Properties

Label 297.2.t.a.62.10
Level $297$
Weight $2$
Character 297.62
Analytic conductor $2.372$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(8,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.8");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.t (of order \(30\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 62.10
Character \(\chi\) \(=\) 297.62
Dual form 297.2.t.a.206.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.46099 - 1.09570i) q^{2} +(3.51765 - 3.90675i) q^{4} +(-0.588502 + 1.32180i) q^{5} +(-0.300148 + 1.41209i) q^{7} +(2.71136 - 8.34470i) q^{8} +3.89775i q^{10} +(-3.03979 - 1.32654i) q^{11} +(2.96055 + 0.311167i) q^{13} +(0.808567 + 3.80401i) q^{14} +(-1.37167 - 13.0506i) q^{16} +(-3.35854 + 2.44012i) q^{17} +(-1.19136 - 0.387096i) q^{19} +(3.09378 + 6.94875i) q^{20} +(-8.93438 + 0.0661021i) q^{22} +(-5.02939 + 2.90372i) q^{23} +(1.94484 + 2.15996i) q^{25} +(7.62685 - 2.47811i) q^{26} +(4.46085 + 6.13983i) q^{28} +(0.0952306 + 0.0202419i) q^{29} +(-0.427327 + 4.06575i) q^{31} +(-8.90112 - 15.4172i) q^{32} +(-5.59169 + 9.68509i) q^{34} +(-1.68985 - 1.22775i) q^{35} +(-3.08635 - 9.49880i) q^{37} +(-3.35607 + 0.352737i) q^{38} +(9.43436 + 8.49473i) q^{40} +(4.47075 - 0.950287i) q^{41} +(1.84140 + 1.06313i) q^{43} +(-15.8754 + 7.20937i) q^{44} +(-9.19566 + 12.6567i) q^{46} +(5.39440 - 4.85714i) q^{47} +(4.49092 + 1.99949i) q^{49} +(7.15292 + 3.18469i) q^{50} +(11.6299 - 10.4716i) q^{52} +(-0.197492 + 0.271824i) q^{53} +(3.54233 - 3.23731i) q^{55} +(10.9696 + 6.33332i) q^{56} +(0.256541 - 0.0545294i) q^{58} +(2.24930 + 2.02528i) q^{59} +(-0.316566 + 0.0332724i) q^{61} +(3.40321 + 10.4740i) q^{62} +(-17.5657 - 12.7622i) q^{64} +(-2.15359 + 3.73013i) q^{65} +(-1.71828 - 2.97615i) q^{67} +(-2.28123 + 21.7045i) q^{68} +(-5.50397 - 1.16990i) q^{70} +(-5.38901 - 7.41734i) q^{71} +(-6.75113 + 2.19358i) q^{73} +(-18.0034 - 19.9948i) q^{74} +(-5.70308 + 3.29267i) q^{76} +(2.78557 - 3.89428i) q^{77} +(-4.07566 - 9.15408i) q^{79} +(18.0574 + 5.86722i) q^{80} +(9.96124 - 7.23727i) q^{82} +(-0.623446 - 5.93169i) q^{83} +(-1.24884 - 5.87533i) q^{85} +(5.69655 + 0.598731i) q^{86} +(-19.3115 + 21.7694i) q^{88} +5.11584i q^{89} +(-1.32800 + 4.08716i) q^{91} +(-6.34754 + 29.8628i) q^{92} +(7.95359 - 17.8641i) q^{94} +(1.21278 - 1.34693i) q^{95} +(5.51867 - 2.45707i) q^{97} +13.2430 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 15 q^{2} + 5 q^{4} + 6 q^{5} - 5 q^{7} + 3 q^{11} - 5 q^{13} + 9 q^{14} + 5 q^{16} - 50 q^{19} + 3 q^{20} - 11 q^{22} + 42 q^{23} - 2 q^{25} - 20 q^{28} - 30 q^{29} - 6 q^{31} - 10 q^{34} - 6 q^{37}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.46099 1.09570i 1.74018 0.774780i 0.746142 0.665787i \(-0.231904\pi\)
0.994043 0.108993i \(-0.0347625\pi\)
\(3\) 0 0
\(4\) 3.51765 3.90675i 1.75883 1.95337i
\(5\) −0.588502 + 1.32180i −0.263186 + 0.591125i −0.996005 0.0892983i \(-0.971538\pi\)
0.732819 + 0.680424i \(0.238204\pi\)
\(6\) 0 0
\(7\) −0.300148 + 1.41209i −0.113445 + 0.533718i 0.884319 + 0.466884i \(0.154623\pi\)
−0.997764 + 0.0668347i \(0.978710\pi\)
\(8\) 2.71136 8.34470i 0.958610 2.95030i
\(9\) 0 0
\(10\) 3.89775i 1.23258i
\(11\) −3.03979 1.32654i −0.916530 0.399967i
