Properties

Label 297.2.t.a.62.5
Level $297$
Weight $2$
Character 297.62
Analytic conductor $2.372$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(8,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.8");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.t (of order \(30\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 62.5
Character \(\chi\) \(=\) 297.62
Dual form 297.2.t.a.206.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.337994 + 0.150485i) q^{2} +(-1.24667 + 1.38456i) q^{4} +(0.966595 - 2.17101i) q^{5} +(0.327889 - 1.54259i) q^{7} +(0.441671 - 1.35932i) q^{8} +0.879247i q^{10} +(-2.12913 - 2.54299i) q^{11} +(6.09571 + 0.640685i) q^{13} +(0.121313 + 0.570731i) q^{14} +(-0.334222 - 3.17991i) q^{16} +(0.887473 - 0.644787i) q^{17} +(-0.534855 - 0.173785i) q^{19} +(1.80088 + 4.04484i) q^{20} +(1.10232 + 0.539115i) q^{22} +(4.81854 - 2.78199i) q^{23} +(-0.433320 - 0.481251i) q^{25} +(-2.15673 + 0.700764i) q^{26} +(1.72705 + 2.37708i) q^{28} +(0.726096 + 0.154337i) q^{29} +(0.661384 - 6.29265i) q^{31} +(2.02077 + 3.50008i) q^{32} +(-0.202930 + 0.351486i) q^{34} +(-3.03205 - 2.20291i) q^{35} +(1.32443 + 4.07617i) q^{37} +(0.206930 - 0.0217492i) q^{38} +(-2.52419 - 2.27279i) q^{40} +(-11.8871 + 2.52669i) q^{41} +(-7.35471 - 4.24624i) q^{43} +(6.17525 + 0.222344i) q^{44} +(-1.20999 + 1.66541i) q^{46} +(-0.571919 + 0.514959i) q^{47} +(4.12273 + 1.83556i) q^{49} +(0.218881 + 0.0974520i) q^{50} +(-8.48639 + 7.64118i) q^{52} +(-2.66042 + 3.66175i) q^{53} +(-7.57886 + 2.16432i) q^{55} +(-1.95207 - 1.12703i) q^{56} +(-0.268642 + 0.0571016i) q^{58} +(0.00834859 + 0.00751710i) q^{59} +(5.69949 - 0.599041i) q^{61} +(0.723404 + 2.22641i) q^{62} +(3.96382 + 2.87988i) q^{64} +(7.28302 - 12.6146i) q^{65} +(-0.738332 - 1.27883i) q^{67} +(-0.213635 + 2.03260i) q^{68} +(1.35632 + 0.288295i) q^{70} +(4.89992 + 6.74417i) q^{71} +(-14.9894 + 4.87035i) q^{73} +(-1.06105 - 1.17842i) q^{74} +(0.907402 - 0.523889i) q^{76} +(-4.62092 + 2.45057i) q^{77} +(1.29393 + 2.90621i) q^{79} +(-7.22666 - 2.34809i) q^{80} +(3.63756 - 2.64284i) q^{82} +(1.08533 + 10.3262i) q^{83} +(-0.542011 - 2.54996i) q^{85} +(3.12484 + 0.328434i) q^{86} +(-4.39713 + 1.77101i) q^{88} +9.01115i q^{89} +(2.98703 - 9.19313i) q^{91} +(-2.15528 + 10.1398i) q^{92} +(0.115812 - 0.260118i) q^{94} +(-0.894277 + 0.993195i) q^{95} +(5.06083 - 2.25323i) q^{97} -1.66968 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 15 q^{2} + 5 q^{4} + 6 q^{5} - 5 q^{7} + 3 q^{11} - 5 q^{13} + 9 q^{14} + 5 q^{16} - 50 q^{19} + 3 q^{20} - 11 q^{22} + 42 q^{23} - 2 q^{25} - 20 q^{28} - 30 q^{29} - 6 q^{31} - 10 q^{34} - 6 q^{37}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.337994 + 0.150485i −0.238998 + 0.106409i −0.522741 0.852492i \(-0.675090\pi\)
0.283743 + 0.958900i \(0.408424\pi\)
\(3\) 0 0
\(4\) −1.24667 + 1.38456i −0.623333 + 0.692282i
\(5\) 0.966595 2.17101i 0.432275 0.970905i −0.557750 0.830009i \(-0.688335\pi\)
0.990024 0.140896i \(-0.0449982\pi\)
\(6\) 0 0
\(7\) 0.327889 1.54259i 0.123930 0.583046i −0.871730 0.489986i \(-0.837002\pi\)
0.995661 0.0930598i \(-0.0296648\pi\)
\(8\) 0.441671 1.35932i 0.156154 0.480594i
\(9\) 0 0
\(10\) 0.879247i 0.278042i
\(11\) −2.12913 2.54299i −0.641957 0.766741i
\(12\) 0 0
\(13\) 6.09571 + 0.640685i 1.69065 + 0.177694i 0.900390 0.435084i \(-0.143281\pi\)
0.790255 + 0.612778i \(0.209948\pi\)
\(14\) 0.121313 + 0.570731i 0.0324221 + 0.152534i
\(15\) 0 0
\(16\) −0.334222 3.17991i −0.0835554 0.794977i
\(17\) 0.887473 0.644787i 0.215244 0.156384i −0.474939 0.880019i \(-0.657530\pi\)
0.690183 + 0.723635i \(0.257530\pi\)
\(18\) 0 0
\(19\) −0.534855 0.173785i −0.122704 0.0398690i 0.247021 0.969010i \(-0.420548\pi\)
−0.369725 + 0.929141i \(0.620548\pi\)
\(20\) 1.80088 + 4.04484i 0.402688 + 0.904453i
\(21\) 0 0
\(22\) 1.10232 + 0.539115i 0.235015 + 0.114940i
\(23\) 4.81854 2.78199i 1.00474 0.580085i 0.0950898 0.995469i \(-0.469686\pi\)
0.909646 + 0.415384i \(0.136353\pi\)
\(24\) 0 0
\(25\) −0.433320 0.481251i −0.0866641 0.0962502i
\(26\) −2.15673 + 0.700764i −0.422969 + 0.137431i
\(27\) 0 0
\(28\) 1.72705 + 2.37708i 0.326382 + 0.449227i
\(29\) 0.726096 + 0.154337i 0.134833 + 0.0286596i 0.274834 0.961492i \(-0.411377\pi\)
−0.140001 + 0.990151i \(0.544711\pi\)
\(30\) 0 0
\(31\) 0.661384 6.29265i 0.118788 1.13019i −0.758982 0.651111i \(-0.774303\pi\)
0.877770 0.479082i \(-0.159030\pi\)
\(32\) 2.02077 + 3.50008i 0.357225 + 0.618732i
\(33\) 0 0
\(34\) −0.202930 + 0.351486i −0.0348023 + 0.0602793i
\(35\) −3.03205 2.20291i −0.512510 0.372360i
\(36\) 0 0
\(37\) 1.32443 + 4.07617i 0.217735 + 0.670118i 0.998948 + 0.0458543i \(0.0146010\pi\)
−0.781214 + 0.624264i \(0.785399\pi\)
\(38\) 0.206930 0.0217492i 0.0335685 0.00352819i
\(39\) 0 0
\(40\) −2.52419 2.27279i −0.399109 0.359360i
\(41\) −11.8871 + 2.52669i −1.85646 + 0.394603i −0.993800 0.111181i \(-0.964537\pi\)
−0.862660 + 0.505784i \(0.831203\pi\)
\(42\) 0 0
\(43\) −7.35471 4.24624i −1.12158 0.647546i −0.179778 0.983707i \(-0.557538\pi\)
−0.941804 + 0.336162i \(0.890871\pi\)
\(44\) 6.17525 + 0.222344i 0.930954 + 0.0335197i
\(45\) 0 0
\(46\) −1.20999 + 1.66541i −0.178404 + 0.245552i
\(47\) −0.571919 + 0.514959i −0.0834230 + 0.0751144i −0.709787 0.704416i \(-0.751209\pi\)
0.626364 + 0.779531i \(0.284542\pi\)
\(48\) 0 0
\(49\) 4.12273 + 1.83556i 0.588962 + 0.262223i
\(50\) 0.218881 + 0.0974520i 0.0309544 + 0.0137818i
\(51\) 0 0
\(52\) −8.48639 + 7.64118i −1.17685 + 1.05964i
\(53\) −2.66042 + 3.66175i −0.365437 + 0.502981i −0.951653 0.307174i \(-0.900617\pi\)
0.586217 + 0.810154i \(0.300617\pi\)
\(54\) 0 0
\(55\) −7.57886 + 2.16432i −1.02193 + 0.291837i
\(56\) −1.95207 1.12703i −0.260856 0.150605i
\(57\) 0 0
\(58\) −0.268642 + 0.0571016i −0.0352744 + 0.00749780i
\(59\) 0.00834859 + 0.00751710i 0.00108689 + 0.000978643i 0.669674 0.742655i \(-0.266434\pi\)
−0.668587 + 0.743634i \(0.733101\pi\)
\(60\) 0 0
\(61\) 5.69949 0.599041i 0.729745 0.0766993i 0.267633 0.963521i \(-0.413759\pi\)
0.462112 + 0.886822i \(0.347092\pi\)
\(62\) 0.723404 + 2.22641i 0.0918724 + 0.282754i
\(63\) 0 0
\(64\) 3.96382 + 2.87988i 0.495477 + 0.359985i
\(65\) 7.28302 12.6146i 0.903347 1.56464i
\(66\) 0 0
\(67\) −0.738332 1.27883i −0.0902017 0.156234i 0.817394 0.576079i \(-0.195418\pi\)
−0.907596 + 0.419845i \(0.862084\pi\)
\(68\) −0.213635 + 2.03260i −0.0259070 + 0.246489i
\(69\) 0 0
\(70\) 1.35632 + 0.288295i 0.162111 + 0.0344578i
