560044 + 0.172364i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.t.a.8.3 80
3.2 odd 2 99.2.p.a.74.8 yes 80
9.2 odd 6 891.2.k.a.404.14 80
9.4 even 3 99.2.p.a.41.8 yes 80
9.5 odd 6 inner 297.2.t.a.206.3 80
9.7 even 3 891.2.k.a.404.7 80
11.7 odd 10 inner 297.2.t.a.62.3 80
33.29 even 10 99.2.p.a.29.8 80
99.7 odd 30 891.2.k.a.161.14 80
99.29 even 30 891.2.k.a.161.7 80
99.40 odd 30 99.2.p.a.95.8 yes 80
99.95 even 30 inner 297.2.t.a.260.3 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.8 80 33.29 even 10
99.2.p.a.41.8 yes 80 9.4 even 3
99.2.p.a.74.8 yes 80 3.2 odd 2
99.2.p.a.95.8 yes 80 99.40 odd 30
297.2.t.a.8.3 80 1.1 even 1 trivial
297.2.t.a.62.3 80 11.7 odd 10 inner
297.2.t.a.206.3 80 9.5 odd 6 inner
297.2.t.a.260.3 80 99.95 even 30 inner
891.2.k.a.161.7 80 99.29 even 30
891.2.k.a.161.14 80 99.7 odd 30
891.2.k.a.404.7 80 9.7 even 3
891.2.k.a.404.14 80 9.2 odd 6