\(12\) 0 0
\(13\) 2.96055 + 0.311167i 0.821110 + 0.0863022i 0.505761 0.862674i \(-0.331212\pi\)
0.315349 + 0.948976i \(0.397878\pi\)
\(14\) 0.808567 + 3.80401i 0.216099 + 1.01666i
\(15\) 0 0
\(16\) −1.37167 13.0506i −0.342918 3.26265i
\(17\) −3.35854 + 2.44012i −0.814566 + 0.591817i −0.915151 0.403112i \(-0.867929\pi\)
0.100585 + 0.994928i \(0.467929\pi\)
\(18\) 0 0
\(19\) −1.19136 0.387096i −0.273317 0.0888059i 0.169152 0.985590i \(-0.445897\pi\)
−0.442468 + 0.896784i \(0.645897\pi\)
\(20\) 3.09378 + 6.94875i 0.691791 + 1.55379i
\(21\) 0 0
\(22\) −8.93438 + 0.0661021i −1.90482 + 0.0140930i
\(23\) −5.02939 + 2.90372i −1.04870 + 0.605467i −0.922285 0.386511i \(-0.873680\pi\)
−0.126414 + 0.991978i \(0.540347\pi\)
\(24\) 0 0
\(25\) 1.94484 + 2.15996i 0.388968 + 0.431993i
\(26\) 7.62685 2.47811i 1.49575 0.485998i
\(27\) 0 0
\(28\) 4.46085 + 6.13983i 0.843021 + 1.16032i
\(29\) 0.0952306 + 0.0202419i 0.0176839 + 0.00375882i 0.216745 0.976228i \(-0.430456\pi\)
−0.199061 + 0.979987i \(0.563789\pi\)
\(30\) 0 0
\(31\) −0.427327 + 4.06575i −0.0767503 + 0.730230i 0.886700 + 0.462344i \(0.152992\pi\)
−0.963451 + 0.267886i \(0.913675\pi\)
\(32\) −8.90112 15.4172i −1.57351 2.72540i
\(33\) 0 0
\(34\) −5.59169 + 9.68509i −0.958967 + 1.66098i
\(35\) −1.68985 1.22775i −0.285637 0.207528i
\(36\) 0 0
\(37\) −3.08635 9.49880i −0.507392 1.56159i −0.796711 0.604360i \(-0.793429\pi\)
0.289319 0.957233i \(-0.406571\pi\)
\(38\) −3.35607 + 0.352737i −0.544426 + 0.0572215i
\(39\) 0 0
\(40\) 9.43436 + 8.49473i 1.49170 + 1.34314i
\(41\) 4.47075 0.950287i 0.698214 0.148410i 0.154888 0.987932i \(-0.450498\pi\)
0.543325 + 0.839522i \(0.317165\pi\)
\(42\) 0 0
\(43\) 1.84140 + 1.06313i 0.280811 + 0.162126i 0.633790 0.773505i \(-0.281498\pi\)
−0.352980 + 0.935631i \(0.614832\pi\)
\(44\) −15.8754 + 7.20937i −2.39330 + 1.08685i
\(45\) 0 0
\(46\) −9.19566 + 12.6567i −1.35583 + 1.86614i
\(47\) 5.39440 4.85714i 0.786855 0.708487i −0.174241 0.984703i \(-0.555747\pi\)
0.961096 + 0.276216i \(0.0890805\pi\)
\(48\) 0 0
\(49\) 4.49092 + 1.99949i 0.641560 + 0.285641i
\(50\) 7.15292 + 3.18469i 1.01158 + 0.450383i
\(51\) 0 0
\(52\) 11.6299 10.4716i 1.61277 1.45215i
\(53\) −0.197492 + 0.271824i −0.0271276 + 0.0373379i −0.822365 0.568960i \(-0.807346\pi\)
0.795238 + 0.606298i \(0.207346\pi\)
\(54\) 0 0
\(55\) 3.54233 3.23731i 0.477648 0.436518i
\(56\) 10.9696 + 6.33332i 1.46588 + 0.846325i
\(57\) 0 0
\(58\) 0.256541 0.0545294i 0.0336855 0.00716006i
\(59\) 2.24930 + 2.02528i 0.292833 + 0.263668i 0.802432 0.596744i \(-0.203539\pi\)
−0.509598 + 0.860413i \(0.670206\pi\)
\(60\) 0 0
\(61\) −0.316566 + 0.0332724i −0.0405321 + 0.00426009i −0.124773 0.992185i \(-0.539820\pi\)
0.0842407 + 0.996445i \(0.473154\pi\)
\(62\) 3.40321 + 10.4740i 0.432208 + 1.33020i
\(63\) 0 0
\(64\) −17.5657 12.7622i −2.19571 1.59527i
\(65\) −2.15359 + 3.73013i −0.267120 + 0.462666i
\(66\) 0 0
\(67\) −1.71828 2.97615i −0.209922 0.363595i 0.741768 0.670657i \(-0.233988\pi\)
−0.951690 + 0.307062i \(0.900654\pi\)
\(68\) −2.28123 + 21.7045i −0.276640 + 2.63206i
\(69\) 0 0
\(70\) −5.50397 1.16990i −0.657850 0.139830i
\(71\) −5.38901 7.41734i −0.639558 0.880276i 0.359034 0.933325i \(-0.383106\pi\)
