Properties

Label 297.2.t.a.8.10
Level $297$
Weight $2$
Character 297.8
Analytic conductor $2.372$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(8,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.8");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.t (of order \(30\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 8.10
Character \(\chi\) \(=\) 297.8
Dual form 297.2.t.a.260.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.281588 + 2.67913i) q^{2} +(-5.14217 + 1.09300i) q^{4} +(-1.43896 - 0.151241i) q^{5} +(-1.07283 + 0.965979i) q^{7} +(-2.71136 - 8.34470i) q^{8} -3.89775i q^{10} +(-2.66871 - 1.96926i) q^{11} +(-1.21080 + 2.71950i) q^{13} +(-2.89008 - 2.60224i) q^{14} +(11.9880 - 5.33739i) q^{16} +(3.35854 + 2.44012i) q^{17} +(-1.19136 + 0.387096i) q^{19} +(7.56469 - 0.795081i) q^{20} +(4.52444 - 7.70435i) q^{22} +(-5.02939 + 2.90372i) q^{23} +(-2.84300 - 0.604299i) q^{25} +(-7.62685 - 2.47811i) q^{26} +(4.46085 - 6.13983i) q^{28} +(0.0651453 + 0.0723511i) q^{29} +(3.73471 + 1.66280i) q^{31} +(8.90112 + 15.4172i) q^{32} +(-5.59169 + 9.68509i) q^{34} +(1.68985 - 1.22775i) q^{35} +(-3.08635 + 9.49880i) q^{37} +(-1.37255 - 3.08281i) q^{38} +(2.63948 + 12.4178i) q^{40} +(3.05835 - 3.39664i) q^{41} +(-1.84140 - 1.06313i) q^{43} +(15.8754 + 7.20937i) q^{44} +(-9.19566 - 12.6567i) q^{46} +(-1.50921 + 7.10026i) q^{47} +(-0.513854 + 4.88899i) q^{49} +(0.818442 - 7.78695i) q^{50} +(3.25372 - 15.3075i) q^{52} +(0.197492 + 0.271824i) q^{53} +(3.54233 + 3.23731i) q^{55} +(10.9696 + 6.33332i) q^{56} +(-0.175494 + 0.194906i) q^{58} +(-0.629292 - 2.96059i) q^{59} +(0.129468 + 0.290790i) q^{61} +(-3.40321 + 10.4740i) q^{62} +(-17.5657 + 12.7622i) q^{64} +(2.15359 - 3.73013i) q^{65} +(-1.71828 - 2.97615i) q^{67} +(-19.9373 - 8.87664i) q^{68} +(3.76515 + 4.18162i) q^{70} +(5.38901 - 7.41734i) q^{71} +(-6.75113 - 2.19358i) q^{73} +(-26.3176 - 5.59399i) q^{74} +(5.70308 - 3.29267i) q^{76} +(4.76533 - 0.465238i) q^{77} +(9.96549 - 1.04742i) q^{79} +(-18.0574 + 5.86722i) q^{80} +(9.96124 + 7.23727i) q^{82} +(-5.44872 + 2.42593i) q^{83} +(-4.46376 - 4.01919i) q^{85} +(2.32976 - 5.23272i) q^{86} +(-9.19707 + 27.6090i) q^{88} +5.11584i q^{89} +(-1.32800 - 4.08716i) q^{91} +(22.6882 - 20.4285i) q^{92} +(-19.4475 - 2.04402i) q^{94} +(1.77286 - 0.376834i) q^{95} +(-0.631450 - 6.00784i) q^{97} -13.2430 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 15 q^{2} + 5 q^{4} + 6 q^{5} - 5 q^{7} + 3 q^{11} - 5 q^{13} + 9 q^{14} + 5 q^{16} - 50 q^{19} + 3 q^{20} - 11 q^{22} + 42 q^{23} - 2 q^{25} - 20 q^{28} - 30 q^{29} - 6 q^{31} - 10 q^{34} - 6 q^{37}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.281588 + 2.67913i 0.199113 + 1.89443i 0.402631 + 0.915362i \(0.368096\pi\)
−0.203518 + 0.979071i \(0.565238\pi\)
\(3\) 0 0
\(4\) −5.14217 + 1.09300i −2.57109 + 0.546501i
\(5\) −1.43896 0.151241i −0.643523 0.0676370i −0.222855 0.974852i \(-0.571538\pi\)
−0.420668 + 0.907215i \(0.638204\pi\)
\(6\) 0 0
\(7\) −1.07283 + 0.965979i −0.405491 + 0.365106i −0.846493 0.532401i \(-0.821290\pi\)
0.441001 + 0.897506i \(0.354623\pi\)
\(8\) −2.71136 8.34470i −0.958610 2.95030i
\(9\) 0 0
\(10\) 3.89775i 1.23258i
\(11\) −2.66871 1.96926i −0.804646 0.593755i
\(12\) 0 0
\(13\) −1.21080 + 2.71950i −0.335815 + 0.754253i 0.664163 + 0.747588i \(0.268788\pi\)
−0.999978 + 0.00666518i \(0.997878\pi\)
\(14\) −2.89008 2.60224i −0.772407 0.695479i
\(15\) 0 0
\(16\) 11.9880 5.33739i 2.99699 1.33435i
\(17\) 3.35854 + 2.44012i 0.814566 + 0.591817i 0.915151 0.403112i \(-0.132071\pi\)
−0.100585 + 0.994928i \(0.532071\pi\)
\(18\) 0 0
\(19\) −1.19136 + 0.387096i −0.273317 + 0.0888059i −0.442468 0.896784i \(-0.645897\pi\)
0.169152 + 0.985590i \(0.445897\pi\)
\(20\) 7.56469 0.795081i 1.69152 0.177785i
\(21\) 0 0
\(22\) 4.52444 7.70435i 0.964613 1.64257i
\(23\) −5.02939 + 2.90372i −1.04870 + 0.605467i −0.922285 0.386511i \(-0.873680\pi\)
−0.126414 + 0.991978i \(0.540347\pi\)
\(24\) 0 0
\(25\) −2.84300 0.604299i −0.568601 0.120860i
\(26\) −7.62685 2.47811i −1.49575 0.485998i
\(27\) 0 0
\(28\) 4.46085 6.13983i 0.843021 1.16032i
\(29\) 0.0651453 + 0.0723511i 0.0120972 + 0.0134353i 0.749163 0.662386i \(-0.230456\pi\)
−0.737066 + 0.675821i \(0.763789\pi\)
\(30\) 0 0
\(31\) 3.73471 + 1.66280i 0.670773 + 0.298647i 0.713721 0.700430i \(-0.247008\pi\)
−0.0429482 + 0.999077i \(0.513675\pi\)
\(32\) 8.90112 + 15.4172i 1.57351 + 2.72540i
\(33\) 0 0
\(34\) −5.59169 + 9.68509i −0.958967 + 1.66098i
\(35\) 1.68985 1.22775i 0.285637 0.207528i
\(36\) 0 0
\(37\) −3.08635 + 9.49880i −0.507392 + 1.56159i 0.289319 + 0.957233i \(0.406571\pi\)
−0.796711 + 0.604360i \(0.793429\pi\)
\(38\) −1.37255 3.08281i −0.222658 0.500098i
\(39\) 0 0
\(40\) 2.63948 + 12.4178i 0.417338 + 1.96342i
\(41\) 3.05835 3.39664i 0.477634 0.530466i −0.455385 0.890295i \(-0.650498\pi\)
0.933018 + 0.359829i \(0.117165\pi\)
\(42\) 0 0
\(43\) −1.84140 1.06313i −0.280811 0.162126i 0.352980 0.935631i \(-0.385168\pi\)
−0.633790 + 0.773505i \(0.718502\pi\)
\(44\) 15.8754 + 7.20937i 2.39330 + 1.08685i
\(45\) 0 0
\(46\) −9.19566 12.6567i −1.35583 1.86614i
\(47\) −1.50921 + 7.10026i −0.220141 + 1.03568i 0.719758 + 0.694225i \(0.244253\pi\)
−0.939898 + 0.341454i \(0.889080\pi\)
\(48\) 0 0
\(49\) −0.513854 + 4.88899i −0.0734077 + 0.698428i
\(50\) 0.818442 7.78695i 0.115745 1.10124i
\(51\) 0 0
\(52\) 3.25372 15.3075i 0.451209 2.12277i
\(53\) 0.197492 + 0.271824i 0.0271276 + 0.0373379i 0.822365 0.568960i \(-0.192654\pi\)
−0.795238 + 0.606298i \(0.792654\pi\)
\(54\) 0 0
\(55\) 3.54233 + 3.23731i 0.477648 + 0.436518i
\(56\) 10.9696 + 6.33332i 1.46588 + 0.846325i
\(57\) 0 0
\(58\) −0.175494 + 0.194906i −0.0230435 + 0.0255924i
\(59\) −0.629292 2.96059i −0.0819268 0.385435i 0.918011 0.396554i \(-0.129794\pi\)
−0.999938 + 0.0111187i \(0.996461\pi\)
\(60\) 0 0
\(61\) 0.129468 + 0.290790i 0.0165767 + 0.0372319i 0.921644 0.388036i \(-0.126846\pi\)
−0.905067 + 0.425268i \(0.860180\pi\)
\(62\) −3.40321 + 10.4740i −0.432208 + 1.33020i
\(63\) 0 0
\(64\) −17.5657 + 12.7622i −2.19571 + 1.59527i
\(65\) 2.15359 3.73013i 0.267120 0.462666i
\(66\) 0 0
\(67\) −1.71828 2.97615i −0.209922 0.363595i 0.741768 0.670657i \(-0.233988\pi\)
−0.951690 + 0.307062i \(0.900654\pi\)
\(68\) −19.9373 8.87664i −2.41775 1.07645i
\(69\) 0 0
\(70\) 3.76515 + 4.18162i 0.450021 + 0.499799i