\(71\) 4.89992 + 6.74417i 0.581514 + 0.800385i 0.993860 0.110642i \(-0.0352906\pi\)
−0.412346 + 0.911027i \(0.635291\pi\)
\(72\) 0 0
\(73\) −14.9894 + 4.87035i −1.75438 + 0.570031i −0.996593 0.0824752i \(-0.973717\pi\)
−0.757783 + 0.652507i \(0.773717\pi\)
\(74\) −1.06105 1.17842i −0.123345 0.136988i
\(75\) 0 0
\(76\) 0.907402 0.523889i 0.104086 0.0600941i
\(77\) −4.62092 + 2.45057i −0.526603 + 0.279268i
\(78\) 0 0
\(79\) 1.29393 + 2.90621i 0.145578 + 0.326974i 0.971587 0.236683i \(-0.0760604\pi\)
−0.826008 + 0.563658i \(0.809394\pi\)
\(80\) −7.22666 2.34809i −0.807965 0.262524i
\(81\) 0 0
\(82\) 3.63756 2.64284i 0.401701 0.291853i
\(83\) 1.08533 + 10.3262i 0.119131 + 1.13345i 0.876814 + 0.480830i \(0.159665\pi\)
−0.757683 + 0.652623i \(0.773669\pi\)
\(84\) 0 0
\(85\) −0.542011 2.54996i −0.0587893 0.276582i
\(86\) 3.12484 + 0.328434i 0.336961 + 0.0354160i
\(87\) 0 0
\(88\) −4.39713 + 1.77101i −0.468735 + 0.188791i
\(89\) 9.01115i 0.955180i 0.878583 + 0.477590i \(0.158489\pi\)
−0.878583 + 0.477590i \(0.841511\pi\)
\(90\) 0 0
\(91\) 2.98703 9.19313i 0.313126 0.963702i
\(92\) −2.15528 + 10.1398i −0.224703 + 1.05715i
\(93\) 0 0
\(94\) 0.115812 0.260118i 0.0119451 0.0268292i
\(95\) −0.894277 + 0.993195i −0.0917508 + 0.101900i
\(96\) 0 0
\(97\) 5.06083 2.25323i 0.513849 0.228781i −0.133395 0.991063i \(-0.542588\pi\)
0.647245 + 0.762282i \(0.275921\pi\)
\(98\) −1.66968 −0.168664
\(99\) 0 0
\(100\) 1.20653 0.120653
\(101\) −8.89337 + 3.95958i −0.884924 + 0.393993i −0.798309 0.602248i \(-0.794272\pi\)
−0.0866149 + 0.996242i \(0.527605\pi\)
\(102\) 0 0
\(103\) 1.26663 1.40674i 0.124805 0.138610i −0.677504 0.735519i \(-0.736938\pi\)
0.802309 + 0.596910i \(0.203605\pi\)
\(104\) 3.56320 8.00308i 0.349400 0.784766i
\(105\) 0 0
\(106\) 0.348169 1.63801i 0.0338171 0.159097i
\(107\) 3.79203 11.6707i 0.366590 1.12825i −0.582390 0.812910i \(-0.697882\pi\)
0.948980 0.315337i \(-0.102118\pi\)
\(108\) 0 0
\(109\) 8.79322i 0.842238i −0.907005 0.421119i \(-0.861638\pi\)
0.907005 0.421119i \(-0.138362\pi\)
\(110\) 2.23592 1.87203i 0.213186 0.178491i
\(111\) 0 0
\(112\) −5.01489 0.527087i −0.473863 0.0498050i
\(113\) 0.00964498 + 0.0453760i 0.000907323 + 0.00426862i 0.978599 0.205777i \(-0.0659721\pi\)
−0.977692 + 0.210046i \(0.932639\pi\)
\(114\) 0 0
\(115\) −1.38214 13.1502i −0.128885 1.22626i
\(116\) −1.11889 + 0.812920i −0.103886 + 0.0754777i
\(117\) 0 0
\(118\) −0.00395298 0.00128440i −0.000363902 0.000118239i
\(119\) −0.703652 1.58043i −0.0645037 0.144878i
\(120\) 0 0
\(121\) −1.93360 + 10.8287i −0.175782 + 0.984429i
\(122\) −1.83625 + 1.06016i −0.166246 + 0.0959823i
\(123\) 0 0
\(124\) 7.88805 + 8.76056i 0.708368 + 0.786722i
\(125\) 9.83712 3.19627i 0.879859 0.285883i
\(126\) 0 0
\(127\) 3.88014 + 5.34055i 0.344307 + 0.473898i 0.945693 0.325061i \(-0.105385\pi\)
−0.601386 + 0.798958i \(0.705385\pi\)
\(128\) −9.67958 2.05746i −0.855562 0.181855i
\(129\) 0 0
\(130\) −0.563320 + 5.35963i −0.0494064 + 0.470071i
\(131\) −3.94169 6.82720i −0.344387 0.596495i 0.640855 0.767662i \(-0.278580\pi\)
−0.985242 + 0.171166i \(0.945246\pi\)
\(132\) 0 0
\(133\) −0.443452 + 0.768082i −0.0384522 + 0.0666011i
\(134\) 0.441997 + 0.321129i 0.0381827 + 0.0277414i
\(135\) 0 0
\(136\) −0.484503 1.49115i −0.0415458 0.127865i
\(137\) 17.5613 1.84577i 1.50036 0.157695i 0.681558 0.731764i \(-0.261303\pi\)
0.818806 + 0.574070i \(0.194636\pi\)
\(138\) 0 0
\(139\) 10.4649 + 9.42265i 0.887622 + 0.799219i 0.980512 0.196458i \(-0.0629438\pi\)
−0.0928899 + 0.995676i \(0.529610\pi\)
\(140\) 6.83003 1.45177i 0.577243 0.122697i
\(141\) 0 0
\(142\) −2.67104 1.54213i −0.224149 0.129412i
\(143\) −11.3493 16.8654i −0.949077 1.41036i
\(144\) 0 0
\(145\) 1.03691 1.42718i 0.0861105 0.118521i
\(146\) 4.33342 3.90183i 0.358636 0.322918i
\(147\) 0 0
\(148\) −7.29484 3.24787i −0.599632 0.266973i
\(149\) 13.0135 + 5.79399i 1.06611 + 0.474662i 0.863370 0.504571i \(-0.168349\pi\)
0.202738 + 0.979233i \(0.435016\pi\)
\(150\) 0 0
\(151\) 1.91451 1.72383i 0.155801 0.140284i −0.587544 0.809192i \(-0.699905\pi\)
0.743345 + 0.668909i \(0.233238\pi\)
\(152\) −0.472460 + 0.650285i −0.0383216 + 0.0527451i
\(153\) 0 0
\(154\) 1.19307 1.52366i 0.0961405 0.122780i
\(155\) −13.0221 7.51832i −1.04596 0.603886i
\(156\) 0 0
\(157\) −5.56928 + 1.18379i −0.444477 + 0.0944766i −0.424713 0.905328i \(-0.639625\pi\)
−0.0197644 + 0.999805i \(0.506292\pi\)
\(158\) −0.874682 0.787567i −0.0695859 0.0626555i
\(159\) 0 0
\(160\) 9.55197 1.00395i 0.755150 0.0793694i
\(161\) −2.71153 8.34524i −0.213699 0.657697i
\(162\) 0 0
\(163\) 6.92500 + 5.03131i 0.542408 + 0.394083i 0.824979 0.565164i \(-0.191187\pi\)
−0.282570 + 0.959247i \(0.591187\pi\)
\(164\) 11.3209 19.6085i 0.884017 1.53116i
\(165\) 0 0
\(166\) −1.92078 3.32689i −0.149081 0.258217i
\(167\) 0.318847 3.03363i 0.0246731 0.234749i −0.975235 0.221173i \(-0.929012\pi\)
0.999908 0.0135767i \(-0.00432173\pi\)
\(168\) 0 0
\(169\) 24.0313 + 5.10800i 1.84856 + 0.392923i
\(170\) 0.566927 + 0.780308i 0.0434813 + 0.0598469i
\(171\) 0 0
\(172\) 15.0481 4.88941i 1.14740 0.372814i
\(173\) 7.61135 + 8.45326i 0.578680 + 0.642690i 0.959416 0.281994i \(-0.0909959\pi\)
−0.380736 + 0.924684i \(0.624329\pi\)
\(174\) 0 0
\(175\) −0.884456 + 0.510641i −0.0668586 + 0.0386008i
\(176\) −7.37487 + 7.62036i −0.555902 + 0.574406i
\(177\) 0 0
\(178\) −1.35604 3.04572i −0.101640 0.228286i
\(179\) 10.1952 + 3.31261i 0.762023 + 0.247596i 0.664147 0.747602i \(-0.268795\pi\)
0.0978766 + 0.995199i \(0.468795\pi\)
\(180\) 0 0
\(181\) 14.3857 10.4518i 1.06928 0.776879i 0.0934987 0.995619i \(-0.470195\pi\)
0.975783 + 0.218741i \(0.0701949\pi\)
\(182\) 0.373827 + 3.55673i 0.0277099 + 0.263642i
\(183\) 0 0
\(184\) −1.65341 7.77869i −0.121891 0.573453i
\(185\) 10.1296 + 1.06466i 0.744742 + 0.0782756i
\(186\) 0 0
\(187\) −3.52923 0.884000i −0.258083 0.0646445i
\(188\) 1.43384i 0.104574i
\(189\) 0 0
\(190\) 0.152800 0.470269i 0.0110853 0.0341169i
\(191\) −4.25097 + 19.9992i −0.307589 + 1.44709i 0.504425 + 0.863456i \(0.331705\pi\)
−0.812014 + 0.583638i \(0.801629\pi\)
\(192\) 0 0
\(193\) −6.21457 + 13.9581i −0.447334 + 1.00473i 0.539350 + 0.842082i \(0.318670\pi\)
−0.986684 + 0.162648i \(0.947997\pi\)
\(194\) −1.37146 + 1.52316i −0.0984648 + 0.109356i
\(195\) 0 0
\(196\) −7.68112 + 3.41985i −0.548651 + 0.244275i
\(197\) −13.1024 −0.933507 −0.466754 0.884387i \(-0.654576\pi\)
−0.466754 + 0.884387i \(0.654576\pi\)