−0.998592 + 0.0530483i \(0.983106\pi\)
\(72\) 0 0
\(73\) −6.75113 + 2.19358i −0.790160 + 0.256739i −0.676172 0.736743i \(-0.736363\pi\)
−0.113988 + 0.993482i \(0.536363\pi\)
\(74\) −18.0034 19.9948i −2.09285 2.32434i
\(75\) 0 0
\(76\) −5.70308 + 3.29267i −0.654188 + 0.377695i
\(77\) 2.78557 3.89428i 0.317446 0.443794i
\(78\) 0 0
\(79\) −4.07566 9.15408i −0.458547 1.02991i −0.983849 0.178998i \(-0.942714\pi\)
0.525302 0.850916i \(-0.323952\pi\)
\(80\) 18.0574 + 5.86722i 2.01888 + 0.655975i
\(81\) 0 0
\(82\) 9.96124 7.23727i 1.10004 0.799222i
\(83\) −0.623446 5.93169i −0.0684321 0.651088i −0.973947 0.226774i \(-0.927182\pi\)
0.905515 0.424314i \(-0.139485\pi\)
\(84\) 0 0
\(85\) −1.24884 5.87533i −0.135456 0.637269i
\(86\) 5.69655 + 0.598731i 0.614274 + 0.0645628i
\(87\) 0 0
\(88\) −19.3115 + 21.7694i −2.05861 + 2.32062i
\(89\) 5.11584i 0.542278i 0.962540 + 0.271139i \(0.0874004\pi\)
−0.962540 + 0.271139i \(0.912600\pi\)
\(90\) 0 0
\(91\) −1.32800 + 4.08716i −0.139212 + 0.428451i
\(92\) −6.34754 + 29.8628i −0.661777 + 3.11341i
\(93\) 0 0
\(94\) 7.95359 17.8641i 0.820350 1.84254i
\(95\) 1.21278 1.34693i 0.124429 0.138192i
\(96\) 0 0
\(97\) 5.51867 2.45707i 0.560336 0.249478i −0.106969 0.994262i \(-0.534114\pi\)
0.667305 + 0.744785i \(0.267448\pi\)
\(98\) 13.2430 1.33774
\(99\) 0 0
\(100\) 15.2797 1.52797
\(101\) 10.6358 4.73537i 1.05830 0.471187i 0.197593 0.980284i \(-0.436687\pi\)
0.860709 + 0.509098i \(0.170021\pi\)
\(102\) 0 0
\(103\) −2.24151 + 2.48945i −0.220863 + 0.245293i −0.843386 0.537309i \(-0.819441\pi\)
0.622523 + 0.782602i \(0.286108\pi\)
\(104\) 10.6237 23.8613i 1.04174 2.33979i
\(105\) 0 0
\(106\) −0.188187 + 0.885350i −0.0182783 + 0.0859928i
\(107\) −2.92166 + 8.99195i −0.282448 + 0.869285i 0.704704 + 0.709501i \(0.251080\pi\)
−0.987152 + 0.159784i \(0.948920\pi\)
\(108\) 0 0
\(109\) 4.11325i 0.393978i 0.980406 + 0.196989i \(0.0631163\pi\)
−0.980406 + 0.196989i \(0.936884\pi\)
\(110\) 5.17053 11.8483i 0.492990 1.12969i
\(111\) 0 0
\(112\) 18.8403 + 1.98019i 1.78024 + 0.187110i
\(113\) −4.20449 19.7806i −0.395525 1.86080i −0.499640 0.866233i \(-0.666535\pi\)
0.104116 0.994565i \(-0.466799\pi\)
\(114\) 0 0
\(115\) −0.878321 8.35667i −0.0819039 0.779263i
\(116\) 0.414068 0.300838i 0.0384452 0.0279321i
\(117\) 0 0
\(118\) 7.75460 + 2.51962i 0.713869 + 0.231950i
\(119\) −2.43760 5.47495i −0.223455 0.501888i
\(120\) 0 0
\(121\) 7.48059 + 8.06479i 0.680053 + 0.733163i
\(122\) −0.742609 + 0.428746i −0.0672327 + 0.0388168i
\(123\) 0 0
\(124\) 14.3807 + 15.9714i 1.29142 + 1.43427i
\(125\) −10.8799 + 3.53510i −0.973131 + 0.316189i
\(126\) 0 0
\(127\) −0.0604870 0.0832533i −0.00536736 0.00738753i 0.806325 0.591473i \(-0.201453\pi\)
−0.811692 + 0.584085i \(0.801453\pi\)
\(128\) −22.3861 4.75831i −1.97867 0.420579i
\(129\) 0 0
\(130\) −1.21285 + 11.5395i −0.106374 + 1.01208i
\(131\) 7.68267 + 13.3068i 0.671238 + 1.16262i 0.977553 + 0.210689i \(0.0675706\pi\)
−0.306315 + 0.951930i \(0.599096\pi\)
\(132\) 0 0
\(133\) 0.904197 1.56612i 0.0784039 0.135799i
\(134\) −7.48966 5.44156i −0.647008 0.470079i
\(135\) 0 0
\(136\) 11.2559 + 34.6421i 0.965185 + 2.97053i
\(137\) 3.70309 0.389210i 0.316376 0.0332525i 0.0549904 0.998487i \(-0.482487\pi\)