\(71\) 5.38901 7.41734i 0.639558 0.880276i −0.359034 0.933325i \(-0.616894\pi\)
0.998592 + 0.0530483i \(0.0168937\pi\)
\(72\) 0 0
\(73\) −6.75113 2.19358i −0.790160 0.256739i −0.113988 0.993482i \(-0.536363\pi\)
−0.676172 + 0.736743i \(0.736363\pi\)
\(74\) −26.3176 5.59399i −3.05936 0.650288i
\(75\) 0 0
\(76\) 5.70308 3.29267i 0.654188 0.377695i
\(77\) 4.76533 0.465238i 0.543060 0.0530188i
\(78\) 0 0
\(79\) 9.96549 1.04742i 1.12121 0.117843i 0.474264 0.880383i \(-0.342714\pi\)
0.646942 + 0.762539i \(0.276048\pi\)
\(80\) −18.0574 + 5.86722i −2.01888 + 0.655975i
\(81\) 0 0
\(82\) 9.96124 + 7.23727i 1.10004 + 0.799222i
\(83\) −5.44872 + 2.42593i −0.598075 + 0.266280i −0.683366 0.730076i \(-0.739485\pi\)
0.0852911 + 0.996356i \(0.472818\pi\)
\(84\) 0 0
\(85\) −4.46376 4.01919i −0.484163 0.435942i
\(86\) 2.32976 5.23272i 0.251224 0.564259i
\(87\) 0 0
\(88\) −9.19707 + 27.6090i −0.980411 + 2.94312i
\(89\) 5.11584i 0.542278i 0.962540 + 0.271139i \(0.0874004\pi\)
−0.962540 + 0.271139i \(0.912600\pi\)
\(90\) 0 0
\(91\) −1.32800 4.08716i −0.139212 0.428451i
\(92\) 22.6882 20.4285i 2.36541 2.12982i
\(93\) 0 0
\(94\) −19.4475 2.04402i −2.00586 0.210824i
\(95\) 1.77286 0.376834i 0.181892 0.0386623i
\(96\) 0 0
\(97\) −0.631450 6.00784i −0.0641140 0.610004i −0.978655 0.205511i \(-0.934114\pi\)
0.914541 0.404493i \(-0.132552\pi\)
\(98\) −13.2430 −1.33774
\(99\) 0 0
\(100\) 15.2797 1.52797
\(101\) 1.21696 + 11.5786i 0.121092 + 1.15211i 0.871246 + 0.490847i \(0.163313\pi\)
−0.750154 + 0.661263i \(0.770021\pi\)
\(102\) 0 0
\(103\) 3.27668 0.696481i 0.322861 0.0686263i −0.0436300 0.999048i \(-0.513892\pi\)
0.366491 + 0.930421i \(0.380559\pi\)
\(104\) 25.9763 + 2.73022i 2.54719 + 0.267720i
\(105\) 0 0
\(106\) −0.672642 + 0.605650i −0.0653328 + 0.0588259i
\(107\) 2.92166 + 8.99195i 0.282448 + 0.869285i 0.987152 + 0.159784i \(0.0510797\pi\)
−0.704704 + 0.709501i \(0.748920\pi\)
\(108\) 0 0
\(109\) 4.11325i 0.393978i −0.980406 0.196989i \(-0.936884\pi\)
0.980406 0.196989i \(-0.0631163\pi\)
\(110\) −7.67570 + 10.4020i −0.731849 + 0.991789i
\(111\) 0 0
\(112\) −7.70523 + 17.3062i −0.728076 + 1.63529i
\(113\) 15.0282 + 13.5315i 1.41374 + 1.27293i 0.913377 + 0.407116i \(0.133465\pi\)
0.500359 + 0.865818i \(0.333201\pi\)
\(114\) 0 0
\(115\) 7.67625 3.41769i 0.715814 0.318701i
\(116\) −0.414068 0.300838i −0.0384452 0.0279321i
\(117\) 0 0
\(118\) 7.75460 2.51962i 0.713869 0.231950i
\(119\) −5.96025 + 0.626447i −0.546375 + 0.0574263i
\(120\) 0 0
\(121\) 3.24402 + 10.5108i 0.294911 + 0.955525i
\(122\) −0.742609 + 0.428746i −0.0672327 + 0.0388168i
\(123\) 0 0
\(124\) −21.0219 4.46835i −1.88783 0.401270i
\(125\) 10.8799 + 3.53510i 0.973131 + 0.316189i
\(126\) 0 0
\(127\) −0.0604870 + 0.0832533i −0.00536736 + 0.00738753i −0.811692 0.584085i \(-0.801453\pi\)
0.806325 + 0.591473i \(0.201453\pi\)
\(128\) −15.3139 17.0078i −1.35357 1.50329i
\(129\) 0 0
\(130\) 10.5999 + 4.71940i 0.929676 + 0.413919i
\(131\) −7.68267 13.3068i −0.671238 1.16262i −0.977553 0.210689i \(-0.932429\pi\)
0.306315 0.951930i \(-0.400904\pi\)
\(132\) 0 0
\(133\) 0.904197 1.56612i 0.0784039 0.135799i
\(134\) 7.48966 5.44156i 0.647008 0.470079i
\(135\) 0 0
\(136\) 11.2559 34.6421i 0.965185 2.97053i
\(137\) 1.51448 + 3.40157i 0.129391 + 0.290616i 0.966610 0.256250i \(-0.0824872\pi\)
−0.837220 + 0.546867i \(0.815821\pi\)
\(138\) 0 0
\(139\) −3.53785 16.6443i −0.300077 1.41175i −0.827174 0.561945i \(-0.810053\pi\)
0.527097 0.849805i \(-0.323280\pi\)
\(140\) −7.34758 + 8.16031i −0.620984 + 0.689672i
\(141\) 0 0
\(142\) 21.3895 + 12.3492i 1.79497 + 1.03633i
\(143\) 8.58668 4.87317i 0.718054 0.407515i
\(144\) 0 0
\(145\) −0.0827990 0.113963i −0.00687608 0.00946412i
\(146\) 3.97584 18.7049i 0.329043 1.54803i
\(147\) 0 0
\(148\) 5.48832 52.2178i 0.451137 4.29228i
\(149\) 1.19705 11.3892i 0.0980665 0.933040i −0.829279 0.558834i \(-0.811249\pi\)
0.927346 0.374206i \(-0.122085\pi\)
\(150\) 0 0
\(151\) −0.221010 + 1.03977i −0.0179855 + 0.0846153i −0.986225 0.165409i \(-0.947105\pi\)
0.968239 + 0.250025i \(0.0804388\pi\)
\(152\) 6.46040 + 8.89198i 0.524008 + 0.721235i
\(153\) 0 0
\(154\) 2.58830 + 12.6360i 0.208571 + 1.01823i
\(155\) −5.12261 2.95754i −0.411458 0.237555i
\(156\) 0 0
\(157\) −0.0571368 + 0.0634569i −0.00456002 + 0.00506441i −0.745421 0.666595i \(-0.767751\pi\)
0.740861 + 0.671659i \(0.234418\pi\)
\(158\) 5.61233 + 26.4039i 0.446493 + 2.10058i
\(159\) 0 0
\(160\) −10.4766 23.5309i −0.828252 1.86028i
\(161\) 2.59074 7.97347i 0.204179 0.628398i
\(162\) 0 0
\(163\) −2.37021 + 1.72206i −0.185650 + 0.134882i −0.676728 0.736233i \(-0.736603\pi\)
0.491079 + 0.871115i \(0.336603\pi\)
\(164\) −12.0140 + 20.8089i −0.938136 + 1.62490i
\(165\) 0 0
\(166\) −8.03368 13.9147i −0.623534 1.07999i
\(167\) −4.06863 1.81147i −0.314840 0.140176i 0.243233 0.969968i \(-0.421792\pi\)
−0.558072 + 0.829792i \(0.688459\pi\)
\(168\) 0 0
\(169\) 2.76906 + 3.07535i 0.213004 + 0.236565i
\(170\) 9.51100 13.0908i 0.729461 1.00402i
\(171\) 0 0
\(172\) 10.6308 + 3.45415i 0.810590 + 0.263377i
\(173\) 10.2220 + 2.17276i 0.777166 + 0.165192i 0.579384 0.815055i \(-0.303293\pi\)
0.197781 + 0.980246i \(0.436626\pi\)
\(174\) 0 0
\(175\) 3.63380 2.09797i 0.274689 0.158592i
\(176\) −42.5031 9.36351i −3.20379 0.705801i
\(177\) 0 0
\(178\) −13.7060 + 1.44056i −1.02731 + 0.107975i
\(179\) −9.58188 + 3.11334i −0.716183 + 0.232702i −0.644368 0.764716i \(-0.722879\pi\)
−0.0718157 + 0.997418i \(0.522879\pi\)
\(180\) 0 0
\(181\) 12.5433 + 9.11327i 0.932339 + 0.677384i 0.946564 0.322515i \(-0.104528\pi\)
−0.0142256 + 0.999899i \(0.504528\pi\)
\(182\) 10.5761 4.70879i 0.783953 0.349038i
\(183\) 0 0
\(184\) 37.8671 + 34.0957i 2.79160 + 2.51357i
\(185\) 5.87774 13.2016i 0.432140 0.970602i
\(186\) 0 0
\(187\) −4.15773 13.1258i −0.304043 0.959855i
\(188\) 38.1603i 2.78313i
\(189\) 0 0
\(190\) 1.50881 + 4.64363i 0.109460 + 0.336884i
\(191\) −2.76063 + 2.48568i −0.199752 + 0.179857i −0.762936 0.646474i \(-0.776243\pi\)
0.563184 + 0.826331i \(0.309576\pi\)
\(192\) 0 0
\(193\) 24.8007 + 2.60666i 1.78519 + 0.187631i 0.938692 0.344756i \(-0.112038\pi\)
0.846501 + 0.532387i \(0.178705\pi\)
\(194\) 15.9180 3.38348i 1.14285 0.242919i
\(195\) 0 0
\(196\) −2.70136 25.7017i −0.192954 1.83583i
\(197\) −19.2214 −1.36947 −0.684733 0.728794i \(-0.740081\pi\)
−0.684733 + 0.728794i \(0.740081\pi\)
\(198\) 0 0