\(198\) 0 0
\(199\) −4.72311 −0.334812 −0.167406 0.985888i \(-0.553539\pi\)
−0.167406 + 0.985888i \(0.553539\pi\)
\(200\) −0.845562 + 0.376468i −0.0597902 + 0.0266203i
\(201\) 0 0
\(202\) 2.41005 2.67663i 0.169571 0.188327i
\(203\) 0.476157 1.06947i 0.0334197 0.0750618i
\(204\) 0 0
\(205\) −6.00459 + 28.2494i −0.419379 + 1.97302i
\(206\) −0.216422 + 0.666078i −0.0150788 + 0.0464078i
\(207\) 0 0
\(208\) 19.5979i 1.35887i
\(209\) 0.696843 + 1.73014i 0.0482016 + 0.119676i
\(210\) 0 0
\(211\) −19.4298 2.04215i −1.33760 0.140588i −0.591439 0.806350i \(-0.701440\pi\)
−0.746164 + 0.665762i \(0.768107\pi\)
\(212\) −1.75327 8.24851i −0.120415 0.566510i
\(213\) 0 0
\(214\) 0.474574 + 4.51527i 0.0324412 + 0.308657i
\(215\) −16.3277 + 11.8627i −1.11354 + 0.809032i
\(216\) 0 0
\(217\) −9.49015 3.08354i −0.644233 0.209324i
\(218\) 1.32325 + 2.97206i 0.0896215 + 0.201293i
\(219\) 0 0
\(220\) 6.45168 13.1916i 0.434972 0.889378i
\(221\) 5.82288 3.36184i 0.391689 0.226142i
\(222\) 0 0
\(223\) −10.9936 12.2097i −0.736188 0.817620i 0.252502 0.967596i \(-0.418747\pi\)
−0.988689 + 0.149977i \(0.952080\pi\)
\(224\) 6.06179 1.96959i 0.405020 0.131599i
\(225\) 0 0
\(226\) −0.0100884 0.0138854i −0.000671067 0.000923645i
\(227\) −26.5714 5.64793i −1.76361 0.374866i −0.791824 0.610749i \(-0.790869\pi\)
−0.971781 + 0.235883i \(0.924202\pi\)
\(228\) 0 0
\(229\) 0.453169 4.31161i 0.0299462 0.284919i −0.969293 0.245910i \(-0.920913\pi\)
0.999239 0.0390091i \(-0.0124201\pi\)
\(230\) 2.44605 + 4.23669i 0.161288 + 0.279359i
\(231\) 0 0
\(232\) 0.530489 0.918835i 0.0348283 0.0603244i
\(233\) 9.48697 + 6.89268i 0.621512 + 0.451555i 0.853449 0.521176i \(-0.174506\pi\)
−0.231937 + 0.972731i \(0.574506\pi\)
\(234\) 0 0
\(235\) 0.565165 + 1.73940i 0.0368673 + 0.113466i
\(236\) −0.0208158 + 0.00218783i −0.00135499 + 0.000142416i
\(237\) 0 0
\(238\) 0.475661 + 0.428287i 0.0308325 + 0.0277617i
\(239\) −17.5498 + 3.73031i −1.13520 + 0.241294i −0.736926 0.675973i \(-0.763724\pi\)
−0.398273 + 0.917267i \(0.630390\pi\)
\(240\) 0 0
\(241\) −2.31388 1.33592i −0.149050 0.0860541i 0.423620 0.905840i \(-0.360759\pi\)
−0.572670 + 0.819786i \(0.694092\pi\)
\(242\) −0.976011 3.95102i −0.0627404 0.253982i
\(243\) 0 0
\(244\) −6.27595 + 8.63811i −0.401777 + 0.552998i
\(245\) 7.97003 7.17625i 0.509186 0.458474i
\(246\) 0 0
\(247\) −3.14898 1.40201i −0.200365 0.0892081i
\(248\) −8.26164 3.67832i −0.524615 0.233574i
\(249\) 0 0
\(250\) −2.84390 + 2.56066i −0.179864 + 0.161950i
\(251\) 7.98861 10.9954i 0.504237 0.694022i −0.478697 0.877980i \(-0.658891\pi\)
0.982934 + 0.183958i \(0.0588909\pi\)
\(252\) 0 0
\(253\) −17.3339 6.33030i −1.08977 0.397982i
\(254\) −2.11514 1.22118i −0.132716 0.0766234i
\(255\) 0 0
\(256\) −6.00371 + 1.27613i −0.375232 + 0.0797580i
\(257\) −3.53361 3.18168i −0.220421 0.198468i 0.551521 0.834161i \(-0.314048\pi\)
−0.771942 + 0.635693i \(0.780714\pi\)
\(258\) 0 0
\(259\) 6.72214 0.706526i 0.417694 0.0439014i
\(260\) 8.38616 + 25.8099i 0.520088 + 1.60066i
\(261\) 0 0
\(262\) 2.35966 + 1.71439i 0.145780 + 0.105915i
\(263\) −9.26116 + 16.0408i −0.571067 + 0.989118i 0.425389 + 0.905010i \(0.360137\pi\)
−0.996457 + 0.0841073i \(0.973196\pi\)
\(264\) 0 0
\(265\) 5.37815 + 9.31523i 0.330377 + 0.572230i
\(266\) 0.0342997 0.326340i 0.00210305 0.0200092i
\(267\) 0 0
\(268\) 2.69108 + 0.572006i 0.164384 + 0.0349408i
\(269\) 12.6954 + 17.4737i 0.774049 + 1.06539i 0.995914 + 0.0903100i \(0.0287858\pi\)
−0.221864 + 0.975078i \(0.571214\pi\)
\(270\) 0 0
\(271\) −0.869236 + 0.282432i −0.0528023 + 0.0171565i −0.335299 0.942112i \(-0.608837\pi\)
0.282497 + 0.959268i \(0.408837\pi\)
\(272\) −2.34697 2.60658i −0.142306 0.158047i
\(273\) 0 0
\(274\) −5.65786 + 3.26657i −0.341804 + 0.197341i
\(275\) −0.301221 + 2.12658i −0.0181643 + 0.128237i
\(276\) 0 0
\(277\) 6.02500 + 13.5324i 0.362007 + 0.813081i 0.999105 + 0.0422984i \(0.0134680\pi\)
−0.637098 + 0.770783i \(0.719865\pi\)
\(278\) −4.95505 1.60999i −0.297184 0.0965610i
\(279\) 0 0
\(280\) −4.33365 + 3.14858i −0.258985 + 0.188164i
\(281\) 0.192078 + 1.82750i 0.0114584 + 0.109020i 0.998756 0.0498615i \(-0.0158780\pi\)
−0.987298 + 0.158881i \(0.949211\pi\)
\(282\) 0 0
\(283\) 2.50950 + 11.8063i 0.149174 + 0.701810i 0.987625 + 0.156833i \(0.0501284\pi\)
−0.838451 + 0.544977i \(0.816538\pi\)
\(284\) −15.4463 1.62347i −0.916569 0.0963353i
\(285\) 0 0
\(286\) 6.37399 + 3.99252i 0.376902 + 0.236083i
\(287\) 19.1655i 1.13130i
\(288\) 0 0
\(289\) −4.88143 + 15.0235i −0.287143 + 0.883735i
\(290\) −0.135700 + 0.638418i −0.00796857 + 0.0374892i
\(291\) 0 0
\(292\) 11.9435 26.8255i 0.698939 1.56984i
\(293\) 11.4299 12.6942i 0.667743 0.741604i −0.310155 0.950686i \(-0.600381\pi\)
0.977898 + 0.209082i \(0.0670475\pi\)
\(294\) 0 0
\(295\) 0.0243894 0.0108589i 0.00142001 0.000632227i
\(296\) 6.12580 0.356055
\(297\) 0 0
\(298\) −5.27040 −0.305306
\(299\) 31.1548 13.8710i 1.80173 0.802182i
\(300\) 0 0
\(301\) −8.96175 + 9.95303i −0.516547 + 0.573683i
\(302\) −0.387683 + 0.870751i −0.0223087 + 0.0501061i
\(303\) 0 0
\(304\) −0.373859 + 1.75887i −0.0214423 + 0.100878i
\(305\) 4.20858 12.9527i 0.240983 0.741668i
\(306\) 0 0
\(307\) 16.6906i 0.952585i 0.879287 + 0.476293i \(0.158020\pi\)
−0.879287 + 0.476293i \(0.841980\pi\)
\(308\) 2.36778 9.45300i 0.134917 0.538635i
\(309\) 0 0
\(310\) 5.53279 + 0.581520i 0.314242 + 0.0330281i
\(311\) 6.14285 + 28.8998i 0.348329 + 1.63876i 0.708383 + 0.705828i \(0.249425\pi\)
−0.360054 + 0.932932i \(0.617242\pi\)
\(312\) 0 0
\(313\) −1.68745 16.0551i −0.0953806 0.907486i −0.932671 0.360728i \(-0.882528\pi\)
0.837291 0.546758i \(-0.184138\pi\)
\(314\) 1.70424 1.23821i 0.0961761 0.0698760i
\(315\) 0 0
\(316\) −5.63693 1.83155i −0.317102 0.103033i
\(317\) −3.41021 7.65946i −0.191536 0.430198i 0.792093 0.610400i \(-0.208991\pi\)
−0.983630 + 0.180202i \(0.942325\pi\)
\(318\) 0 0
\(319\) −1.15348 2.17506i −0.0645823 0.121780i
\(320\) 10.0837 5.82181i 0.563694 0.325449i
\(321\) 0 0
\(322\) 2.17232 + 2.41260i 0.121058 + 0.134449i
\(323\) −0.586723 + 0.190638i −0.0326462 + 0.0106074i
\(324\) 0 0
\(325\) −2.33306 3.21119i −0.129415 0.178125i
\(326\) −3.09775 0.658447i −0.171568 0.0364680i
\(327\) 0 0
\(328\) −1.81562 + 17.2745i −0.100251 + 0.953822i
\(329\) 0.606846 + 1.05109i 0.0334565 + 0.0579484i
\(330\) 0 0
\(331\) 0.503541 0.872158i 0.0276771 0.0479381i −0.851855 0.523778i \(-0.824522\pi\)
0.879532 + 0.475839i \(0.157856\pi\)