0.261386 + 0.965234i \(0.415821\pi\)
\(138\) 0 0
\(139\) −12.6455 11.3860i −1.07257 0.965749i −0.0730719 0.997327i \(-0.523280\pi\)
−0.999501 + 0.0315774i \(0.989947\pi\)
\(140\) −10.7408 + 2.28303i −0.907766 + 0.192952i
\(141\) 0 0
\(142\) −21.3895 12.3492i −1.79497 1.03633i
\(143\) −8.58668 4.87317i −0.718054 0.407515i
\(144\) 0 0
\(145\) −0.0827990 + 0.113963i −0.00687608 + 0.00946412i
\(146\) −14.2110 + 12.7956i −1.17611 + 1.05897i
\(147\) 0 0
\(148\) −47.9661 21.3559i −3.94279 1.75544i
\(149\) 10.4619 + 4.65792i 0.857070 + 0.381592i 0.787744 0.616002i \(-0.211249\pi\)
0.0693251 + 0.997594i \(0.477915\pi\)
\(150\) 0 0
\(151\) −0.789963 + 0.711286i −0.0642863 + 0.0578836i −0.700648 0.713508i \(-0.747105\pi\)
0.636361 + 0.771391i \(0.280439\pi\)
\(152\) −6.46040 + 8.89198i −0.524008 + 0.721235i
\(153\) 0 0
\(154\) 2.58830 12.6360i 0.208571 1.01823i
\(155\) −5.12261 2.95754i −0.411458 0.237555i
\(156\) 0 0
\(157\) 0.0835237 0.0177535i 0.00666592 0.00141688i −0.204578 0.978850i \(-0.565582\pi\)
0.211243 + 0.977433i \(0.432249\pi\)
\(158\) −20.0603 18.0624i −1.59591 1.43697i
\(159\) 0 0
\(160\) 25.6167 2.69242i 2.02518 0.212855i
\(161\) −2.59074 7.97347i −0.204179 0.628398i
\(162\) 0 0
\(163\) −2.37021 1.72206i −0.185650 0.134882i 0.491079 0.871115i \(-0.336603\pi\)
−0.676728 + 0.736233i \(0.736603\pi\)
\(164\) 12.0140 20.8089i 0.938136 1.62490i
\(165\) 0 0
\(166\) −8.03368 13.9147i −0.623534 1.07999i
\(167\) −0.465535 + 4.42927i −0.0360242 + 0.342747i 0.961633 + 0.274338i \(0.0884588\pi\)
−0.997657 + 0.0684086i \(0.978208\pi\)
\(168\) 0 0
\(169\) −4.04786 0.860399i −0.311374 0.0661845i
\(170\) −9.51100 13.0908i −0.729461 1.00402i
\(171\) 0 0
\(172\) 10.6308 3.45415i 0.810590 0.263377i
\(173\) 6.99267 + 7.76615i 0.531643 + 0.590449i 0.947809 0.318839i \(-0.103293\pi\)
−0.416166 + 0.909289i \(0.636626\pi\)
\(174\) 0 0
\(175\) −3.63380 + 2.09797i −0.274689 + 0.158592i
\(176\) −13.1425 + 41.4905i −0.990655 + 3.12747i
\(177\) 0 0
\(178\) 5.60545 + 12.5901i 0.420146 + 0.943664i
\(179\) 9.58188 + 3.11334i 0.716183 + 0.232702i 0.644368 0.764716i \(-0.277121\pi\)
0.0718157 + 0.997418i \(0.477121\pi\)
\(180\) 0 0
\(181\) 12.5433 9.11327i 0.932339 0.677384i −0.0142256 0.999899i \(-0.504528\pi\)
0.946564 + 0.322515i \(0.104528\pi\)
\(182\) 1.21012 + 11.5136i 0.0897004 + 0.853443i
\(183\) 0 0
\(184\) 10.5942 + 49.8417i 0.781014 + 3.67438i
\(185\) 14.3718 + 1.51054i 1.05664 + 0.111057i
\(186\) 0 0
\(187\) 13.4462 2.96221i 0.983281 0.216618i
\(188\) 38.1603i 2.78313i
\(189\) 0 0
\(190\) 1.50881 4.64363i 0.109460 0.336884i
\(191\) 0.772348 3.63361i 0.0558851 0.262919i −0.941331 0.337485i \(-0.890424\pi\)
0.997216 + 0.0745660i \(0.0237572\pi\)
\(192\) 0 0
\(193\) −10.1429 + 22.7814i −0.730103 + 1.63984i 0.0378104 + 0.999285i \(0.487962\pi\)
−0.767914 + 0.640554i \(0.778705\pi\)
\(194\) 10.8892 12.0937i 0.781798 0.868274i
\(195\) 0 0
\(196\) 23.6090 10.5114i 1.68636 0.750814i
\(197\) 19.2214 1.36947 0.684733 0.728794i \(-0.259919\pi\)
0.684733 + 0.728794i \(0.259919\pi\)
\(198\) 0 0
\(199\) −26.0126 −1.84399 −0.921993 0.387206i \(-0.873440\pi\)
−0.921993 + 0.387206i \(0.873440\pi\)
\(200\) 23.2974 10.3727i 1.64738 0.733459i