\(199\) −26.0126 −1.84399 −0.921993 0.387206i \(-0.873440\pi\)
−0.921993 + 0.387206i \(0.873440\pi\)
\(200\) 2.66571 + 25.3625i 0.188494 + 1.79340i
\(201\) 0 0
\(202\) −30.6778 + 6.52077i −2.15848 + 0.458800i
\(203\) −0.139779 0.0146914i −0.00981059 0.00103113i
\(204\) 0 0
\(205\) −4.91455 + 4.42508i −0.343247 + 0.309061i
\(206\) 2.78864 + 8.58255i 0.194294 + 0.597975i
\(207\) 0 0
\(208\) 39.0638i 2.70859i
\(209\) 3.94168 + 1.31305i 0.272652 + 0.0908256i
\(210\) 0 0
\(211\) −9.24806 + 20.7715i −0.636663 + 1.42997i 0.250319 + 0.968163i \(0.419464\pi\)
−0.886982 + 0.461804i \(0.847202\pi\)
\(212\) −1.31264 1.18191i −0.0901526 0.0811737i
\(213\) 0 0
\(214\) −23.2679 + 10.3596i −1.59056 + 0.708165i
\(215\) 2.48891 + 1.80830i 0.169742 + 0.123325i
\(216\) 0 0
\(217\) −5.61293 + 1.82375i −0.381030 + 0.123804i
\(218\) 11.0199 1.15824i 0.746365 0.0784461i
\(219\) 0 0
\(220\) −21.7537 12.7750i −1.46663 0.861291i
\(221\) −10.7024 + 6.17905i −0.719923 + 0.415648i
\(222\) 0 0
\(223\) 22.2512 + 4.72965i 1.49005 + 0.316721i 0.879746 0.475444i \(-0.157712\pi\)
0.610308 + 0.792164i \(0.291046\pi\)
\(224\) −24.4421 7.94170i −1.63310 0.530627i
\(225\) 0 0
\(226\) −32.0208 + 44.0729i −2.13000 + 2.93169i
\(227\) −5.43847 6.04004i −0.360964 0.400891i 0.535120 0.844776i \(-0.320267\pi\)
−0.896084 + 0.443885i \(0.853600\pi\)
\(228\) 0 0
\(229\) 12.4183 + 5.52899i 0.820625 + 0.365366i 0.773715 0.633533i \(-0.218396\pi\)
0.0469095 + 0.998899i \(0.485063\pi\)
\(230\) 11.3180 + 19.6033i 0.746285 + 1.29260i
\(231\) 0 0
\(232\) 0.427117 0.739788i 0.0280416 0.0485694i
\(233\) −4.09157 + 2.97270i −0.268048 + 0.194748i −0.713687 0.700464i \(-0.752976\pi\)
0.445640 + 0.895212i \(0.352976\pi\)
\(234\) 0 0
\(235\) 3.24554 9.98874i 0.211716 0.651594i
\(236\) 6.47185 + 14.5360i 0.421282 + 0.946214i
\(237\) 0 0
\(238\) −3.35667 15.7919i −0.217581 1.02364i
\(239\) −13.4937 + 14.9862i −0.872832 + 0.969378i −0.999746 0.0225358i \(-0.992826\pi\)
0.126914 + 0.991914i \(0.459493\pi\)
\(240\) 0 0
\(241\) −24.5094 14.1505i −1.57879 0.911516i −0.995028 0.0995930i \(-0.968246\pi\)
−0.583764 0.811923i \(-0.698421\pi\)
\(242\) −27.2463 + 11.6509i −1.75146 + 0.748947i
\(243\) 0 0
\(244\) −0.983581 1.35378i −0.0629674 0.0866671i
\(245\) 1.47883 6.95735i 0.0944790 0.444489i
\(246\) 0 0
\(247\) 0.389789 3.70860i 0.0248017 0.235972i
\(248\) 3.74943 35.6734i 0.238089 2.26527i
\(249\) 0 0
\(250\) −6.40735 + 30.1442i −0.405237 + 1.90649i
\(251\) −13.7475 18.9219i −0.867737 1.19434i −0.979669 0.200622i \(-0.935704\pi\)
0.111931 0.993716i \(-0.464296\pi\)
\(252\) 0 0
\(253\) 19.1401 + 2.15500i 1.20333 + 0.135483i
\(254\) −0.240079 0.138610i −0.0150639 0.00869715i
\(255\) 0 0
\(256\) 12.1971 13.5463i 0.762319 0.846641i
\(257\) −0.0865878 0.407364i −0.00540120 0.0254106i 0.975364 0.220599i \(-0.0708014\pi\)
−0.980766 + 0.195189i \(0.937468\pi\)
\(258\) 0 0
\(259\) −5.86452 13.1719i −0.364404 0.818464i
\(260\) −6.99709 + 21.5348i −0.433941 + 1.33553i
\(261\) 0 0
\(262\) 33.4873 24.3299i 2.06885 1.50311i
\(263\) 14.0588 24.3505i 0.866902 1.50152i 0.00175644 0.999998i \(-0.499441\pi\)
0.865146 0.501520i \(-0.167226\pi\)
\(264\) 0 0
\(265\) −0.243072 0.421013i −0.0149318 0.0258626i
\(266\) 4.45045 + 1.98147i 0.272874 + 0.121491i
\(267\) 0 0
\(268\) 12.0886 + 13.4258i 0.738431 + 0.820111i
\(269\) −7.97137 + 10.9716i −0.486023 + 0.668953i −0.979648 0.200721i \(-0.935671\pi\)
0.493625 + 0.869675i \(0.335671\pi\)
\(270\) 0 0
\(271\) −10.5963 3.44294i −0.643678 0.209144i −0.0310533 0.999518i \(-0.509886\pi\)
−0.612624 + 0.790374i \(0.709886\pi\)
\(272\) 53.2860 + 11.3263i 3.23094 + 0.686757i
\(273\) 0 0
\(274\) −8.68681 + 5.01533i −0.524789 + 0.302987i
\(275\) 6.39713 + 7.21132i 0.385762 + 0.434859i
\(276\) 0 0
\(277\) 9.73067 1.02273i 0.584659 0.0614502i 0.192419 0.981313i \(-0.438367\pi\)
0.392240 + 0.919863i \(0.371700\pi\)
\(278\) 43.5961 14.1652i 2.61472 0.849573i
\(279\) 0 0
\(280\) −14.8270 10.7724i −0.886083 0.643777i
\(281\) −11.1314 + 4.95603i −0.664046 + 0.295652i −0.710945 0.703247i \(-0.751733\pi\)
0.0468995 + 0.998900i \(0.485066\pi\)
\(282\) 0 0
\(283\) −11.4395 10.3001i −0.680006 0.612280i 0.254988 0.966944i \(-0.417928\pi\)
−0.934994 + 0.354664i \(0.884595\pi\)
\(284\) −19.6041 + 44.0314i −1.16329 + 2.61278i
\(285\) 0 0
\(286\) 15.4738 + 21.6326i 0.914984 + 1.27916i
\(287\) 6.59831i 0.389486i
\(288\) 0 0
\(289\) 0.0723102 + 0.222548i 0.00425354 + 0.0130911i
\(290\) 0.282007 0.253920i 0.0165600 0.0149107i
\(291\) 0 0
\(292\) 37.1131 + 3.90074i 2.17188 + 0.228274i
\(293\) −26.6244 + 5.65919i −1.55541 + 0.330613i −0.903806 0.427943i \(-0.859239\pi\)
−0.651608 + 0.758556i \(0.725905\pi\)
\(294\) 0 0
\(295\) 0.457765 + 4.35534i 0.0266521 + 0.253578i
\(296\) 87.6328 5.09356
\(297\) 0 0
\(298\) 30.8503 1.78711
\(299\) −1.80708 17.1932i −0.104506 0.994310i
\(300\) 0 0
\(301\) 3.00247 0.638194i 0.173059 0.0367849i
\(302\) −2.84792 0.299328i −0.163879 0.0172244i
\(303\) 0 0
\(304\) −12.2159 + 10.9992i −0.700630 + 0.630850i
\(305\) −0.142320 0.438016i −0.00814923 0.0250807i
\(306\) 0 0
\(307\) 31.0795i 1.77380i −0.461960 0.886901i \(-0.652854\pi\)
0.461960 0.886901i \(-0.347146\pi\)
\(308\) −23.9956 + 7.60085i −1.36728 + 0.433099i
\(309\) 0 0
\(310\) 6.48118 14.5570i 0.368106 0.826780i
\(311\) −4.24667 3.82372i −0.240807 0.216823i 0.539886 0.841738i \(-0.318467\pi\)
−0.780693 + 0.624914i \(0.785134\pi\)
\(312\) 0 0
\(313\) −24.1472 + 10.7510i −1.36488 + 0.607685i −0.952838 0.303479i \(-0.901852\pi\)
−0.412044 + 0.911164i \(0.635185\pi\)
\(314\) −0.186099 0.135209i −0.0105021 0.00763026i
\(315\) 0 0
\(316\) −50.0994 + 16.2783i −2.81831 + 0.915725i
\(317\) 1.96901 0.206952i 0.110591 0.0116236i −0.0490713 0.998795i \(-0.515626\pi\)
0.159662 + 0.987172i \(0.448960\pi\)
\(318\) 0 0
\(319\) −0.0313755 0.321372i −0.00175669 0.0179934i
\(320\) 27.2064 15.7076i 1.52089 0.878084i
\(321\) 0 0
\(322\) 22.0915 + 4.69570i 1.23111 + 0.261681i
\(323\) −4.94579 1.60698i −0.275191 0.0894150i
\(324\) 0 0
\(325\) 5.08570 6.99986i 0.282104 0.388283i
\(326\) −5.28106 5.86521i −0.292491 0.324844i
\(327\) 0 0
\(328\) −36.6362 16.3115i −2.02290 0.900651i
\(329\) −5.23958 9.07523i −0.288868 0.500333i
\(330\) 0 0
\(331\) 2.03858 3.53093i 0.112051 0.194078i −0.804546 0.593890i \(-0.797591\pi\)
0.916597 + 0.399812i \(0.130925\pi\)
\(332\) 25.3667 18.4300i 1.39218 1.01148i