\(332\) −15.6504 11.3707i −0.858927 0.624047i
\(333\) 0 0
\(334\) 0.348746 + 1.07333i 0.0190826 + 0.0587301i
\(335\) −3.49002 + 0.366816i −0.190680 + 0.0200413i
\(336\) 0 0
\(337\) −16.5118 14.8673i −0.899457 0.809875i 0.0829642 0.996553i \(-0.473561\pi\)
−0.982421 + 0.186678i \(0.940228\pi\)
\(338\) −8.89111 + 1.88986i −0.483613 + 0.102795i
\(339\) 0 0
\(340\) 4.20629 + 2.42850i 0.228118 + 0.131704i
\(341\) −17.4103 + 11.7160i −0.942822 + 0.634456i
\(342\) 0 0
\(343\) 10.6721 14.6889i 0.576240 0.793126i
\(344\) −9.02038 + 8.12199i −0.486346 + 0.437908i
\(345\) 0 0
\(346\) −3.84468 1.71176i −0.206691 0.0920249i
\(347\) 10.9569 + 4.87831i 0.588195 + 0.261881i 0.679181 0.733971i \(-0.262335\pi\)
−0.0909858 + 0.995852i \(0.529002\pi\)
\(348\) 0 0
\(349\) 7.55592 6.80338i 0.404459 0.364176i −0.441649 0.897188i \(-0.645606\pi\)
0.846108 + 0.533011i \(0.178940\pi\)
\(350\) 0.222097 0.305691i 0.0118716 0.0163399i
\(351\) 0 0
\(352\) 4.59818 12.5909i 0.245084 0.671099i
\(353\) 3.99680 + 2.30756i 0.212728 + 0.122819i 0.602579 0.798059i \(-0.294140\pi\)
−0.389850 + 0.920878i \(0.627473\pi\)
\(354\) 0 0
\(355\) 19.3779 4.11890i 1.02847 0.218608i
\(356\) −12.4765 11.2339i −0.661254 0.595395i
\(357\) 0 0
\(358\) −3.94441 + 0.414574i −0.208469 + 0.0219109i
\(359\) −2.51158 7.72985i −0.132556 0.407966i 0.862646 0.505809i \(-0.168806\pi\)
−0.995202 + 0.0978426i \(0.968806\pi\)
\(360\) 0 0
\(361\) −15.1155 10.9820i −0.795550 0.578001i
\(362\) −3.28945 + 5.69749i −0.172890 + 0.299454i
\(363\) 0 0
\(364\) 9.00465 + 15.5965i 0.471972 + 0.817479i
\(365\) −3.91511 + 37.2498i −0.204926 + 1.94974i
\(366\) 0 0
\(367\) −37.1245 7.89105i −1.93788 0.411910i −0.997400 0.0720664i \(-0.977041\pi\)
−0.940482 0.339843i \(-0.889626\pi\)
\(368\) −10.4569 14.3927i −0.545105 0.750272i
\(369\) 0 0
\(370\) −3.58396 + 1.16450i −0.186321 + 0.0605394i
\(371\) 4.77628 + 5.30460i 0.247972 + 0.275401i
\(372\) 0 0
\(373\) 5.61495 3.24179i 0.290731 0.167854i −0.347540 0.937665i \(-0.612983\pi\)
0.638272 + 0.769811i \(0.279650\pi\)
\(374\) 1.32589 0.232309i 0.0685601 0.0120124i
\(375\) 0 0
\(376\) 0.447395 + 1.00487i 0.0230727 + 0.0518220i
\(377\) 4.32719 + 1.40599i 0.222862 + 0.0724121i
\(378\) 0 0
\(379\) −10.0492 + 7.30119i −0.516194 + 0.375037i −0.815168 0.579224i \(-0.803356\pi\)
0.298974 + 0.954261i \(0.403356\pi\)
\(380\) −0.260277 2.47637i −0.0133519 0.127035i
\(381\) 0 0
\(382\) −1.57278 7.39934i −0.0804703 0.378583i
\(383\) −14.1924 1.49168i −0.725199 0.0762214i −0.265266 0.964175i \(-0.585460\pi\)
−0.459933 + 0.887954i \(0.652126\pi\)
\(384\) 0 0
\(385\) 0.853644 + 12.4008i 0.0435057 + 0.632002i
\(386\) 5.65297i 0.287729i
\(387\) 0 0
\(388\) −3.18943 + 9.81606i −0.161919 + 0.498335i
\(389\) −2.23906 + 10.5339i −0.113525 + 0.534092i 0.884226 + 0.467059i \(0.154687\pi\)
−0.997751 + 0.0670327i \(0.978647\pi\)
\(390\) 0 0
\(391\) 2.48254 5.57587i 0.125547 0.281984i
\(392\) 4.31601 4.79342i 0.217992 0.242104i
\(393\) 0 0
\(394\) 4.42854 1.97171i 0.223106 0.0993334i
\(395\) 7.56012 0.380391
\(396\) 0 0
\(397\) 13.8356 0.694387 0.347193 0.937794i \(-0.387135\pi\)
0.347193 + 0.937794i \(0.387135\pi\)
\(398\) 1.59639 0.710757i 0.0800196 0.0356270i
\(399\) 0 0
\(400\) −1.38551 + 1.53876i −0.0692754 + 0.0769381i
\(401\) 14.5838 32.7557i 0.728279 1.63574i −0.0428651 0.999081i \(-0.513649\pi\)
0.771144 0.636661i \(-0.219685\pi\)
\(402\) 0 0
\(403\) 8.06321 37.9344i 0.401657 1.88965i
\(404\) 5.60477 17.2497i 0.278848 0.858206i
\(405\) 0 0
\(406\) 0.433128i 0.0214958i
\(407\) 7.54578 12.0467i 0.374031 0.597133i
\(408\) 0 0
\(409\) 15.6291 + 1.64268i 0.772809 + 0.0812255i 0.482720 0.875774i \(-0.339649\pi\)
0.290088 + 0.957000i \(0.406315\pi\)
\(410\) −2.22159 10.4517i −0.109716 0.516174i
\(411\) 0 0
\(412\) 0.368649 + 3.50746i 0.0181620 + 0.172800i
\(413\) 0.0143332 0.0104137i 0.000705293 0.000512425i
\(414\) 0 0
\(415\) 23.4675 + 7.62504i 1.15197 + 0.374298i
\(416\) 10.0756 + 22.6301i 0.493996 + 1.10953i
\(417\) 0 0
\(418\) −0.495889 0.479914i −0.0242547 0.0234734i
\(419\) 13.1723 7.60505i 0.643510 0.371531i −0.142455 0.989801i \(-0.545500\pi\)
0.785965 + 0.618270i \(0.212166\pi\)
\(420\) 0 0
\(421\) −8.12421 9.02285i −0.395950 0.439747i 0.511898 0.859046i \(-0.328942\pi\)
−0.907848 + 0.419299i \(0.862276\pi\)
\(422\) 6.87448 2.23365i 0.334644 0.108733i
\(423\) 0 0
\(424\) 3.80248 + 5.23367i 0.184665 + 0.254169i
\(425\) −0.694864 0.147698i −0.0337059 0.00716440i
\(426\) 0 0
\(427\) 0.944721 8.98842i 0.0457183 0.434980i
\(428\) 11.4314 + 19.7998i 0.552557 + 0.957057i
\(429\) 0 0
\(430\) 3.73349 6.46660i 0.180045 0.311847i
\(431\) −20.7468 15.0734i −0.999336 0.726060i −0.0373906 0.999301i \(-0.511905\pi\)
−0.961946 + 0.273240i \(0.911905\pi\)
\(432\) 0 0
\(433\) −0.399073 1.22822i −0.0191782 0.0590245i 0.941009 0.338380i \(-0.109879\pi\)
−0.960188 + 0.279356i \(0.909879\pi\)
\(434\) 3.67164 0.385905i 0.176244 0.0185240i
\(435\) 0 0
\(436\) 12.1748 + 10.9622i 0.583066 + 0.524995i
\(437\) −3.06069 + 0.650569i −0.146413 + 0.0311210i
\(438\) 0 0
\(439\) 7.78450 + 4.49438i 0.371534 + 0.214505i 0.674128 0.738614i \(-0.264519\pi\)
−0.302595 + 0.953119i \(0.597853\pi\)
\(440\) −0.405354 + 11.2581i −0.0193245 + 0.536707i
\(441\) 0 0
\(442\) −1.46220 + 2.01254i −0.0695495 + 0.0957267i
\(443\) −10.6597 + 9.59804i −0.506458 + 0.456017i −0.882314 0.470661i \(-0.844015\pi\)
0.375856 + 0.926678i \(0.377349\pi\)
\(444\) 0 0
\(445\) 19.5633 + 8.71013i 0.927388 + 0.412900i
\(446\) 5.55315 + 2.47242i 0.262949 + 0.117073i
\(447\) 0 0
\(448\) 5.74218 5.17028i 0.271293 0.244273i
\(449\) 8.37515 11.5274i 0.395248 0.544012i −0.564296 0.825573i \(-0.690852\pi\)
0.959543 + 0.281561i \(0.0908522\pi\)
\(450\) 0 0
\(451\) 31.7346 + 24.8492i 1.49433 + 1.17011i
\(452\) −0.0748501 0.0432147i −0.00352065 0.00203265i
\(453\) 0 0
\(454\) 9.83091 2.08963i 0.461388 0.0980710i
\(455\) −17.0711 15.3709i −0.800307 0.720599i
\(456\) 0 0
\(457\) −25.8336 + 2.71522i −1.20845 + 0.127013i −0.687248 0.726423i \(-0.741182\pi\)
−0.521198 + 0.853436i \(0.674515\pi\)
\(458\) 0.495664 + 1.52550i 0.0231608 + 0.0712817i
\(459\) 0 0
\(460\) 19.9303 + 14.4802i 0.929255 + 0.675143i
\(461\) 5.82733 10.0932i 0.271406 0.470089i −0.697816 0.716277i \(-0.745845\pi\)
0.969222 + 0.246188i \(0.0791781\pi\)
\(462\) 0 0
\(463\) −9.33236 16.1641i −0.433712 0.751211i 0.563478 0.826131i \(-0.309463\pi\)
−0.997190 + 0.0749205i \(0.976130\pi\)