\(201\) 0 0
\(202\) 20.9861 23.3074i 1.47657 1.63990i
\(203\) −0.0571666 + 0.128398i −0.00401231 + 0.00901179i
\(204\) 0 0
\(205\) −1.37496 + 6.46867i −0.0960312 + 0.451791i
\(206\) −2.78864 + 8.58255i −0.194294 + 0.597975i
\(207\) 0 0
\(208\) 39.0638i 2.70859i
\(209\) 3.10798 + 2.75707i 0.214983 + 0.190711i
\(210\) 0 0
\(211\) 22.6127 + 2.37669i 1.55672 + 0.163618i 0.843425 0.537247i \(-0.180536\pi\)
0.713294 + 0.700865i \(0.247202\pi\)
\(212\) 0.367241 + 1.72773i 0.0252222 + 0.118661i
\(213\) 0 0
\(214\) 2.66233 + 25.3304i 0.181993 + 1.73155i
\(215\) −2.48891 + 1.80830i −0.169742 + 0.123325i
\(216\) 0 0
\(217\) −5.61293 1.82375i −0.381030 0.123804i
\(218\) 4.50691 + 10.1227i 0.305246 + 0.685594i
\(219\) 0 0
\(220\) −0.186643 25.2267i −0.0125835 1.70079i
\(221\) −10.7024 + 6.17905i −0.719923 + 0.415648i
\(222\) 0 0
\(223\) −15.2216 16.9053i −1.01932 1.13206i −0.991188 0.132460i \(-0.957712\pi\)
−0.0281268 0.999604i \(-0.508954\pi\)
\(224\) 24.4421 7.94170i 1.63310 0.530627i
\(225\) 0 0
\(226\) −32.0208 44.0729i −2.13000 2.93169i
\(227\) −7.95006 1.68984i −0.527664 0.112158i −0.0636262 0.997974i \(-0.520267\pi\)
−0.464038 + 0.885815i \(0.653600\pi\)
\(228\) 0 0
\(229\) −1.42091 + 13.5191i −0.0938964 + 0.893365i 0.841617 + 0.540074i \(0.181604\pi\)
−0.935514 + 0.353290i \(0.885063\pi\)
\(230\) −11.3180 19.6033i −0.746285 1.29260i
\(231\) 0 0
\(232\) 0.427117 0.739788i 0.0280416 0.0485694i
\(233\) 4.09157 + 2.97270i 0.268048 + 0.194748i 0.713687 0.700464i \(-0.247024\pi\)
−0.445640 + 0.895212i \(0.647024\pi\)
\(234\) 0 0
\(235\) 3.24554 + 9.98874i 0.211716 + 0.651594i
\(236\) 15.8245 1.66322i 1.03009 0.108266i
\(237\) 0 0
\(238\) −11.9978 10.8029i −0.777705 0.700249i
\(239\) −19.7253 + 4.19274i −1.27592 + 0.271206i −0.795565 0.605868i \(-0.792826\pi\)
−0.480356 + 0.877073i \(0.659493\pi\)
\(240\) 0 0
\(241\) 24.5094 + 14.1505i 1.57879 + 0.911516i 0.995028 + 0.0995930i \(0.0317541\pi\)
0.583764 + 0.811923i \(0.301579\pi\)
\(242\) 27.2463 + 11.6509i 1.75146 + 0.748947i
\(243\) 0 0
\(244\) −0.983581 + 1.35378i −0.0629674 + 0.0866671i
\(245\) −5.28583 + 4.75938i −0.337699 + 0.304066i
\(246\) 0 0
\(247\) −3.40663 1.51673i −0.216759 0.0965073i
\(248\) 32.7688 + 14.5896i 2.08082 + 0.926442i
\(249\) 0 0
\(250\) −22.9020 + 20.6210i −1.44845 + 1.30419i
\(251\) 13.7475 18.9219i 0.867737 1.19434i −0.111931 0.993716i \(-0.535704\pi\)
0.979669 0.200622i \(-0.0642964\pi\)
\(252\) 0 0
\(253\) 19.1401 2.15500i 1.20333 0.135483i
\(254\) −0.240079 0.138610i −0.0150639 0.00869715i
\(255\) 0 0
\(256\) −17.8299 + 3.78987i −1.11437 + 0.236867i
\(257\) 0.309493 + 0.278669i 0.0193057 + 0.0173829i 0.678727 0.734391i \(-0.262532\pi\)
−0.659421 + 0.751774i \(0.729199\pi\)
\(258\) 0 0
\(259\) 14.3395 1.50714i 0.891012 0.0936492i
\(260\) 6.99709 + 21.5348i 0.433941 + 1.33553i
\(261\) 0 0
\(262\) 33.4873 + 24.3299i 2.06885 + 1.50311i
\(263\) −14.0588 + 24.3505i −0.866902 + 1.50152i −0.00175644 + 0.999998i \(0.500559\pi\)
−0.865146 + 0.501520i \(0.832774\pi\)
\(264\) 0 0
\(265\) −0.243072 0.421013i −0.0149318 0.0258626i
\(266\) 0.509223 4.84493i 0.0312225 0.297062i
\(267\) 0 0
\(268\) −17.6714 3.75617i −1.07945 0.229445i