\(333\) 0 0
\(334\) 3.70749 11.4105i 0.202865 0.624354i
\(335\) 2.02242 + 4.54244i 0.110497 + 0.248180i
\(336\) 0 0
\(337\) 5.93123 + 27.9042i 0.323095 + 1.52004i 0.777292 + 0.629140i \(0.216593\pi\)
−0.454198 + 0.890901i \(0.650074\pi\)
\(338\) −7.45954 + 8.28465i −0.405745 + 0.450626i
\(339\) 0 0
\(340\) 27.3464 + 15.7885i 1.48307 + 0.856249i
\(341\) −6.69236 11.7921i −0.362412 0.638580i
\(342\) 0 0
\(343\) −10.1112 13.9169i −0.545954 0.751441i
\(344\) −3.87883 + 18.2484i −0.209132 + 0.983890i
\(345\) 0 0
\(346\) −2.94271 + 27.9980i −0.158201 + 1.50518i
\(347\) −1.08070 + 10.2822i −0.0580151 + 0.551976i 0.926453 + 0.376411i \(0.122842\pi\)
−0.984468 + 0.175565i \(0.943825\pi\)
\(348\) 0 0
\(349\) −3.83672 + 18.0504i −0.205375 + 0.966213i 0.747830 + 0.663890i \(0.231096\pi\)
−0.953205 + 0.302324i \(0.902238\pi\)
\(350\) 6.64399 + 9.14466i 0.355136 + 0.488803i
\(351\) 0 0
\(352\) 6.60597 58.6726i 0.352100 3.12726i
\(353\) 11.5976 + 6.69588i 0.617279 + 0.356386i 0.775809 0.630968i \(-0.217342\pi\)
−0.158530 + 0.987354i \(0.550676\pi\)
\(354\) 0 0
\(355\) −8.87638 + 9.85822i −0.471109 + 0.523220i
\(356\) −5.59163 26.3065i −0.296356 1.39424i
\(357\) 0 0
\(358\) −11.0392 24.7945i −0.583440 1.31043i
\(359\) −1.92854 + 5.93545i −0.101785 + 0.313261i −0.988962 0.148167i \(-0.952663\pi\)
0.887178 + 0.461428i \(0.152663\pi\)
\(360\) 0 0
\(361\) −14.1018 + 10.2456i −0.742202 + 0.539241i
\(362\) −20.8836 + 36.1715i −1.09762 + 1.90113i
\(363\) 0 0
\(364\) 11.2961 + 19.5654i 0.592075 + 1.02550i
\(365\) 9.38285 + 4.17752i 0.491121 + 0.218661i
\(366\) 0 0
\(367\) −5.15250 5.72243i −0.268958 0.298708i 0.593503 0.804832i \(-0.297745\pi\)
−0.862461 + 0.506124i \(0.831078\pi\)
\(368\) −44.7939 + 61.6535i −2.33504 + 3.21391i
\(369\) 0 0
\(370\) 37.0240 + 12.0298i 1.92479 + 0.625401i
\(371\) −0.474451 0.100848i −0.0246323 0.00523575i
\(372\) 0 0
\(373\) 18.2379 10.5296i 0.944321 0.545204i 0.0530086 0.998594i \(-0.483119\pi\)
0.891312 + 0.453390i \(0.149786\pi\)
\(374\) 33.9951 14.8352i 1.75784 0.767110i
\(375\) 0 0
\(376\) 63.3416 6.65747i 3.26659 0.343333i
\(377\) −0.275637 + 0.0895598i −0.0141960 + 0.00461256i
\(378\) 0 0
\(379\) 24.0003 + 17.4372i 1.23281 + 0.895691i 0.997098 0.0761314i \(-0.0242568\pi\)
0.235715 + 0.971822i \(0.424257\pi\)
\(380\) −8.70449 + 3.87549i −0.446531 + 0.198808i
\(381\) 0 0
\(382\) −7.43682 6.69615i −0.380501 0.342605i
\(383\) −1.08521 + 2.43741i −0.0554515 + 0.124546i −0.939146 0.343518i \(-0.888382\pi\)
0.883695 + 0.468064i \(0.155048\pi\)
\(384\) 0 0
\(385\) −6.92749 0.0512539i −0.353057 0.00261214i
\(386\) 67.1784i 3.41929i
\(387\) 0 0
\(388\) 9.81361 + 30.2032i 0.498210 + 1.53333i
\(389\) 0.473711 0.426531i 0.0240181 0.0216260i −0.657034 0.753861i \(-0.728189\pi\)
0.681052 + 0.732235i \(0.261523\pi\)
\(390\) 0 0
\(391\) −23.9768 2.52007i −1.21256 0.127445i
\(392\) 42.1904 8.96785i 2.13094 0.452945i
\(393\) 0 0
\(394\) −5.41251 51.4966i −0.272678 2.59436i
\(395\) −14.4984 −0.729492
\(396\) 0 0
\(397\) −25.2145 −1.26548 −0.632741 0.774364i \(-0.718070\pi\)
−0.632741 + 0.774364i \(0.718070\pi\)
\(398\) −7.32485 69.6913i −0.367162 3.49331i
\(399\) 0 0
\(400\) −37.3072 + 7.92990i −1.86536 + 0.396495i
\(401\) 29.0104 + 3.04912i 1.44871 + 0.152266i 0.795979 0.605324i \(-0.206956\pi\)
0.652731 + 0.757590i \(0.273623\pi\)
\(402\) 0 0
\(403\) −9.04396 + 8.14322i −0.450512 + 0.405642i
\(404\) −18.9132 58.2088i −0.940966 2.89600i
\(405\) 0 0
\(406\) 0.378625i 0.0187908i
\(407\) 26.9422 19.2717i 1.33547 0.955263i
\(408\) 0 0
\(409\) 6.75518 15.1724i 0.334022 0.750226i −0.665969 0.745979i \(-0.731982\pi\)
0.999991 0.00424629i \(-0.00135164\pi\)
\(410\) −13.2393 11.9207i −0.653841 0.588721i
\(411\) 0 0
\(412\) −16.0880 + 7.16284i −0.792599 + 0.352888i
\(413\) 3.53499 + 2.56832i 0.173945 + 0.126379i
\(414\) 0 0
\(415\) 8.20739 2.66674i 0.402885 0.130905i
\(416\) −52.7045 + 5.53947i −2.58405 + 0.271595i
\(417\) 0 0
\(418\) −2.40791 + 10.9300i −0.117775 + 0.534606i
\(419\) 8.11793 4.68689i 0.396587 0.228969i −0.288423 0.957503i \(-0.593131\pi\)
0.685010 + 0.728534i \(0.259798\pi\)
\(420\) 0 0
\(421\) 3.23871 + 0.688408i 0.157845 + 0.0335510i 0.286156 0.958183i \(-0.407622\pi\)
−0.128311 + 0.991734i \(0.540956\pi\)
\(422\) −58.2537 18.9278i −2.83575 0.921390i
\(423\) 0 0
\(424\) 1.73282 2.38502i 0.0841532 0.115827i
\(425\) −8.07378 8.96685i −0.391636 0.434956i
\(426\) 0 0
\(427\) −0.419794 0.186904i −0.0203153 0.00904494i
\(428\) −24.8519 43.0448i −1.20126 2.08065i
\(429\) 0 0
\(430\) −4.14383 + 7.17732i −0.199833 + 0.346121i
\(431\) 1.72195 1.25107i 0.0829434 0.0602619i −0.545541 0.838084i \(-0.683676\pi\)
0.628484 + 0.777822i \(0.283676\pi\)
\(432\) 0 0
\(433\) −4.76068 + 14.6519i −0.228784 + 0.704124i 0.769102 + 0.639126i \(0.220704\pi\)
−0.997885 + 0.0649975i \(0.979296\pi\)
\(434\) −6.46661 14.5242i −0.310407 0.697186i
\(435\) 0 0
\(436\) 4.49579 + 21.1510i 0.215309 + 1.01295i
\(437\) 4.86779 5.40623i 0.232858 0.258615i
\(438\) 0 0
\(439\) 31.0083 + 17.9026i 1.47995 + 0.854447i 0.999742 0.0227105i \(-0.00722958\pi\)
0.480203 + 0.877157i \(0.340563\pi\)
\(440\) 17.4098 38.3372i 0.829981 1.82765i
\(441\) 0 0
\(442\) −19.5682 26.9333i −0.930764 1.28109i
\(443\) −2.49445 + 11.7354i −0.118515 + 0.557568i 0.878321 + 0.478072i \(0.158664\pi\)
−0.996835 + 0.0794956i \(0.974669\pi\)
\(444\) 0 0
\(445\) 0.773725 7.36150i 0.0366781 0.348968i
\(446\) −6.40567 + 60.9459i −0.303317 + 2.88587i
\(447\) 0 0
\(448\) 6.51692 30.6597i 0.307896 1.44853i
\(449\) −15.0088 20.6578i −0.708307 0.974901i −0.999832 0.0183378i \(-0.994163\pi\)
0.291525 0.956563i \(-0.405837\pi\)
\(450\) 0 0
\(451\) −14.8507 + 3.04196i −0.699292 + 0.143240i
\(452\) −92.0676 53.1552i −4.33050 2.50021i
\(453\) 0 0
\(454\) 14.6507 16.2712i 0.687589 0.763645i
\(455\) 1.29279 + 6.08211i 0.0606071 + 0.285134i
\(456\) 0 0
\(457\) 0.414845 + 0.931757i 0.0194056 + 0.0435857i 0.922988 0.384828i \(-0.125739\pi\)
−0.903583 + 0.428414i \(0.859073\pi\)
\(458\) −11.3160 + 34.8272i −0.528764 + 1.62737i
\(459\) 0 0
\(460\) −35.7370 + 25.9645i −1.66625 + 1.21060i
\(461\) −2.26202 + 3.91794i −0.105353 + 0.182477i −0.913882 0.405979i \(-0.866931\pi\)
0.808529 + 0.588456i \(0.200264\pi\)
\(462\) 0 0
\(463\) 4.22594 + 7.31953i 0.196396 + 0.340168i 0.947357 0.320179i \(-0.103743\pi\)
−0.750961 + 0.660346i \(0.770410\pi\)