\(464\) 0.248099 2.36050i 0.0115177 0.109583i
\(465\) 0 0
\(466\) −4.24379 0.902044i −0.196590 0.0417864i
\(467\) −1.77499 2.44307i −0.0821369 0.113052i 0.765971 0.642875i \(-0.222258\pi\)
−0.848108 + 0.529823i \(0.822258\pi\)
\(468\) 0 0
\(469\) −2.21481 + 0.719634i −0.102270 + 0.0332296i
\(470\) −0.452776 0.502858i −0.0208850 0.0231951i
\(471\) 0 0
\(472\) 0.0139055 0.00802835i 0.000640053 0.000369535i
\(473\) 4.86098 + 27.7437i 0.223508 + 1.27566i
\(474\) 0 0
\(475\) 0.148129 + 0.332704i 0.00679664 + 0.0152655i
\(476\) 3.06542 + 0.996017i 0.140503 + 0.0456523i
\(477\) 0 0
\(478\) 5.37036 3.90180i 0.245635 0.178464i
\(479\) −4.04360 38.4723i −0.184757 1.75784i −0.557751 0.830009i \(-0.688335\pi\)
0.372994 0.927834i \(-0.378331\pi\)
\(480\) 0 0
\(481\) 5.46179 + 25.6957i 0.249036 + 1.17162i
\(482\) 0.983114 + 0.103329i 0.0447796 + 0.00470653i
\(483\) 0 0
\(484\) −12.5825 16.1770i −0.571932 0.735318i
\(485\) 13.1651i 0.597795i
\(486\) 0 0
\(487\) −3.79422 + 11.6774i −0.171933 + 0.529154i −0.999480 0.0322416i \(-0.989735\pi\)
0.827548 + 0.561396i \(0.189735\pi\)
\(488\) 1.70301 8.01204i 0.0770917 0.362688i
\(489\) 0 0
\(490\) −1.61391 + 3.62490i −0.0729090 + 0.163756i
\(491\) 24.4022 27.1014i 1.10125 1.22307i 0.128383 0.991725i \(-0.459021\pi\)
0.972872 0.231343i \(-0.0743119\pi\)
\(492\) 0 0
\(493\) 0.743905 0.331208i 0.0335038 0.0149168i
\(494\) 1.27532 0.0573793
\(495\) 0 0
\(496\) −20.2311 −0.908403
\(497\) 12.0101 5.34726i 0.538729 0.239857i
\(498\) 0 0
\(499\) 16.2473 18.0445i 0.727329 0.807781i −0.260144 0.965570i \(-0.583770\pi\)
0.987473 + 0.157789i \(0.0504366\pi\)
\(500\) −7.83816 + 17.6048i −0.350533 + 0.787311i
\(501\) 0 0
\(502\) −1.04547 + 4.91854i −0.0466616 + 0.219525i
\(503\) −6.87821 + 21.1689i −0.306684 + 0.943876i 0.672359 + 0.740225i \(0.265281\pi\)
−0.979043 + 0.203652i \(0.934719\pi\)
\(504\) 0 0
\(505\) 23.1349i 1.02949i
\(506\) 6.81137 0.468881i 0.302802 0.0208443i
\(507\) 0 0
\(508\) −12.2316 1.28559i −0.542689 0.0570389i
\(509\) −5.89189 27.7192i −0.261153 1.22863i −0.891753 0.452522i \(-0.850524\pi\)
0.630600 0.776108i \(-0.282809\pi\)
\(510\) 0 0
\(511\) 2.59812 + 24.7195i 0.114934 + 1.09353i
\(512\) 17.8490 12.9680i 0.788820 0.573111i
\(513\) 0 0
\(514\) 1.67314 + 0.543635i 0.0737989 + 0.0239787i
\(515\) −1.82972 4.10961i −0.0806270 0.181091i
\(516\) 0 0
\(517\) 2.52723 + 0.357971i 0.111147 + 0.0157436i
\(518\) −2.16573 + 1.25038i −0.0951565 + 0.0549386i
\(519\) 0 0
\(520\) −13.9306 15.4715i −0.610896 0.678469i
\(521\) 14.9548 4.85911i 0.655182 0.212882i 0.0374843 0.999297i \(-0.488066\pi\)
0.617698 + 0.786416i \(0.288066\pi\)
\(522\) 0 0
\(523\) 8.59617 + 11.8316i 0.375884 + 0.517360i 0.954488 0.298248i \(-0.0964023\pi\)
−0.578604 + 0.815609i \(0.696402\pi\)
\(524\) 14.3667 + 3.05373i 0.627610 + 0.133403i
\(525\) 0 0
\(526\) 0.716324 6.81536i 0.0312332 0.297164i
\(527\) −3.47046 6.01101i −0.151175 0.261844i
\(528\) 0 0
\(529\) 3.97891 6.89168i 0.172996 0.299638i
\(530\) −3.21959 2.33917i −0.139850 0.101607i
\(531\) 0 0
\(532\) −0.510621 1.57153i −0.0221382 0.0681345i
\(533\) −74.0794 + 7.78606i −3.20873 + 0.337252i
\(534\) 0 0
\(535\) −21.6718 19.5134i −0.936953 0.843636i
\(536\) −2.06444 + 0.438811i −0.0891704 + 0.0189538i
\(537\) 0 0
\(538\) −6.92048 3.99554i −0.298363 0.172260i
\(539\) −4.11003 14.3922i −0.177031 0.619916i
\(540\) 0 0
\(541\) 10.4934 14.4429i 0.451146 0.620950i −0.521497 0.853253i \(-0.674626\pi\)
0.972643 + 0.232303i \(0.0746262\pi\)
\(542\) 0.251295 0.226267i 0.0107941 0.00971901i
\(543\) 0 0
\(544\) 4.05018 + 1.80326i 0.173650 + 0.0773141i
\(545\) −19.0902 8.49949i −0.817733 0.364078i
\(546\) 0 0
\(547\) −3.35413 + 3.02008i −0.143412 + 0.129129i −0.737715 0.675113i \(-0.764095\pi\)
0.594302 + 0.804242i \(0.297428\pi\)
\(548\) −19.3375 + 26.6158i −0.826058 + 1.13697i
\(549\) 0 0
\(550\) −0.218206 0.764100i −0.00930435 0.0325813i
\(551\) −0.361535 0.208732i −0.0154019 0.00889229i
\(552\) 0 0
\(553\) 4.90737 1.04309i 0.208683 0.0443569i
\(554\) −4.07283 3.66719i −0.173038 0.155804i
\(555\) 0 0
\(556\) −26.0925 + 2.74243i −1.10657 + 0.116305i
\(557\) 8.48770 + 26.1225i 0.359635 + 1.10684i 0.953273 + 0.302111i \(0.0976914\pi\)
−0.593637 + 0.804733i \(0.702309\pi\)
\(558\) 0 0
\(559\) −42.1116 30.5959i −1.78113 1.29407i
\(560\) −5.99168 + 10.3779i −0.253195 + 0.438546i
\(561\) 0 0
\(562\) −0.339933 0.588781i −0.0143392 0.0248362i
\(563\) −1.09423 + 10.4109i −0.0461162 + 0.438766i 0.946965 + 0.321337i \(0.104132\pi\)
−0.993081 + 0.117430i \(0.962535\pi\)
\(564\) 0 0
\(565\) 0.107835 + 0.0229210i 0.00453664 + 0.000964292i
\(566\) −2.62486 3.61281i −0.110331 0.151858i
\(567\) 0 0
\(568\) 11.3317 3.68188i 0.475466 0.154488i
\(569\) 24.8077 + 27.5518i 1.03999 + 1.15503i 0.987694 + 0.156398i \(0.0499884\pi\)
0.0522995 + 0.998631i \(0.483345\pi\)
\(570\) 0 0
\(571\) 5.32451 3.07411i 0.222824 0.128647i −0.384433 0.923153i \(-0.625603\pi\)
0.607257 + 0.794505i \(0.292270\pi\)
\(572\) 37.5001 + 5.31173i 1.56796 + 0.222095i
\(573\) 0 0
\(574\) −2.88412 6.47784i −0.120381 0.270380i
\(575\) −3.42681 1.11344i −0.142908 0.0464335i
\(576\) 0 0
\(577\) −8.59300 + 6.24318i −0.357731 + 0.259907i −0.752105 0.659043i \(-0.770961\pi\)
0.394374 + 0.918950i \(0.370961\pi\)
\(578\) −0.610912 5.81244i −0.0254106 0.241766i
\(579\) 0 0
\(580\) 0.683344 + 3.21488i 0.0283743 + 0.133491i
\(581\) 16.2851 + 1.71163i 0.675619 + 0.0710104i
\(582\) 0 0
\(583\) 14.9762 1.03093i 0.620250 0.0426968i
\(584\) 22.5266i 0.932155i
\(585\) 0 0
\(586\) −1.95296 + 6.01061i −0.0806762 + 0.248296i
\(587\) −1.30614 + 6.14489i −0.0539100 + 0.253627i −0.996847 0.0793437i \(-0.974718\pi\)
0.942937 + 0.332970i \(0.108051\pi\)
\(588\) 0 0
\(589\) −1.44731 + 3.25071i −0.0596354 + 0.133943i
\(590\) −0.00660939 + 0.00734047i −0.000272104 + 0.000302202i
\(591\) 0 0
\(592\) 12.5192 5.57390i 0.514535 0.229086i
\(593\) −13.2967 −0.546030 −0.273015 0.962010i \(-0.588021\pi\)
−0.273015 + 0.962010i \(0.588021\pi\)
\(594\) 0 0
\(595\) −4.11127 −0.168546
\(596\) −24.2456 + 10.7949i −0.993140 + 0.442175i
\(597\) 0 0
\(598\) −8.44278 + 9.37665i −0.345251 + 0.383440i
\(599\) −14.2316 + 31.9648i −0.581489 + 1.30605i 0.348103 + 0.937456i \(0.386826\pi\)
−0.929592 + 0.368590i \(0.879841\pi\)
\(600\) 0 0
\(601\) 1.09690 5.16050i 0.0447434 0.210501i −0.950097 0.311955i \(-0.899016\pi\)
0.994840 + 0.101454i \(0.0323494\pi\)
\(602\) 1.53124 4.71268i 0.0624087 0.192074i