\(269\) 7.97137 + 10.9716i 0.486023 + 0.668953i 0.979648 0.200721i \(-0.0643286\pi\)
−0.493625 + 0.869675i \(0.664329\pi\)
\(270\) 0 0
\(271\) −10.5963 + 3.44294i −0.643678 + 0.209144i −0.612624 0.790374i \(-0.709886\pi\)
−0.0310533 + 0.999518i \(0.509886\pi\)
\(272\) 36.4518 + 40.4839i 2.21022 + 2.45470i
\(273\) 0 0
\(274\) 8.68681 5.01533i 0.524789 0.302987i
\(275\) −3.04662 9.14574i −0.183718 0.551509i
\(276\) 0 0
\(277\) −3.97962 8.93837i −0.239112 0.537055i 0.753633 0.657296i \(-0.228300\pi\)
−0.992745 + 0.120241i \(0.961633\pi\)
\(278\) −43.5961 14.1652i −2.61472 0.849573i
\(279\) 0 0
\(280\) −14.8270 + 10.7724i −0.886083 + 0.643777i
\(281\) −1.27367 12.1181i −0.0759805 0.722906i −0.964503 0.264073i \(-0.914934\pi\)
0.888522 0.458834i \(-0.151733\pi\)
\(282\) 0 0
\(283\) −3.20045 15.0569i −0.190247 0.895042i −0.964892 0.262646i \(-0.915405\pi\)
0.774645 0.632396i \(-0.217928\pi\)
\(284\) −47.9344 5.03810i −2.84438 0.298956i
\(285\) 0 0
\(286\) −26.4713 2.58438i −1.56528 0.152818i
\(287\) 6.59831i 0.389486i
\(288\) 0 0
\(289\) 0.0723102 0.222548i 0.00425354 0.0130911i
\(290\) −0.0788979 + 0.371185i −0.00463304 + 0.0217968i
\(291\) 0 0
\(292\) −15.1784 + 34.0912i −0.888248 + 1.99504i
\(293\) −18.2132 + 20.2278i −1.06403 + 1.18172i −0.0812937 + 0.996690i \(0.525905\pi\)
−0.982733 + 0.185031i \(0.940761\pi\)
\(294\) 0 0
\(295\) −4.00072 + 1.78123i −0.232931 + 0.103707i
\(296\) −87.6328 −5.09356
\(297\) 0 0
\(298\) 30.8503 1.78711
\(299\) −15.7933 + 7.03164i −0.913351 + 0.406650i
\(300\) 0 0
\(301\) −2.05393 + 2.28112i −0.118386 + 0.131481i
\(302\) −1.16473 + 2.61603i −0.0670229 + 0.150536i
\(303\) 0 0
\(304\) −3.41768 + 16.0789i −0.196017 + 0.922188i
\(305\) 0.142320 0.438016i 0.00814923 0.0250807i
\(306\) 0 0
\(307\) 31.0795i 1.77380i 0.461960 + 0.886901i \(0.347146\pi\)
−0.461960 + 0.886901i \(0.652854\pi\)
\(308\) −5.41529 24.5813i −0.308565 1.40065i
\(309\) 0 0
\(310\) −15.8473 1.66562i −0.900066 0.0946007i
\(311\) 1.18810 + 5.58959i 0.0673712 + 0.316956i 0.998910 0.0466865i \(-0.0148662\pi\)
−0.931538 + 0.363643i \(0.881533\pi\)
\(312\) 0 0
\(313\) 2.76294 + 26.2876i 0.156171 + 1.48587i 0.739240 + 0.673442i \(0.235185\pi\)
−0.583069 + 0.812423i \(0.698148\pi\)
\(314\) 0.186099 0.135209i 0.0105021 0.00763026i
\(315\) 0 0
\(316\) −50.0994 16.2783i −2.81831 0.915725i
\(317\) 0.805282 + 1.80869i 0.0452291 + 0.101586i 0.934747 0.355314i \(-0.115626\pi\)
−0.889518 + 0.456901i \(0.848960\pi\)
\(318\) 0 0
\(319\) −0.262629 0.187858i −0.0147044 0.0105180i
\(320\) 27.2064 15.7076i 1.52089 0.878084i
\(321\) 0 0
\(322\) −15.1124 16.7840i −0.842178 0.935334i
\(323\) 4.94579 1.60698i 0.275191 0.0894150i
\(324\) 0 0
\(325\) 5.08570 + 6.99986i 0.282104 + 0.388283i
\(326\) −7.71995 1.64093i −0.427569 0.0908825i
\(327\) 0 0
\(328\) 4.19194 39.8836i 0.231461 2.20220i
\(329\) 5.23958 + 9.07523i 0.288868 + 0.500333i
\(330\) 0 0
\(331\) 2.03858 3.53093i 0.112051 0.194078i −0.804546 0.593890i \(-0.797591\pi\)
0.916597 + 0.399812i \(0.130925\pi\)
\(332\) −25.3667 18.4300i −1.39218 1.01148i
\(333\) 0 0
\(334\) 3.70749 + 11.4105i 0.202865 + 0.624354i
\(335\) 4.94508 0.519749i 0.270179 0.0283969i
\(336\) 0 0
\(337\) 21.2002 + 19.0887i 1.15485 + 1.03983i 0.998642 + 0.0521039i \(0.0165927\pi\)