\(464\) 1.16713 + 0.519638i 0.0541825 + 0.0241236i
\(465\) 0 0
\(466\) −9.11640 10.1248i −0.422309 0.469022i
\(467\) −3.64591 + 5.01817i −0.168713 + 0.232213i −0.884998 0.465594i \(-0.845841\pi\)
0.716286 + 0.697807i \(0.245841\pi\)
\(468\) 0 0
\(469\) 4.71832 + 1.53308i 0.217872 + 0.0707909i
\(470\) 27.6751 + 5.88252i 1.27656 + 0.271340i
\(471\) 0 0
\(472\) −22.9990 + 13.2785i −1.05861 + 0.611191i
\(473\) 2.82057 + 6.46338i 0.129690 + 0.297187i
\(474\) 0 0
\(475\) 3.62096 0.380578i 0.166141 0.0174621i
\(476\) 29.9639 9.73586i 1.37339 0.446242i
\(477\) 0 0
\(478\) −43.9497 31.9314i −2.01021 1.46051i
\(479\) 20.3778 9.07278i 0.931085 0.414546i 0.115582 0.993298i \(-0.463127\pi\)
0.815504 + 0.578752i \(0.196460\pi\)
\(480\) 0 0
\(481\) −22.0950 19.8945i −1.00745 0.907109i
\(482\) 31.0096 69.6487i 1.41245 3.17241i
\(483\) 0 0
\(484\) −28.1696 50.5025i −1.28044 2.29557i
\(485\) 8.74055i 0.396888i
\(486\) 0 0
\(487\) 10.5290 + 32.4051i 0.477117 + 1.46841i 0.843082 + 0.537786i \(0.180739\pi\)
−0.365965 + 0.930629i \(0.619261\pi\)
\(488\) 2.07552 1.86881i 0.0939545 0.0845970i
\(489\) 0 0
\(490\) 19.0561 + 2.00288i 0.860867 + 0.0904807i
\(491\) −18.4134 + 3.91389i −0.830985 + 0.176631i −0.603715 0.797201i \(-0.706313\pi\)
−0.227270 + 0.973832i \(0.572980\pi\)
\(492\) 0 0
\(493\) 0.0422474 + 0.401957i 0.00190273 + 0.0181032i
\(494\) 10.0456 0.451972
\(495\) 0 0
\(496\) 53.6466 2.40880
\(497\) 1.38351 + 13.1632i 0.0620588 + 0.590450i
\(498\) 0 0
\(499\) −7.43187 + 1.57969i −0.332696 + 0.0707167i −0.371231 0.928541i \(-0.621064\pi\)
0.0385350 + 0.999257i \(0.487731\pi\)
\(500\) −59.8103 6.28632i −2.67480 0.281133i
\(501\) 0 0
\(502\) 46.8231 42.1597i 2.08982 1.88168i
\(503\) 8.18033 + 25.1765i 0.364743 + 1.12256i 0.950142 + 0.311818i \(0.100938\pi\)
−0.585399 + 0.810745i \(0.699062\pi\)
\(504\) 0 0
\(505\) 16.8451i 0.749599i
\(506\) −0.383884 + 51.8858i −0.0170657 + 2.30661i
\(507\) 0 0
\(508\) 0.220039 0.494215i 0.00976264 0.0219272i
\(509\) 9.47468 + 8.53104i 0.419958 + 0.378132i 0.851843 0.523797i \(-0.175485\pi\)
−0.431885 + 0.901929i \(0.642151\pi\)
\(510\) 0 0
\(511\) 9.36176 4.16812i 0.414140 0.184387i
\(512\) 2.69612 + 1.95884i 0.119153 + 0.0865695i
\(513\) 0 0
\(514\) 1.06700 0.346689i 0.0470633 0.0152918i
\(515\) −4.82035 + 0.506640i −0.212410 + 0.0223252i
\(516\) 0 0
\(517\) 18.0099 15.9765i 0.792075 0.702646i
\(518\) 33.6380 19.4209i 1.47797 0.853305i
\(519\) 0 0
\(520\) −36.9660 7.85736i −1.62106 0.344568i
\(521\) 6.80629 + 2.21150i 0.298189 + 0.0968875i 0.454291 0.890854i \(-0.349893\pi\)
−0.156102 + 0.987741i \(0.549893\pi\)
\(522\) 0 0
\(523\) 18.1933 25.0410i 0.795539 1.09497i −0.197857 0.980231i \(-0.563398\pi\)
0.993396 0.114734i \(-0.0366017\pi\)
\(524\) 54.0500 + 60.0286i 2.36118 + 2.62236i
\(525\) 0 0
\(526\) 69.1972 + 30.8086i 3.01714 + 1.34332i
\(527\) 8.48573 + 14.6977i 0.369644 + 0.640243i
\(528\) 0 0
\(529\) 5.36315 9.28924i 0.233180 0.403880i
\(530\) 1.05950 0.769775i 0.0460219 0.0334369i
\(531\) 0 0
\(532\) −2.93777 + 9.04152i −0.127368 + 0.392000i
\(533\) 5.53411 + 12.4298i 0.239709 + 0.538395i
\(534\) 0 0
\(535\) −2.84421 13.3809i −0.122966 0.578508i
\(536\) −20.1762 + 22.4080i −0.871480 + 0.967876i
\(537\) 0 0
\(538\) −31.6392 18.2669i −1.36406 0.787541i
\(539\) 10.9990 12.0354i 0.473762 0.518401i
\(540\) 0 0
\(541\) 25.5272 + 35.1352i 1.09750 + 1.51058i 0.838656 + 0.544661i \(0.183342\pi\)
0.258845 + 0.965919i \(0.416658\pi\)
\(542\) 6.24030 29.3583i 0.268044 1.26105i
\(543\) 0 0
\(544\) −7.72506 + 73.4991i −0.331209 + 3.15125i
\(545\) −0.622091 + 5.91881i −0.0266475 + 0.253534i
\(546\) 0 0
\(547\) −1.55388 + 7.31045i −0.0664392 + 0.312572i −0.998801 0.0489546i \(-0.984411\pi\)
0.932362 + 0.361527i \(0.117744\pi\)
\(548\) −11.5056 15.8361i −0.491496 0.676487i
\(549\) 0 0
\(550\) −17.5187 + 19.1694i −0.747001 + 0.817386i
\(551\) −0.105618 0.0609787i −0.00449949 0.00259778i
\(552\) 0 0
\(553\) −9.67948 + 10.7502i −0.411613 + 0.457143i
\(554\) 5.48008 + 25.7818i 0.232826 + 1.09536i
\(555\) 0 0
\(556\) 36.3845 + 81.7209i 1.54305 + 3.46574i
\(557\) 8.26967 25.4514i 0.350397 1.07841i −0.608233 0.793758i \(-0.708121\pi\)
0.958631 0.284653i \(-0.0918785\pi\)
\(558\) 0 0
\(559\) 5.12075 3.72044i 0.216585 0.157358i
\(560\) 13.7049 23.7376i 0.579139 1.00310i
\(561\) 0 0
\(562\) −16.4124 28.4270i −0.692314 1.19912i
\(563\) 21.3311 + 9.49724i 0.899000 + 0.400261i 0.803594 0.595178i \(-0.202918\pi\)
0.0954063 + 0.995438i \(0.469585\pi\)
\(564\) 0 0
\(565\) −19.5785 21.7441i −0.823674 0.914782i
\(566\) 24.3742 33.5483i 1.02453 1.41014i
\(567\) 0 0
\(568\) −76.5070 24.8586i −3.21016 1.04305i
\(569\) −5.31206 1.12911i −0.222693 0.0473349i 0.0952135 0.995457i \(-0.469647\pi\)
−0.317907 + 0.948122i \(0.602980\pi\)
\(570\) 0 0
\(571\) 8.79380 5.07710i 0.368009 0.212470i −0.304579 0.952487i \(-0.598516\pi\)
0.672588 + 0.740017i \(0.265183\pi\)
\(572\) −38.8278 + 34.4439i −1.62347 + 1.44017i
\(573\) 0 0
\(574\) −17.6778 + 1.85801i −0.737855 + 0.0775517i
\(575\) 16.0533 5.21603i 0.669468 0.217523i
\(576\) 0 0
\(577\) 17.0075 + 12.3566i 0.708029 + 0.514414i 0.882537 0.470242i \(-0.155833\pi\)
−0.174508 + 0.984656i \(0.555833\pi\)
\(578\) −0.575874 + 0.256396i −0.0239532 + 0.0106647i
\(579\) 0 0
\(580\) 0.550328 + 0.495518i 0.0228511 + 0.0205753i
\(581\) 3.50215 7.86595i 0.145294 0.326335i
\(582\) 0 0
\(583\) 0.00824453 1.11433i 0.000341453 0.0461510i
\(584\) 62.2837i 2.57732i
\(585\) 0 0
\(586\) −22.6588 69.7367i −0.936028 2.88080i
\(587\) −32.4155 + 29.1870i −1.33793 + 1.20468i −0.377550 + 0.925989i \(0.623233\pi\)
−0.960381 + 0.278689i \(0.910100\pi\)
\(588\) 0 0
\(589\) −5.09304 0.535300i −0.209855 0.0220567i
\(590\) −11.5396 + 2.45283i −0.475079 + 0.100981i
\(591\) 0 0
\(592\) 13.6998 + 130.344i 0.563056 + 5.35712i
\(593\) 37.0300 1.52064 0.760319 0.649549i \(-0.225042\pi\)
0.760319 + 0.649549i \(0.225042\pi\)
\(594\) 0 0
\(595\) 8.67130 0.355489
\(596\) 6.29297 + 59.8736i 0.257770 + 2.45252i
\(597\) 0 0
\(598\) 45.5541 9.68282i 1.86285 0.395960i
\(599\) 23.9622 + 2.51853i 0.979068 + 0.102904i 0.580522 0.814244i \(-0.302848\pi\)
0.398546 + 0.917148i \(0.369515\pi\)
\(600\) 0 0
\(601\) 13.8822 12.4996i 0.566268 0.509870i −0.335529 0.942030i \(-0.608915\pi\)
0.901797 + 0.432160i \(0.142248\pi\)
\(602\) 2.55527 + 7.86431i 0.104145 + 0.320525i
\(603\) 0 0
\(604\) 5.58824i 0.227382i