\(603\) 0 0
\(604\) 4.79981i 0.195301i
\(605\) 21.6402 + 14.6649i 0.879801 + 0.596211i
\(606\) 0 0
\(607\) 20.6851 + 2.17409i 0.839580 + 0.0882435i 0.514550 0.857460i \(-0.327959\pi\)
0.325030 + 0.945704i \(0.394626\pi\)
\(608\) −0.472559 2.22321i −0.0191648 0.0901632i
\(609\) 0 0
\(610\) 0.526705 + 5.01126i 0.0213256 + 0.202900i
\(611\) −3.81618 + 2.77262i −0.154386 + 0.112168i
\(612\) 0 0
\(613\) −25.6016 8.31845i −1.03404 0.335979i −0.257652 0.966238i \(-0.582949\pi\)
−0.776385 + 0.630259i \(0.782949\pi\)
\(614\) −2.51169 5.64134i −0.101363 0.227666i
\(615\) 0 0
\(616\) 1.29019 + 7.36368i 0.0519832 + 0.296691i
\(617\) −29.0656 + 16.7811i −1.17014 + 0.675580i −0.953713 0.300719i \(-0.902773\pi\)
−0.216426 + 0.976299i \(0.569440\pi\)
\(618\) 0 0
\(619\) 24.9661 + 27.7277i 1.00347 + 1.11447i 0.993421 + 0.114520i \(0.0365329\pi\)
0.0100515 + 0.999949i \(0.496800\pi\)
\(620\) 26.6438 8.65710i 1.07004 0.347678i
\(621\) 0 0
\(622\) −6.42524 8.84358i −0.257629 0.354595i
\(623\) 13.9005 + 2.95465i 0.556914 + 0.118376i
\(624\) 0 0
\(625\) 2.90783 27.6662i 0.116313 1.10665i
\(626\) 2.98639 + 5.17258i 0.119360 + 0.206738i
\(627\) 0 0
\(628\) 5.30401 9.18682i 0.211653 0.366594i
\(629\) 3.80365 + 2.76352i 0.151662 + 0.110189i
\(630\) 0 0
\(631\) −5.33541 16.4207i −0.212399 0.653698i −0.999328 0.0366537i \(-0.988330\pi\)
0.786929 0.617044i \(-0.211670\pi\)
\(632\) 4.52198 0.475279i 0.179875 0.0189056i
\(633\) 0 0
\(634\) 2.30526 + 2.07567i 0.0915537 + 0.0824354i
\(635\) 15.3449 3.26166i 0.608944 0.129435i
\(636\) 0 0
\(637\) 23.9550 + 13.8304i 0.949130 + 0.547980i
\(638\) 0.717182 + 0.561577i 0.0283935 + 0.0222330i
\(639\) 0 0
\(640\) −13.8230 + 19.0257i −0.546402 + 0.752058i
\(641\) 7.01171 6.31337i 0.276946 0.249363i −0.518939 0.854811i \(-0.673673\pi\)
0.795885 + 0.605448i \(0.207006\pi\)
\(642\) 0 0
\(643\) 7.46251 + 3.32252i 0.294293 + 0.131028i 0.548572 0.836103i \(-0.315172\pi\)
−0.254279 + 0.967131i \(0.581838\pi\)
\(644\) 14.9349 + 6.64944i 0.588517 + 0.262025i
\(645\) 0 0
\(646\) 0.169621 0.152727i 0.00667365 0.00600898i
\(647\) −12.6621 + 17.4279i −0.497799 + 0.685162i −0.981803 0.189904i \(-0.939182\pi\)
0.484003 + 0.875066i \(0.339182\pi\)
\(648\) 0 0
\(649\) 0.00134068 0.0372353i 5.26264e−5 0.00146161i
\(650\) 1.27180 + 0.734273i 0.0498840 + 0.0288005i
\(651\) 0 0
\(652\) −15.5993 + 3.31574i −0.610917 + 0.129854i
\(653\) −33.9745 30.5908i −1.32953 1.19711i −0.963874 0.266358i \(-0.914180\pi\)
−0.365651 0.930752i \(-0.619154\pi\)
\(654\) 0 0
\(655\) −18.6319 + 1.95829i −0.728010 + 0.0765169i
\(656\) 12.0076 + 36.9555i 0.468817 + 1.44287i
\(657\) 0 0
\(658\) −0.363284 0.263941i −0.0141623 0.0102895i
\(659\) −2.87636 + 4.98200i −0.112047 + 0.194071i −0.916595 0.399816i \(-0.869074\pi\)
0.804548 + 0.593887i \(0.202407\pi\)
\(660\) 0 0
\(661\) −14.9630 25.9166i −0.581991 1.00804i −0.995243 0.0974218i \(-0.968940\pi\)
0.413252 0.910617i \(-0.364393\pi\)
\(662\) −0.0389474 + 0.370560i −0.00151373 + 0.0144022i
\(663\) 0 0
\(664\) 14.5161 + 3.08549i 0.563333 + 0.119740i
\(665\) 1.23887 + 1.70516i 0.0480415 + 0.0661234i
\(666\) 0 0
\(667\) 3.92809 1.27631i 0.152096 0.0494190i
\(668\) 3.80276 + 4.22339i 0.147133 + 0.163408i
\(669\) 0 0
\(670\) 1.12441 0.649177i 0.0434396 0.0250799i
\(671\) −13.6583 13.2183i −0.527273 0.510287i
\(672\) 0 0
\(673\) −0.526783 1.18317i −0.0203060 0.0456080i 0.903108 0.429414i \(-0.141280\pi\)
−0.923414 + 0.383806i \(0.874613\pi\)
\(674\) 7.81821 + 2.54029i 0.301146 + 0.0978484i
\(675\) 0 0
\(676\) −37.0313 + 26.9048i −1.42428 + 1.03480i
\(677\) −2.18984 20.8349i −0.0841623 0.800750i −0.952451 0.304691i \(-0.901447\pi\)
0.868289 0.496059i \(-0.165220\pi\)
\(678\) 0 0
\(679\) −1.81643 8.54562i −0.0697081 0.327951i
\(680\) −3.70561 0.389476i −0.142104 0.0149357i
\(681\) 0 0
\(682\) 4.12151 6.57993i 0.157821 0.251958i
\(683\) 12.7750i 0.488822i −0.969672 0.244411i \(-0.921405\pi\)
0.969672 0.244411i \(-0.0785945\pi\)
\(684\) 0 0
\(685\) 12.9675 39.9099i 0.495463 1.52488i
\(686\) −1.39666 + 6.57076i −0.0533246 + 0.250873i
\(687\) 0 0
\(688\) −11.0445 + 24.8065i −0.421069 + 0.945737i
\(689\) −18.5632 + 20.6165i −0.707201 + 0.785426i
\(690\) 0 0
\(691\) −26.3548 + 11.7339i −1.00258 + 0.446378i −0.841322 0.540534i \(-0.818222\pi\)
−0.161260 + 0.986912i \(0.551556\pi\)
\(692\) −21.1929 −0.805633
\(693\) 0 0
\(694\) −4.43747 −0.168444
\(695\) 30.5720 13.6115i 1.15966 0.516315i
\(696\) 0 0
\(697\) −8.92034 + 9.90704i −0.337882 + 0.375256i
\(698\) −1.53005 + 3.43655i −0.0579134 + 0.130076i
\(699\) 0 0
\(700\) 0.395607 1.86118i 0.0149525 0.0703461i
\(701\) 1.64023 5.04812i 0.0619507 0.190665i −0.915291 0.402793i \(-0.868039\pi\)
0.977242 + 0.212128i \(0.0680395\pi\)
\(702\) 0 0
\(703\) 2.41032i 0.0909071i
\(704\) −1.11597 16.2116i −0.0420599 0.610998i
\(705\) 0 0
\(706\) −1.69815 0.178483i −0.0639107 0.00671728i
\(707\) 3.19200 + 15.0172i 0.120047 + 0.564779i
\(708\) 0 0
\(709\) 3.01787 + 28.7131i 0.113339 + 1.07834i 0.892353 + 0.451338i \(0.149053\pi\)
−0.779014 + 0.627006i \(0.784280\pi\)
\(710\) −5.92979 + 4.30824i −0.222541 + 0.161685i
\(711\) 0 0
\(712\) 12.2491 + 3.97997i 0.459054 + 0.149156i
\(713\) −14.3192 32.1614i −0.536257 1.20445i
\(714\) 0 0
\(715\) −47.5852 + 8.33740i −1.77959 + 0.311801i
\(716\) −17.2965 + 9.98615i −0.646401 + 0.373200i
\(717\) 0 0
\(718\) 2.01213 + 2.23469i 0.0750919 + 0.0833980i
\(719\) 35.5978 11.5664i 1.32757 0.431355i 0.442484 0.896776i \(-0.354097\pi\)
0.885089 + 0.465422i \(0.154097\pi\)
\(720\) 0 0
\(721\) −1.75471 2.41515i −0.0653488 0.0899449i
\(722\) 6.76157 + 1.43722i 0.251639 + 0.0534876i
\(723\) 0 0
\(724\) −3.46296 + 32.9479i −0.128700 + 1.22450i
\(725\) −0.240358 0.416312i −0.00892666 0.0154614i
\(726\) 0 0
\(727\) −21.8970 + 37.9268i −0.812116 + 1.40663i 0.0992641 + 0.995061i \(0.468351\pi\)
−0.911380 + 0.411565i \(0.864982\pi\)
\(728\) −11.1772 8.12069i −0.414253 0.300973i
\(729\) 0 0
\(730\) −4.28224 13.1794i −0.158493 0.487791i
\(731\) −9.26502 + 0.973793i −0.342679 + 0.0360170i
\(732\) 0 0
\(733\) 3.94813 + 3.55491i 0.145827 + 0.131304i 0.738816 0.673907i \(-0.235385\pi\)
−0.592988 + 0.805211i \(0.702052\pi\)
\(734\) 13.7354 2.91954i 0.506981 0.107762i
\(735\) 0 0
\(736\) 19.4744 + 11.2435i 0.717834 + 0.414442i
\(737\) −1.68004 + 4.60037i −0.0618852 + 0.169457i
\(738\) 0 0
\(739\) 3.62411 4.98816i 0.133315 0.183492i −0.737140 0.675740i \(-0.763824\pi\)