0.156205 + 0.987725i \(0.450074\pi\)
\(338\) −10.9045 + 2.31782i −0.593126 + 0.126073i
\(339\) 0 0
\(340\) −27.3464 15.7885i −1.48307 0.856249i
\(341\) 6.69236 11.7921i 0.362412 0.638580i
\(342\) 0 0
\(343\) −10.1112 + 13.9169i −0.545954 + 0.751441i
\(344\) 13.8642 12.4834i 0.747508 0.673059i
\(345\) 0 0
\(346\) 25.7183 + 11.4505i 1.38262 + 0.615584i
\(347\) −9.44498 4.20518i −0.507033 0.225746i 0.137245 0.990537i \(-0.456175\pi\)
−0.644278 + 0.764791i \(0.722842\pi\)
\(348\) 0 0
\(349\) −13.7137 + 12.3479i −0.734078 + 0.660967i −0.948861 0.315695i \(-0.897762\pi\)
0.214783 + 0.976662i \(0.431096\pi\)
\(350\) −6.64399 + 9.14466i −0.355136 + 0.488803i
\(351\) 0 0
\(352\) 6.60597 + 58.6726i 0.352100 + 3.12726i
\(353\) 11.5976 + 6.69588i 0.617279 + 0.356386i 0.775809 0.630968i \(-0.217342\pi\)
−0.158530 + 0.987354i \(0.550676\pi\)
\(354\) 0 0
\(355\) 12.9757 2.75806i 0.688676 0.146383i
\(356\) 19.9863 + 17.9958i 1.05927 + 0.953774i
\(357\) 0 0
\(358\) 26.9922 2.83700i 1.42658 0.149940i
\(359\) 1.92854 + 5.93545i 0.101785 + 0.313261i 0.988962 0.148167i \(-0.0473373\pi\)
−0.887178 + 0.461428i \(0.847337\pi\)
\(360\) 0 0
\(361\) −14.1018 10.2456i −0.742202 0.539241i
\(362\) 20.8836 36.1715i 1.09762 1.90113i
\(363\) 0 0
\(364\) 11.2961 + 19.5654i 0.592075 + 1.02550i
\(365\) 1.07359 10.2145i 0.0561944 0.534654i
\(366\) 0 0
\(367\) 7.53202 + 1.60098i 0.393168 + 0.0835705i 0.400254 0.916404i \(-0.368922\pi\)
−0.00708542 + 0.999975i \(0.502255\pi\)
\(368\) 44.7939 + 61.6535i 2.33504 + 3.21391i
\(369\) 0 0
\(370\) 37.0240 12.0298i 1.92479 0.625401i
\(371\) −0.324562 0.360463i −0.0168504 0.0187143i
\(372\) 0 0
\(373\) −18.2379 + 10.5296i −0.944321 + 0.545204i −0.891312 0.453390i \(-0.850214\pi\)
−0.0530086 + 0.998594i \(0.516881\pi\)
\(374\) 29.8452 22.0230i 1.54326 1.13878i
\(375\) 0 0
\(376\) −25.9052 58.1841i −1.33596 3.00062i
\(377\) 0.275637 + 0.0895598i 0.0141960 + 0.00461256i
\(378\) 0 0
\(379\) 24.0003 17.4372i 1.23281 0.895691i 0.235715 0.971822i \(-0.424257\pi\)
0.997098 + 0.0761314i \(0.0242568\pi\)
\(380\) −0.995973 9.47605i −0.0510923 0.486111i
\(381\) 0 0
\(382\) −2.08062 9.78855i −0.106454 0.500826i
\(383\) −2.65347 0.278891i −0.135586 0.0142506i 0.0364924 0.999334i \(-0.488382\pi\)
−0.172078 + 0.985083i \(0.555048\pi\)
\(384\) 0 0
\(385\) 3.50813 + 5.97375i 0.178791 + 0.304451i
\(386\) 67.1784i 3.41929i
\(387\) 0 0
\(388\) 9.81361 30.2032i 0.498210 1.53333i
\(389\) −0.132531 + 0.623511i −0.00671961 + 0.0316133i −0.981380 0.192078i \(-0.938477\pi\)
0.974660 + 0.223691i \(0.0718107\pi\)
\(390\) 0 0
\(391\) 9.80597 22.0246i 0.495909 1.11383i
\(392\) 28.8616 32.0541i 1.45773 1.61897i
\(393\) 0 0
\(394\) 47.3036 21.0609i 2.38312 1.06103i
\(395\) 14.4984 0.729492
\(396\) 0 0
\(397\) −25.2145 −1.26548 −0.632741 0.774364i \(-0.718070\pi\)
−0.632741 + 0.774364i \(0.718070\pi\)
\(398\) −64.0169 + 28.5021i −3.20888 + 1.42868i
\(399\) 0 0
\(400\) 25.5211 28.3441i 1.27606 1.41720i
\(401\) 11.8646 26.6483i 0.592489 1.33075i −0.329726 0.944077i \(-0.606956\pi\)
0.922216 0.386676i \(-0.126377\pi\)
\(402\) 0 0
\(403\) −2.53025 + 11.9039i −0.126041 + 0.592976i
\(404\) 18.9132 58.2088i 0.940966 2.89600i