\(605\) −3.07836 15.6152i −0.125153 0.634849i
\(606\) 0 0
\(607\) −10.0075 + 22.4773i −0.406193 + 0.912324i 0.588409 + 0.808563i \(0.299754\pi\)
−0.994602 + 0.103761i \(0.966912\pi\)
\(608\) −16.5724 14.9218i −0.672098 0.605160i
\(609\) 0 0
\(610\) 1.13343 0.504635i 0.0458912 0.0204321i
\(611\) −17.4818 12.7013i −0.707238 0.513839i
\(612\) 0 0
\(613\) 21.4976 6.98501i 0.868282 0.282122i 0.159199 0.987247i \(-0.449109\pi\)
0.709083 + 0.705125i \(0.249109\pi\)
\(614\) 83.2662 8.75163i 3.36035 0.353187i
\(615\) 0 0
\(616\) −16.8028 38.5038i −0.677004 1.55136i
\(617\) −8.17258 + 4.71844i −0.329016 + 0.189957i −0.655404 0.755278i \(-0.727502\pi\)
0.326388 + 0.945236i \(0.394168\pi\)
\(618\) 0 0
\(619\) 13.0960 + 2.78364i 0.526373 + 0.111884i 0.463431 0.886133i \(-0.346618\pi\)
0.0629422 + 0.998017i \(0.479952\pi\)
\(620\) 29.5739 + 9.60915i 1.18772 + 0.385913i
\(621\) 0 0
\(622\) 9.04845 12.4541i 0.362810 0.499365i
\(623\) −4.94180 5.48842i −0.197989 0.219889i
\(624\) 0 0
\(625\) −1.84495 0.821424i −0.0737980 0.0328570i
\(626\) −35.6031 61.6663i −1.42298 2.46468i
\(627\) 0 0
\(628\) 0.224449 0.388757i 0.00895648 0.0155131i
\(629\) −33.5439 + 24.3710i −1.33748 + 0.971737i
\(630\) 0 0
\(631\) −3.99811 + 12.3049i −0.159162 + 0.489851i −0.998559 0.0536685i \(-0.982909\pi\)
0.839397 + 0.543519i \(0.182909\pi\)
\(632\) −35.7604 80.3191i −1.42247 3.19492i
\(633\) 0 0
\(634\) 1.10890 + 5.21698i 0.0440402 + 0.207193i
\(635\) 0.0996297 0.110650i 0.00395369 0.00439101i
\(636\) 0 0
\(637\) −12.6734 7.31701i −0.502140 0.289911i
\(638\) 0.852164 0.174554i 0.0337375 0.00691065i
\(639\) 0 0
\(640\) 19.4638 + 26.7896i 0.769373 + 1.05895i
\(641\) 2.07714 9.77218i 0.0820421 0.385978i −0.917899 0.396814i \(-0.870116\pi\)
0.999941 + 0.0108359i \(0.00344924\pi\)
\(642\) 0 0
\(643\) 1.32573 12.6135i 0.0522817 0.497428i −0.936779 0.349921i \(-0.886209\pi\)
0.989061 0.147507i \(-0.0471248\pi\)
\(644\) −4.60700 + 43.8326i −0.181541 + 1.72725i
\(645\) 0 0
\(646\) 2.91265 13.7029i 0.114597 0.539135i
\(647\) 19.3401 + 26.6193i 0.760337 + 1.04651i 0.997186 + 0.0749678i \(0.0238854\pi\)
−0.236849 + 0.971547i \(0.576115\pi\)
\(648\) 0 0
\(649\) −4.15077 + 9.14018i −0.162932 + 0.358784i
\(650\) 20.1856 + 11.6542i 0.791746 + 0.457115i
\(651\) 0 0
\(652\) 10.3058 11.4458i 0.403608 0.448252i
\(653\) 4.44155 + 20.8959i 0.173811 + 0.817718i 0.975504 + 0.219982i \(0.0705998\pi\)
−0.801693 + 0.597736i \(0.796067\pi\)
\(654\) 0 0
\(655\) 9.04253 + 20.3099i 0.353321 + 0.793572i
\(656\) 18.5342 57.0424i 0.723639 2.22713i
\(657\) 0 0
\(658\) 22.8383 16.5930i 0.890331 0.646863i
\(659\) −5.34609 + 9.25969i −0.208254 + 0.360706i −0.951165 0.308684i \(-0.900111\pi\)
0.742911 + 0.669391i \(0.233445\pi\)
\(660\) 0 0
\(661\) −14.6301 25.3401i −0.569045 0.985615i −0.996661 0.0816544i \(-0.973980\pi\)
0.427616 0.903961i \(-0.359354\pi\)
\(662\) 10.0339 + 4.46737i 0.389978 + 0.173629i
\(663\) 0 0
\(664\) 35.0171 + 38.8904i 1.35893 + 1.50924i
\(665\) −1.53796 + 2.11683i −0.0596397 + 0.0820870i
\(666\) 0 0
\(667\) −0.537728 0.174718i −0.0208209 0.00676512i
\(668\) 22.9015 + 4.86786i 0.886086 + 0.188343i
\(669\) 0 0
\(670\) −11.6003 + 6.69744i −0.448159 + 0.258745i
\(671\) 0.227129 1.03099i 0.00876822 0.0398010i
\(672\) 0 0
\(673\) 41.5078 4.36264i 1.60001 0.168168i 0.737906 0.674904i \(-0.235815\pi\)
0.862101 + 0.506736i \(0.169148\pi\)
\(674\) −73.0890 + 23.7481i −2.81528 + 0.914741i
\(675\) 0 0
\(676\) −17.6003 12.7874i −0.676935 0.491822i
\(677\) 27.1757 12.0994i 1.04445 0.465017i 0.188495 0.982074i \(-0.439639\pi\)
0.855951 + 0.517057i \(0.172972\pi\)
\(678\) 0 0
\(679\) 6.48089 + 5.83542i 0.248714 + 0.223943i
\(680\) −21.4361 + 48.1462i −0.822036 + 1.84632i
\(681\) 0 0
\(682\) 29.7082 21.2503i 1.13759 0.813714i
\(683\) 27.9122i 1.06803i −0.845475 0.534015i \(-0.820683\pi\)
0.845475 0.534015i \(-0.179317\pi\)
\(684\) 0 0
\(685\) −1.66482 5.12378i −0.0636094 0.195770i
\(686\) 34.4380 31.0081i 1.31485 1.18390i
\(687\) 0 0
\(688\) −27.7490 2.91654i −1.05792 0.111192i
\(689\) −0.978349 + 0.207954i −0.0372721 + 0.00792243i
\(690\) 0 0
\(691\) −0.134166 1.27650i −0.00510390 0.0485604i 0.991674 0.128777i \(-0.0411053\pi\)
−0.996777 + 0.0802171i \(0.974439\pi\)
\(692\) −54.9382 −2.08844
\(693\) 0 0
\(694\) −27.8516 −1.05723
\(695\) 2.57353 + 24.4855i 0.0976197 + 0.928790i
\(696\) 0 0
\(697\) 18.5598 3.94501i 0.703003 0.149428i
\(698\) −49.4397 5.19632i −1.87132 0.196684i
\(699\) 0 0
\(700\) −16.3925 + 14.7599i −0.619579 + 0.557871i
\(701\) −9.82030 30.2238i −0.370908 1.14154i −0.946198 0.323588i \(-0.895111\pi\)
0.575290 0.817949i \(-0.304889\pi\)
\(702\) 0 0
\(703\) 12.5112i 0.471869i
\(704\) 72.0097 + 0.532773i 2.71397 + 0.0200796i
\(705\) 0 0
\(706\) −14.6734 + 32.9570i −0.552241 + 1.24035i
\(707\) −12.4902 11.2463i −0.469744 0.422959i
\(708\) 0 0
\(709\) 0.437717 0.194884i 0.0164388 0.00731903i −0.398501 0.917168i \(-0.630469\pi\)
0.414940 + 0.909849i \(0.363803\pi\)
\(710\) −28.9110 21.0050i −1.08501 0.788305i
\(711\) 0 0
\(712\) 42.6902 13.8709i 1.59988 0.519833i
\(713\) −23.6116 + 2.48168i −0.884260 + 0.0929395i
\(714\) 0 0
\(715\) −13.0929 + 5.71365i −0.489647 + 0.213678i
\(716\) 45.8688 26.4823i 1.71420 0.989692i
\(717\) 0 0
\(718\) −16.4449 3.49548i −0.613719 0.130450i
\(719\) 22.0526 + 7.16534i 0.822425 + 0.267222i 0.689851 0.723951i \(-0.257676\pi\)
0.132574 + 0.991173i \(0.457676\pi\)
\(720\) 0 0
\(721\) −2.84253 + 3.91241i −0.105862 + 0.145706i
\(722\) −31.4202 34.8957i −1.16934 1.29868i
\(723\) 0 0
\(724\) −74.4608 33.1521i −2.76731 1.23209i
\(725\) −0.141487 0.245062i −0.00525468 0.00910137i
\(726\) 0 0
\(727\) −19.7219 + 34.1593i −0.731444 + 1.26690i 0.224822 + 0.974400i \(0.427820\pi\)
−0.956266 + 0.292498i \(0.905513\pi\)
\(728\) −30.5055 + 22.1635i −1.13061 + 0.821435i
\(729\) 0 0
\(730\) −8.55002 + 26.3143i −0.316450 + 0.973934i
\(731\) −3.59024 8.06381i −0.132790 0.298251i
\(732\) 0 0
\(733\) −2.03269 9.56304i −0.0750790 0.353219i 0.924532 0.381104i \(-0.124456\pi\)
−0.999611 + 0.0278852i \(0.991123\pi\)
\(734\) 13.8803 15.4156i 0.512330 0.569000i
\(735\) 0 0
\(736\) −89.5343 51.6927i −3.30028 1.90542i
\(737\) −1.27523 + 11.3262i −0.0469735 + 0.417207i
\(738\) 0 0
\(739\) −14.0478 19.3351i −0.516757 0.711255i 0.468284 0.883578i \(-0.344873\pi\)
−0.985040 + 0.172324i \(0.944873\pi\)