0.870455 + 0.492247i \(0.163824\pi\)
\(740\) −14.1023 + 12.6978i −0.518411 + 0.466780i
\(741\) 0 0
\(742\) −2.41262 1.07417i −0.0885700 0.0394339i
\(743\) −6.10349 2.71745i −0.223915 0.0996935i 0.291713 0.956506i \(-0.405775\pi\)
−0.515628 + 0.856812i \(0.672441\pi\)
\(744\) 0 0
\(745\) 25.1576 22.6520i 0.921703 0.829905i
\(746\) −1.40998 + 1.94067i −0.0516231 + 0.0710531i
\(747\) 0 0
\(748\) 5.62373 3.78439i 0.205624 0.138371i
\(749\) −16.7598 9.67625i −0.612388 0.353563i
\(750\) 0 0
\(751\) 27.7224 5.89257i 1.01160 0.215023i 0.327845 0.944731i \(-0.393677\pi\)
0.683759 + 0.729708i \(0.260344\pi\)
\(752\) 1.82867 + 1.64654i 0.0666847 + 0.0600431i
\(753\) 0 0
\(754\) −1.67415 + 0.175960i −0.0609688 + 0.00640808i
\(755\) −1.89190 5.82267i −0.0688533 0.211909i
\(756\) 0 0
\(757\) 10.7918 + 7.84073i 0.392236 + 0.284976i 0.766371 0.642398i \(-0.222060\pi\)
−0.374135 + 0.927374i \(0.622060\pi\)
\(758\) 2.29786 3.98002i 0.0834621 0.144561i
\(759\) 0 0
\(760\) 0.955098 + 1.65428i 0.0346450 + 0.0600070i
\(761\) 0.0581249 0.553022i 0.00210703 0.0200470i −0.993418 0.114547i \(-0.963458\pi\)
0.995525 + 0.0944996i \(0.0301251\pi\)
\(762\) 0 0
\(763\) −13.5644 2.88320i −0.491063 0.104379i
\(764\) −22.3907 30.8181i −0.810066 1.11496i
\(765\) 0 0
\(766\) 5.02143 1.63156i 0.181432 0.0589507i
\(767\) 0.0460744 + 0.0511709i 0.00166365 + 0.00184767i
\(768\) 0 0
\(769\) −28.3158 + 16.3481i −1.02109 + 0.589528i −0.914420 0.404766i \(-0.867353\pi\)
−0.106672 + 0.994294i \(0.534020\pi\)
\(770\) −2.15465 4.06293i −0.0776484 0.146418i
\(771\) 0 0
\(772\) −11.5784 26.0056i −0.416717 0.935963i
\(773\) −1.30242 0.423182i −0.0468448 0.0152208i 0.285501 0.958378i \(-0.407840\pi\)
−0.332346 + 0.943158i \(0.607840\pi\)
\(774\) 0 0
\(775\) −3.31493 + 2.40844i −0.119076 + 0.0865138i
\(776\) −0.827643 7.87450i −0.0297107 0.282678i
\(777\) 0 0
\(778\) −0.828409 3.89736i −0.0296999 0.139727i
\(779\) 6.79700 + 0.714393i 0.243528 + 0.0255958i
\(780\) 0 0
\(781\) 6.71777 26.8197i 0.240381 0.959683i
\(782\) 2.25820i 0.0807530i
\(783\) 0 0
\(784\) 4.45900 13.7234i 0.159250 0.490121i
\(785\) −2.81323 + 13.2352i −0.100409 + 0.472385i
\(786\) 0 0
\(787\) 3.52463 7.91645i 0.125640 0.282191i −0.839764 0.542952i \(-0.817307\pi\)
0.965403 + 0.260761i \(0.0839734\pi\)
\(788\) 16.3343 18.1411i 0.581886 0.646250i
\(789\) 0 0
\(790\) −2.55528 + 1.13768i −0.0909127 + 0.0404770i
\(791\) 0.0731593 0.00260125
\(792\) 0 0
\(793\) 35.1262 1.24737
\(794\) −4.67634 + 2.08204i −0.165957 + 0.0738889i
\(795\) 0 0
\(796\) 5.88815 6.53945i 0.208700 0.231785i
\(797\) 5.48700 12.3240i 0.194360 0.436539i −0.789907 0.613226i \(-0.789871\pi\)
0.984267 + 0.176687i \(0.0565381\pi\)
\(798\) 0 0
\(799\) −0.175524 + 0.825778i −0.00620961 + 0.0292139i
\(800\) 0.808775 2.48915i 0.0285945 0.0880049i
\(801\) 0 0
\(802\) 13.2659i 0.468435i
\(803\) 44.2996 + 27.7483i 1.56330 + 0.979216i
\(804\) 0 0
\(805\) −20.7385 2.17971i −0.730938 0.0768247i
\(806\) 2.98323 + 14.0350i 0.105080 + 0.494362i
\(807\) 0 0
\(808\) 1.45441 + 13.8378i 0.0511661 + 0.486813i
\(809\) −35.6994 + 25.9371i −1.25512 + 0.911900i −0.998508 0.0546139i \(-0.982607\pi\)
−0.256615 + 0.966514i \(0.582607\pi\)
\(810\) 0 0
\(811\) 39.0505 + 12.6883i 1.37125 + 0.445546i 0.899782 0.436339i \(-0.143725\pi\)
0.471466 + 0.881884i \(0.343725\pi\)
\(812\) 0.887135 + 1.99254i 0.0311323 + 0.0699244i
\(813\) 0 0
\(814\) −0.737586 + 5.20725i −0.0258524 + 0.182514i
\(815\) 17.6167 10.1710i 0.617086 0.356275i
\(816\) 0 0
\(817\) 3.19577 + 3.54926i 0.111806 + 0.124173i
\(818\) −5.52974 + 1.79672i −0.193343 + 0.0628209i
\(819\) 0 0
\(820\) −31.6274 43.5313i −1.10447 1.52018i
\(821\) −15.3738 3.26780i −0.536548 0.114047i −0.0683351 0.997662i \(-0.521769\pi\)
−0.468213 + 0.883616i \(0.655102\pi\)
\(822\) 0 0
\(823\) 0.594191 5.65335i 0.0207122 0.197063i −0.979273 0.202546i \(-0.935078\pi\)
0.999985 + 0.00548245i \(0.00174513\pi\)
\(824\) −1.35278 2.34308i −0.0471262 0.0816250i
\(825\) 0 0
\(826\) −0.00327745 + 0.00567671i −0.000114037 + 0.000197518i
\(827\) 11.5227 + 8.37170i 0.400682 + 0.291113i 0.769819 0.638263i \(-0.220347\pi\)
−0.369137 + 0.929375i \(0.620347\pi\)
\(828\) 0 0
\(829\) −1.17567 3.61833i −0.0408326 0.125670i 0.928562 0.371177i \(-0.121046\pi\)
−0.969395 + 0.245507i \(0.921046\pi\)
\(830\) −9.07932 + 0.954275i −0.315148 + 0.0331234i
\(831\) 0 0
\(832\) 22.3172 + 20.0945i 0.773709 + 0.696651i
\(833\) 4.84236 1.02927i 0.167778 0.0356623i
\(834\) 0 0
\(835\) −6.27784 3.62451i −0.217254 0.125431i
\(836\) −3.26422 1.19209i −0.112895 0.0412292i
\(837\) 0 0
\(838\) −3.30773 + 4.55270i −0.114264 + 0.157270i
\(839\) 2.89650 2.60802i 0.0999981 0.0900387i −0.617615 0.786480i \(-0.711901\pi\)
0.717613 + 0.696442i \(0.245234\pi\)
\(840\) 0 0
\(841\) −25.9894 11.5712i −0.896187 0.399008i
\(842\) 4.10374 + 1.82710i 0.141424 + 0.0629661i
\(843\) 0 0
\(844\) 27.0500 24.3559i 0.931099 0.838365i
\(845\) 34.3180 47.2347i 1.18058 1.62492i
\(846\) 0 0
\(847\) 16.0703 + 6.53338i 0.552183 + 0.224489i
\(848\) 12.5332 + 7.23605i 0.430392 + 0.248487i
\(849\) 0 0
\(850\) 0.257087 0.0546454i 0.00881800 0.00187432i
\(851\) 17.7217 + 15.9567i 0.607491 + 0.546987i
\(852\) 0 0
\(853\) 31.5327 3.31423i 1.07966 0.113477i 0.452041 0.891997i \(-0.350696\pi\)
0.627620 + 0.778520i \(0.284029\pi\)
\(854\) 1.03331 + 3.18020i 0.0353592 + 0.108824i
\(855\) 0 0
\(856\) −14.1894 10.3092i −0.484984 0.352362i
\(857\) −19.7818 + 34.2630i −0.675733 + 1.17040i 0.300522 + 0.953775i \(0.402839\pi\)
−0.976254 + 0.216628i \(0.930494\pi\)
\(858\) 0 0
\(859\) 19.1591 + 33.1846i 0.653701 + 1.13224i 0.982218 + 0.187746i \(0.0601181\pi\)
−0.328516 + 0.944498i \(0.606549\pi\)
\(860\) 3.93043 37.3955i 0.134027 1.27518i
\(861\) 0 0
\(862\) 9.28061 + 1.97265i 0.316099 + 0.0671889i
\(863\) 27.4819 + 37.8256i 0.935495 + 1.28760i 0.957677 + 0.287844i \(0.0929385\pi\)
−0.0221825 + 0.999754i \(0.507061\pi\)
\(864\) 0 0
\(865\) 25.7092 8.35343i 0.874139 0.284025i
\(866\) 0.319713 + 0.355077i 0.0108643 + 0.0120660i
\(867\) 0 0
\(868\) 16.1004 9.29557i 0.546483 0.315512i
\(869\) 4.63553 9.47816i 0.157249 0.321524i
\(870\) 0 0
\(871\) −3.68133 8.26841i −0.124737 0.280164i
\(872\) −11.9528 3.88371i −0.404774 0.131519i
\(873\) 0 0
\(874\) 0.936595 0.680476i 0.0316808 0.0230174i
\(875\) −1.70507 16.2227i −0.0576421 0.548427i
\(876\) 0 0
\(877\) −6.55314 30.8301i −0.221284 1.04106i −0.938786 0.344501i \(-0.888048\pi\)