\(740\) −15.7949 + 74.3093i −0.580633 + 2.73167i
\(741\) 0 0
\(742\) 0.136585 1.29952i 0.00501418 0.0477067i
\(743\) 3.84917 36.6224i 0.141212 1.34355i −0.662738 0.748851i \(-0.730606\pi\)
0.803951 0.594696i \(-0.202727\pi\)
\(744\) 0 0
\(745\) −3.44503 + 16.2076i −0.126216 + 0.593799i
\(746\) 33.3459 + 45.8967i 1.22088 + 1.68040i
\(747\) 0 0
\(748\) 35.7263 + 62.9508i 1.30628 + 2.30171i
\(749\) −11.8205 6.82456i −0.431911 0.249364i
\(750\) 0 0
\(751\) −20.5430 + 22.8153i −0.749625 + 0.832543i −0.990428 0.138031i \(-0.955923\pi\)
0.240803 + 0.970574i \(0.422589\pi\)
\(752\) 19.8045 + 93.1730i 0.722197 + 3.39767i
\(753\) 0 0
\(754\) −0.317559 0.713249i −0.0115648 0.0259750i
\(755\) 0.475281 1.46276i 0.0172972 0.0532354i
\(756\) 0 0
\(757\) −34.5971 + 25.1362i −1.25745 + 0.913592i −0.998630 0.0523331i \(-0.983334\pi\)
−0.258822 + 0.965925i \(0.583334\pi\)
\(758\) −39.9585 + 69.2101i −1.45136 + 2.51383i
\(759\) 0 0
\(760\) −7.95143 13.7723i −0.288429 0.499573i
\(761\) −24.6757 10.9863i −0.894493 0.398254i −0.0925874 0.995705i \(-0.529514\pi\)
−0.801906 + 0.597451i \(0.796180\pi\)
\(762\) 0 0
\(763\) 3.97331 + 4.41281i 0.143844 + 0.159755i
\(764\) 11.4788 15.7991i 0.415287 0.571593i
\(765\) 0 0
\(766\) −6.83574 2.22107i −0.246985 0.0802504i
\(767\) 8.81326 + 1.87332i 0.318228 + 0.0676415i
\(768\) 0 0
\(769\) −41.9099 + 24.1967i −1.51131 + 0.872555i −0.511396 + 0.859345i \(0.670871\pi\)
−0.999913 + 0.0132095i \(0.995795\pi\)
\(770\) −1.81338 18.5741i −0.0653498 0.669364i
\(771\) 0 0
\(772\) −130.379 + 13.7033i −4.69242 + 0.493194i
\(773\) 33.6456 10.9321i 1.21015 0.393201i 0.366664 0.930354i \(-0.380500\pi\)
0.843485 + 0.537152i \(0.180500\pi\)
\(774\) 0 0
\(775\) −9.61296 6.98422i −0.345308 0.250881i
\(776\) −48.4216 + 21.5587i −1.73823 + 0.773911i
\(777\) 0 0
\(778\) 1.27613 + 1.14903i 0.0457513 + 0.0411947i
\(779\) −2.32876 + 5.23049i −0.0834366 + 0.187402i
\(780\) 0 0
\(781\) −28.9884 + 9.18235i −1.03729 + 0.328570i
\(782\) 64.9467i 2.32249i
\(783\) 0 0
\(784\) 19.9344 + 61.3518i 0.711943 + 2.19113i
\(785\) 0.0918149 0.0826705i 0.00327701 0.00295064i
\(786\) 0 0
\(787\) −25.6484 2.69576i −0.914267 0.0960933i −0.364302 0.931281i \(-0.618692\pi\)
−0.549965 + 0.835188i \(0.685359\pi\)
\(788\) 98.8396 21.0090i 3.52101 0.748415i
\(789\) 0 0
\(790\) −4.08257 38.8430i −0.145251 1.38197i
\(791\) −29.1938 −1.03801
\(792\) 0 0
\(793\) −0.947564 −0.0336490
\(794\) −7.10012 67.5531i −0.251974 2.39737i
\(795\) 0 0
\(796\) 133.761 28.4319i 4.74105 1.00774i
\(797\) −16.9653 1.78313i −0.600943 0.0631617i −0.200828 0.979627i \(-0.564363\pi\)
−0.400115 + 0.916465i \(0.631030\pi\)
\(798\) 0 0
\(799\) −22.3943 + 20.1639i −0.792252 + 0.713347i
\(800\) −15.9893 49.2101i −0.565308 1.73984i
\(801\) 0 0
\(802\) 78.5813i 2.77480i
\(803\) 13.6971 + 19.1488i 0.483360 + 0.675745i
\(804\) 0 0
\(805\) −4.93388 + 11.0817i −0.173897 + 0.390578i
\(806\) −24.3634 21.9369i −0.858165 0.772696i
\(807\) 0 0
\(808\) 93.3200 41.5487i 3.28299 1.46168i
\(809\) 38.7684 + 28.1669i 1.36302 + 0.990295i 0.998246 + 0.0592001i \(0.0188550\pi\)
0.364778 + 0.931095i \(0.381145\pi\)
\(810\) 0 0
\(811\) 45.0299 14.6311i 1.58121 0.513768i 0.618845 0.785513i \(-0.287601\pi\)
0.962369 + 0.271745i \(0.0876009\pi\)
\(812\) 0.734827 0.0772334i 0.0257874 0.00271036i
\(813\) 0 0
\(814\) 59.2181 + 66.7550i 2.07559 + 2.33976i
\(815\) 3.67109 2.11951i 0.128593 0.0742430i
\(816\) 0 0
\(817\) 2.60530 + 0.553774i 0.0911480 + 0.0193741i
\(818\) 42.5510 + 13.8257i 1.48776 + 0.483403i
\(819\) 0 0
\(820\) 20.4348 28.1261i 0.713615 0.982207i
\(821\) 11.7622 + 13.0632i 0.410503 + 0.455910i 0.912571 0.408918i \(-0.134094\pi\)
−0.502068 + 0.864828i \(0.667427\pi\)
\(822\) 0 0
\(823\) 26.1285 + 11.6332i 0.910784 + 0.405507i 0.807990 0.589196i \(-0.200555\pi\)
0.102793 + 0.994703i \(0.467222\pi\)
\(824\) −14.6962 25.4545i −0.511966 0.886751i
\(825\) 0 0
\(826\) −5.88546 + 10.1939i −0.204781 + 0.354691i
\(827\) 13.0031 9.44733i 0.452163 0.328516i −0.338286 0.941043i \(-0.609847\pi\)
0.790449 + 0.612527i \(0.209847\pi\)
\(828\) 0 0
\(829\) 0.324003 0.997179i 0.0112531 0.0346335i −0.945272 0.326282i \(-0.894204\pi\)
0.956525 + 0.291649i \(0.0942039\pi\)
\(830\) 9.45567 + 21.2378i 0.328211 + 0.737174i
\(831\) 0 0
\(832\) −13.4383 63.2222i −0.465889 2.19184i
\(833\) −13.6555 + 15.1660i −0.473137 + 0.525471i
\(834\) 0 0
\(835\) 5.58062 + 3.22197i 0.193125 + 0.111501i
\(836\) −21.7040 2.44366i −0.750648 0.0845158i
\(837\) 0 0
\(838\) 14.8427 + 20.4292i 0.512733 + 0.705716i
\(839\) −4.36460 + 20.5338i −0.150683 + 0.708907i 0.836325 + 0.548234i \(0.184700\pi\)
−0.987008 + 0.160673i \(0.948634\pi\)
\(840\) 0 0
\(841\) 3.03033 28.8317i 0.104494 0.994197i
\(842\) −0.932356 + 8.87077i −0.0321311 + 0.305707i
\(843\) 0 0
\(844\) 24.8518 116.919i 0.855435 4.02451i
\(845\) −3.51944 4.84410i −0.121073 0.166642i
\(846\) 0 0
\(847\) −13.6335 8.14260i −0.468451 0.279783i
\(848\) 3.81836 + 2.20453i 0.131123 + 0.0757039i
\(849\) 0 0
\(850\) 21.7499 24.1557i 0.746015 0.828534i
\(851\) −12.0594 56.7350i −0.413391 1.94485i
\(852\) 0 0
\(853\) −2.15268 4.83501i −0.0737065 0.165547i 0.872935 0.487837i \(-0.162214\pi\)
−0.946641 + 0.322290i \(0.895547\pi\)
\(854\) 0.382533 1.17732i 0.0130900 0.0402869i
\(855\) 0 0
\(856\) 67.1135 48.7608i 2.29389 1.66661i
\(857\) 3.88021 6.72072i 0.132545 0.229575i −0.792112 0.610376i \(-0.791018\pi\)
0.924657 + 0.380801i \(0.124352\pi\)
\(858\) 0 0
\(859\) 24.3358 + 42.1508i 0.830326 + 1.43817i 0.897780 + 0.440445i \(0.145179\pi\)
−0.0674537 + 0.997722i \(0.521488\pi\)
\(860\) −14.7749 6.57820i −0.503819 0.224315i
\(861\) 0 0
\(862\) 3.83666 + 4.26105i 0.130677 + 0.145132i
\(863\) −8.87079 + 12.2096i −0.301965 + 0.415619i −0.932854 0.360253i \(-0.882690\pi\)
0.630889 + 0.775873i \(0.282690\pi\)
\(864\) 0 0
\(865\) −14.3805 4.67250i −0.488951 0.158870i
\(866\) −40.5949 8.62871i −1.37947 0.293215i
\(867\) 0 0
\(868\) 26.8693 15.5130i 0.912002 0.526545i
\(869\) −28.6576 16.8294i −0.972144 0.570899i
\(870\) 0 0
\(871\) 10.1741 1.06934i 0.344737 0.0362334i
\(872\) −34.3238 + 11.1525i −1.16235 + 0.377671i
\(873\) 0 0
\(874\) 15.8547 + 11.5191i 0.536294 + 0.389640i
\(875\) −15.0871 + 6.71723i −0.510038 + 0.227084i
\(876\) 0 0
\(877\) −16.4615 14.8220i −0.555866 0.500504i 0.342639 0.939467i \(-0.388679\pi\)
−0.898505 + 0.438963i \(0.855346\pi\)