0.717502 0.696556i \(-0.245285\pi\)
\(878\) −3.30745 0.347627i −0.111621 0.0117319i
\(879\) 0 0
\(880\) 9.41535 + 23.3767i 0.317392 + 0.788029i
\(881\) 42.0051i 1.41519i −0.706619 0.707595i \(-0.749780\pi\)
0.706619 0.707595i \(-0.250220\pi\)
\(882\) 0 0
\(883\) 0.787007 2.42216i 0.0264849 0.0815122i −0.936940 0.349489i \(-0.886355\pi\)
0.963425 + 0.267977i \(0.0863551\pi\)
\(884\) −2.60451 + 12.2532i −0.0875991 + 0.412121i
\(885\) 0 0
\(886\) 2.15856 4.84821i 0.0725183 0.162879i
\(887\) 9.31629 10.3468i 0.312810 0.347411i −0.566153 0.824300i \(-0.691569\pi\)
0.878964 + 0.476889i \(0.158236\pi\)
\(888\) 0 0
\(889\) 9.51056 4.23438i 0.318974 0.142016i
\(890\) −7.92302 −0.265580
\(891\) 0 0
\(892\) 30.6104 1.02491
\(893\) 0.395386 0.176037i 0.0132311 0.00589086i
\(894\) 0 0
\(895\) 17.0463 18.9319i 0.569796 0.632822i
\(896\) −6.34765 + 14.2570i −0.212060 + 0.476294i
\(897\) 0 0
\(898\) −1.09605 + 5.15653i −0.0365758 + 0.172076i
\(899\) 1.45141 4.46699i 0.0484074 0.148983i
\(900\) 0 0
\(901\) 4.96511i 0.165412i
\(902\) −14.4656 3.62332i −0.481651 0.120644i
\(903\) 0 0
\(904\) 0.0659407 + 0.00693065i 0.00219315 + 0.000230510i
\(905\) −8.78586 41.3342i −0.292052 1.37400i
\(906\) 0 0
\(907\) 3.48242 + 33.1330i 0.115632 + 1.10016i 0.886359 + 0.462998i \(0.153226\pi\)
−0.770727 + 0.637165i \(0.780107\pi\)
\(908\) 40.9456 29.7487i 1.35883 0.987246i
\(909\) 0 0
\(910\) 8.08303 + 2.62634i 0.267950 + 0.0870622i
\(911\) −2.67989 6.01914i −0.0887888 0.199423i 0.863693 0.504018i \(-0.168146\pi\)
−0.952482 + 0.304595i \(0.901479\pi\)
\(912\) 0 0
\(913\) 23.9487 24.7459i 0.792588 0.818971i
\(914\) 8.32303 4.80530i 0.275301 0.158945i
\(915\) 0 0
\(916\) 5.40475 + 6.00258i 0.178578 + 0.198331i
\(917\) −11.8240 + 3.84186i −0.390464 + 0.126869i
\(918\) 0 0
\(919\) −19.1361 26.3386i −0.631241 0.868829i 0.366869 0.930273i \(-0.380430\pi\)
−0.998111 + 0.0614433i \(0.980430\pi\)
\(920\) −18.4858 3.92928i −0.609458 0.129544i
\(921\) 0 0
\(922\) −0.450727 + 4.28838i −0.0148439 + 0.141230i
\(923\) 25.5476 + 44.2498i 0.840910 + 1.45650i
\(924\) 0 0
\(925\) 1.38776 2.40367i 0.0456292 0.0790322i
\(926\) 5.58674 + 4.05901i 0.183592 + 0.133387i
\(927\) 0 0
\(928\) 0.927084 + 2.85327i 0.0304330 + 0.0936633i
\(929\) −13.9527 + 1.46649i −0.457772 + 0.0481138i −0.330609 0.943768i \(-0.607254\pi\)
−0.127164 + 0.991882i \(0.540587\pi\)
\(930\) 0 0
\(931\) −1.88607 1.69823i −0.0618135 0.0556571i
\(932\) −21.3704 + 4.54243i −0.700012 + 0.148792i
\(933\) 0 0
\(934\) 0.967583 + 0.558634i 0.0316603 + 0.0182791i
\(935\) −5.33051 + 6.80753i −0.174326 + 0.222630i
\(936\) 0 0
\(937\) 31.0358 42.7172i 1.01390 1.39551i 0.0975008 0.995235i \(-0.468915\pi\)
0.916396 0.400273i \(-0.131085\pi\)
\(938\) 0.640298 0.576527i 0.0209065 0.0188243i
\(939\) 0 0
\(940\) −3.11288 1.38594i −0.101531 0.0452045i
\(941\) 2.03166 + 0.904555i 0.0662303 + 0.0294876i 0.439584 0.898201i \(-0.355126\pi\)
−0.373354 + 0.927689i \(0.621792\pi\)
\(942\) 0 0
\(943\) −50.2495 + 45.2449i −1.63635 + 1.47338i
\(944\) 0.0211134 0.0290601i 0.000687183 0.000945826i
\(945\) 0 0
\(946\) −5.81800 8.64573i −0.189159 0.281097i
\(947\) 18.9816 + 10.9590i 0.616819 + 0.356121i 0.775629 0.631189i \(-0.217433\pi\)
−0.158811 + 0.987309i \(0.550766\pi\)
\(948\) 0 0
\(949\) −94.4913 + 20.0848i −3.06732 + 0.651979i
\(950\) −0.100134 0.0901608i −0.00324877 0.00292520i
\(951\) 0 0
\(952\) −2.45910 + 0.258462i −0.0796999 + 0.00837679i
\(953\) −6.64425 20.4489i −0.215228 0.662404i −0.999137 0.0415288i \(-0.986777\pi\)
0.783909 0.620876i \(-0.213223\pi\)
\(954\) 0 0
\(955\) 39.3095 + 28.5601i 1.27203 + 0.924182i
\(956\) 16.7138 28.9492i 0.540564 0.936284i
\(957\) 0 0
\(958\) 7.15620 + 12.3949i 0.231206 + 0.400461i
\(959\) 2.91088 27.6952i 0.0939972 0.894324i
\(960\) 0 0
\(961\) −8.83744 1.87845i −0.285079 0.0605953i
\(962\) −5.71286 7.86308i −0.184190 0.253516i
\(963\) 0 0
\(964\) 4.73430 1.53827i 0.152482 0.0495443i
\(965\) 24.2963 + 26.9838i 0.782125 + 0.868638i
\(966\) 0 0
\(967\) −13.6754 + 7.89548i −0.439770 + 0.253901i −0.703500 0.710695i \(-0.748381\pi\)
0.263730 + 0.964597i \(0.415047\pi\)
\(968\) 13.8657 + 7.41113i 0.445661 + 0.238203i
\(969\) 0 0
\(970\) 1.98114 + 4.44972i 0.0636107 + 0.142872i
\(971\) −7.29530 2.37039i −0.234117 0.0760693i 0.189609 0.981860i \(-0.439278\pi\)
−0.423726 + 0.905790i \(0.639278\pi\)
\(972\) 0 0
\(973\) 17.9667 13.0535i 0.575984 0.418477i
\(974\) −0.474848 4.51787i −0.0152151 0.144762i
\(975\) 0 0
\(976\) −3.80979 17.9236i −0.121948 0.573722i
\(977\) 7.43311 + 0.781252i 0.237806 + 0.0249945i 0.222682 0.974891i \(-0.428519\pi\)
0.0151245 + 0.999886i \(0.495186\pi\)
\(978\) 0 0
\(979\) 22.9153 19.1859i 0.732375 0.613184i
\(980\) 19.9814i 0.638282i
\(981\) 0 0
\(982\) −4.16946 + 12.8323i −0.133053 + 0.409494i
\(983\) 10.3881 48.8720i 0.331328 1.55877i −0.425376 0.905017i \(-0.639858\pi\)
0.756704 0.653758i \(-0.226809\pi\)
\(984\) 0 0
\(985\) −12.6647 + 28.4454i −0.403531 + 0.906346i
\(986\) −0.201594 + 0.223893i −0.00642006 + 0.00713020i
\(987\) 0 0
\(988\) 5.86690 2.61211i 0.186651 0.0831024i
\(989\) −47.2520 −1.50252
\(990\) 0 0
\(991\) −32.0166 −1.01704 −0.508520 0.861050i \(-0.669807\pi\)
−0.508520 + 0.861050i \(0.669807\pi\)
\(992\) 23.3613 10.4011i 0.741721 0.330236i
\(993\) 0 0
\(994\) −3.25468 + 3.61469i −0.103232 + 0.114651i
\(995\) −4.56534 + 10.2539i −0.144731 + 0.325071i
\(996\) 0 0
\(997\) 3.93540 18.5146i 0.124635 0.586363i −0.870858 0.491534i \(-0.836436\pi\)
0.995494 0.0948290i \(-0.0302304\pi\)
\(998\) −2.77608 + 8.54390i −0.0878753 + 0.270452i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.t.a.62.5 80
3.2 odd 2 99.2.p.a.29.6 80
9.2 odd 6 891.2.k.a.161.10 80
9.4 even 3 99.2.p.a.95.6 yes 80
9.5 odd 6 inner 297.2.t.a.260.5 80
9.7 even 3 891.2.k.a.161.11 80
11.8 odd 10 inner 297.2.t.a.8.5 80
33.8 even 10 99.2.p.a.74.6 yes 80
99.41 even 30 inner 297.2.t.a.206.5 80
99.52 odd 30 891.2.k.a.404.10 80
99.74 even 30 891.2.k.a.404.11 80
99.85 odd 30 99.2.p.a.41.6 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.6 80 3.2 odd 2
99.2.p.a.41.6 yes 80 99.85 odd 30
99.2.p.a.74.6 yes 80 33.8 even 10
99.2.p.a.95.6 yes 80 9.4 even 3
297.2.t.a.8.5 80 11.8 odd 10 inner
297.2.t.a.62.5 80 1.1 even 1 trivial
297.2.t.a.206.5 80 99.41 even 30 inner
297.2.t.a.260.5 80 9.5 odd 6 inner
891.2.k.a.161.10 80 9.2 odd 6
891.2.k.a.161.11 80 9.7 even 3
891.2.k.a.404.10 80 99.52 odd 30
891.2.k.a.404.11 80 99.74 even 30