\(878\) −39.2320 + 88.1166i −1.32402 + 2.97379i
\(879\) 0 0
\(880\) 59.7442 + 19.9019i 2.01398 + 0.670894i
\(881\) 18.8235i 0.634180i 0.948395 + 0.317090i \(0.102706\pi\)
−0.948395 + 0.317090i \(0.897294\pi\)
\(882\) 0 0
\(883\) −11.7223 36.0776i −0.394488 1.21411i −0.929360 0.369175i \(-0.879640\pi\)
0.534872 0.844933i \(-0.320360\pi\)
\(884\) 48.2800 43.4715i 1.62383 1.46211i
\(885\) 0 0
\(886\) −32.1432 3.37839i −1.07987 0.113499i
\(887\) 28.4769 6.05295i 0.956161 0.203238i 0.296694 0.954972i \(-0.404116\pi\)
0.659466 + 0.751734i \(0.270782\pi\)
\(888\) 0 0
\(889\) −0.0155287 0.147746i −0.000520816 0.00495523i
\(890\) 19.9403 0.668401
\(891\) 0 0
\(892\) −119.589 −4.00414
\(893\) −0.950476 9.04317i −0.0318065 0.302618i
\(894\) 0 0
\(895\) 14.2588 3.03080i 0.476619 0.101309i
\(896\) 32.8583 + 3.45355i 1.09772 + 0.115375i
\(897\) 0 0
\(898\) 51.1187 46.0275i 1.70585 1.53596i
\(899\) 0.122993 + 0.378534i 0.00410205 + 0.0126248i
\(900\) 0 0
\(901\) 1.39484i 0.0464688i
\(902\) −12.3316 38.9305i −0.410597 1.29624i
\(903\) 0 0
\(904\) 72.1692 162.095i 2.40031 5.39119i
\(905\) −16.6711 15.0107i −0.554165 0.498972i
\(906\) 0 0
\(907\) −16.9502 + 7.54671i −0.562822 + 0.250584i −0.668369 0.743830i \(-0.733007\pi\)
0.105547 + 0.994414i \(0.466341\pi\)
\(908\) 34.5673 + 25.1146i 1.14716 + 0.833458i
\(909\) 0 0
\(910\) −15.9308 + 5.17622i −0.528100 + 0.171590i
\(911\) −33.0374 + 3.47238i −1.09458 + 0.115045i −0.634567 0.772868i \(-0.718822\pi\)
−0.460012 + 0.887913i \(0.652155\pi\)
\(912\) 0 0
\(913\) 19.3183 + 4.25586i 0.639344 + 0.140848i
\(914\) −2.37949 + 1.37380i −0.0787064 + 0.0454411i
\(915\) 0 0
\(916\) −69.9002 14.8578i −2.30957 0.490914i
\(917\) 21.0963 + 6.85459i 0.696660 + 0.226359i
\(918\) 0 0
\(919\) −10.8277 + 14.9031i −0.357173 + 0.491606i −0.949358 0.314195i \(-0.898265\pi\)
0.592185 + 0.805802i \(0.298265\pi\)
\(920\) −49.3326 54.7894i −1.62645 1.80635i
\(921\) 0 0
\(922\) −11.1336 4.95702i −0.366667 0.163251i
\(923\) 13.6464 + 23.6363i 0.449178 + 0.777999i
\(924\) 0 0
\(925\) 14.5146 25.1401i 0.477238 0.826600i
\(926\) −18.4200 + 13.3829i −0.605320 + 0.439791i
\(927\) 0 0
\(928\) −0.535586 + 1.64836i −0.0175815 + 0.0541102i
\(929\) −11.9113 26.7533i −0.390798 0.877747i −0.996620 0.0821472i \(-0.973822\pi\)
0.605822 0.795600i \(-0.292844\pi\)
\(930\) 0 0
\(931\) −1.28033 6.02346i −0.0419610 0.197411i
\(932\) 17.7904 19.7582i 0.582743 0.647202i
\(933\) 0 0
\(934\) −14.4710 8.35483i −0.473505 0.273378i
\(935\) 3.99765 + 19.5164i 0.130737 + 0.638253i
\(936\) 0 0
\(937\) −9.28756 12.7832i −0.303411 0.417610i 0.629901 0.776675i \(-0.283095\pi\)
−0.933312 + 0.359066i \(0.883095\pi\)
\(938\) −2.77869 + 13.0727i −0.0907275 + 0.426839i
\(939\) 0 0
\(940\) −5.77140 + 54.9112i −0.188242 + 1.79101i
\(941\) 0.865821 8.23774i 0.0282250 0.268543i −0.971304 0.237843i \(-0.923560\pi\)
0.999529 0.0306999i \(-0.00977362\pi\)
\(942\) 0 0
\(943\) −5.51873 + 25.9636i −0.179715 + 0.845490i
\(944\) −23.3457 32.1326i −0.759839 1.04583i
\(945\) 0 0
\(946\) −16.5220 + 9.37671i −0.537178 + 0.304863i
\(947\) 4.25424 + 2.45619i 0.138244 + 0.0798154i 0.567527 0.823355i \(-0.307900\pi\)
−0.429283 + 0.903170i \(0.641234\pi\)
\(948\) 0 0
\(949\) 14.1397 15.7037i 0.458994 0.509764i
\(950\) 2.03924 + 9.59388i 0.0661617 + 0.311266i
\(951\) 0 0
\(952\) 21.3879 + 48.0379i 0.693185 + 1.55692i
\(953\) −1.81366 + 5.58186i −0.0587501 + 0.180814i −0.976125 0.217211i \(-0.930304\pi\)
0.917375 + 0.398025i \(0.130304\pi\)
\(954\) 0 0
\(955\) 4.34837 3.15927i 0.140710 0.102232i
\(956\) 53.0067 91.8103i 1.71436 2.96936i
\(957\) 0 0
\(958\) 30.0453 + 52.0401i 0.970721 + 1.68134i
\(959\) −4.91062 2.18635i −0.158572 0.0706009i
\(960\) 0 0
\(961\) −9.55992 10.6174i −0.308384 0.342496i
\(962\) 47.0782 64.7976i 1.51786 2.08916i
\(963\) 0 0
\(964\) 141.498 + 45.9756i 4.55735 + 1.48077i
\(965\) −35.2930 7.50176i −1.13612 0.241490i
\(966\) 0 0
\(967\) −15.1909 + 8.77049i −0.488507 + 0.282040i −0.723955 0.689847i \(-0.757678\pi\)
0.235448 + 0.971887i \(0.424344\pi\)
\(968\) 78.9135 55.5688i 2.53638 1.78605i
\(969\) 0 0
\(970\) −23.4171 + 2.46124i −0.751878 + 0.0790255i
\(971\) −46.6836 + 15.1684i −1.49815 + 0.486778i −0.939478 0.342610i \(-0.888689\pi\)
−0.558672 + 0.829389i \(0.688689\pi\)
\(972\) 0 0
\(973\) 19.8735 + 14.4390i 0.637117 + 0.462892i
\(974\) −83.8527 + 37.3336i −2.68681 + 1.19625i
\(975\) 0 0
\(976\) 3.10412 + 2.79496i 0.0993605 + 0.0894646i
\(977\) −5.10387 + 11.4635i −0.163287 + 0.366749i −0.976596 0.215084i \(-0.930998\pi\)
0.813308 + 0.581833i \(0.197664\pi\)
\(978\) 0 0
\(979\) 10.0744 13.6527i 0.321980 0.436342i
\(980\) 37.3923i 1.19445i
\(981\) 0 0
\(982\) −15.6708 48.2298i −0.500076 1.53908i
\(983\) 15.6637 14.1037i 0.499594 0.449837i −0.380399 0.924822i \(-0.624213\pi\)
0.879994 + 0.474986i \(0.157547\pi\)
\(984\) 0 0
\(985\) 27.6588 + 2.90706i 0.881282 + 0.0926265i
\(986\) −1.06500 + 0.226373i −0.0339165 + 0.00720917i
\(987\) 0 0
\(988\) 2.04914 + 19.4963i 0.0651919 + 0.620259i
\(989\) 12.3481 0.392648
\(990\) 0 0
\(991\) 60.3045 1.91564 0.957818 0.287375i \(-0.0927826\pi\)
0.957818 + 0.287375i \(0.0927826\pi\)
\(992\) 7.60738 + 72.3794i 0.241535 + 2.29805i
\(993\) 0 0
\(994\) −34.8764 + 7.41321i −1.10621 + 0.235133i
\(995\) 37.4311 + 3.93417i 1.18665 + 0.124722i
\(996\) 0 0
\(997\) −41.7692 + 37.6091i −1.32284 + 1.19109i −0.356365 + 0.934347i \(0.615984\pi\)
−0.966479 + 0.256747i \(0.917349\pi\)
\(998\) −6.32493 19.4661i −0.200212 0.616190i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.t.a.8.10 80
3.2 odd 2 99.2.p.a.74.1 yes 80
9.2 odd 6 891.2.k.a.404.1 80
9.4 even 3 99.2.p.a.41.1 yes 80
9.5 odd 6 inner 297.2.t.a.206.10 80
9.7 even 3 891.2.k.a.404.20 80
11.7 odd 10 inner 297.2.t.a.62.10 80
33.29 even 10 99.2.p.a.29.1 80
99.7 odd 30 891.2.k.a.161.1 80
99.29 even 30 891.2.k.a.161.20 80
99.40 odd 30 99.2.p.a.95.1 yes 80
99.95 even 30 inner 297.2.t.a.260.10 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.1 80 33.29 even 10
99.2.p.a.41.1 yes 80 9.4 even 3
99.2.p.a.74.1 yes 80 3.2 odd 2
99.2.p.a.95.1 yes 80 99.40 odd 30
297.2.t.a.8.10 80 1.1 even 1 trivial
297.2.t.a.62.10 80 11.7 odd 10 inner
297.2.t.a.206.10 80 9.5 odd 6 inner
297.2.t.a.260.10 80 99.95 even 30 inner
891.2.k.a.161.1 80 99.7 odd 30
891.2.k.a.161.20 80 99.29 even 30
891.2.k.a.404.1 80 9.2 odd 6
891.2.k.a.404.20 80 9.7 even 3