\(405\) 0 0
\(406\) 0.378625i 0.0187908i
\(407\) −3.21870 + 32.9685i −0.159545 + 1.63419i
\(408\) 0 0
\(409\) −16.5173 1.73603i −0.816726 0.0858413i −0.313053 0.949736i \(-0.601352\pi\)
−0.503673 + 0.863894i \(0.668018\pi\)
\(410\) 3.70399 + 17.4259i 0.182927 + 0.860603i
\(411\) 0 0
\(412\) 1.84080 + 17.5140i 0.0906897 + 0.862855i
\(413\) −3.53499 + 2.56832i −0.173945 + 0.126379i
\(414\) 0 0
\(415\) 8.20739 + 2.66674i 0.402885 + 0.130905i
\(416\) −21.5549 48.4132i −1.05682 2.37365i
\(417\) 0 0
\(418\) 10.6696 + 3.37971i 0.521869 + 0.165307i
\(419\) 8.11793 4.68689i 0.396587 0.228969i −0.288423 0.957503i \(-0.593131\pi\)
0.685010 + 0.728534i \(0.259798\pi\)
\(420\) 0 0
\(421\) −2.21553 2.46060i −0.107978 0.119922i 0.686733 0.726910i \(-0.259044\pi\)
−0.794711 + 0.606988i \(0.792378\pi\)
\(422\) 58.2537 18.9278i 2.83575 0.921390i
\(423\) 0 0
\(424\) 1.73282 + 2.38502i 0.0841532 + 0.115827i
\(425\) −11.8024 2.50868i −0.572501 0.121689i
\(426\) 0 0
\(427\) 0.0480331 0.457005i 0.00232449 0.0221160i
\(428\) 24.8519 + 43.0448i 1.20126 + 2.08065i
\(429\) 0 0
\(430\) −4.14383 + 7.17732i −0.199833 + 0.346121i
\(431\) −1.72195 1.25107i −0.0829434 0.0602619i 0.545541 0.838084i \(-0.316324\pi\)
−0.628484 + 0.777822i \(0.716324\pi\)
\(432\) 0 0
\(433\) −4.76068 14.6519i −0.228784 0.704124i −0.997885 0.0649975i \(-0.979296\pi\)
0.769102 0.639126i \(-0.220704\pi\)
\(434\) −15.8117 + 1.66187i −0.758984 + 0.0797724i
\(435\) 0 0
\(436\) 16.0694 + 14.4690i 0.769587 + 0.692939i
\(437\) 7.11582 1.51251i 0.340396 0.0723534i
\(438\) 0 0
\(439\) −31.0083 17.9026i −1.47995 0.854447i −0.480203 0.877157i \(-0.659437\pi\)
−0.999742 + 0.0227105i \(0.992770\pi\)
\(440\) −17.4098 38.3372i −0.829981 1.82765i
\(441\) 0 0
\(442\) −19.5682 + 26.9333i −0.930764 + 1.28109i
\(443\) 8.91597 8.02798i 0.423611 0.381421i −0.429572 0.903032i \(-0.641336\pi\)
0.853183 + 0.521612i \(0.174669\pi\)
\(444\) 0 0
\(445\) −6.76211 3.01068i −0.320555 0.142720i
\(446\) −55.9835 24.9255i −2.65090 1.18026i
\(447\) 0 0
\(448\) 23.2936 20.9737i 1.10052 0.990913i
\(449\) 15.0088 20.6578i 0.708307 0.974901i −0.291525 0.956563i \(-0.594163\pi\)
0.999832 0.0183378i \(-0.00583742\pi\)
\(450\) 0 0
\(451\) −14.8507 3.04196i −0.699292 0.143240i
\(452\) −92.0676 53.1552i −4.33050 2.50021i
\(453\) 0 0
\(454\) −21.4166 + 4.55224i −1.00513 + 0.213647i
\(455\) −4.62087 4.16065i −0.216630 0.195054i
\(456\) 0 0
\(457\) −1.01435 + 0.106612i −0.0474492 + 0.00498711i −0.128223 0.991745i \(-0.540927\pi\)
0.0807741 + 0.996732i \(0.474261\pi\)
\(458\) 11.3160 + 34.8272i 0.528764 + 1.62737i
\(459\) 0 0
\(460\) −35.7370 25.9645i −1.66625 1.21060i
\(461\) 2.26202 3.91794i 0.105353 0.182477i −0.808529 0.588456i \(-0.799736\pi\)
0.913882 + 0.405979i \(0.133069\pi\)
\(462\) 0 0
\(463\) 4.22594 + 7.31953i 0.196396 + 0.340168i 0.947357 0.320179i \(-0.103743\pi\)
−0.750961 + 0.660346i \(0.770410\pi\)
\(464\) 0.133543 1.27058i 0.00619959 0.0589852i
\(465\) 0 0
\(466\) 13.3265 + 2.83264i 0.617339 + 0.131219i
\(467\) 3.64591 + 5.01817i 0.168713 + 0.232213i 0.884998 0.465594i \(-0.154159\pi\)
−0.716286 + 0.697807i \(0.754159\pi\)
\(468\) 0 0
\(469\) 4.71832 1.53308i 0.217872 0.0707909i
\(470\) 18.9320 + 21.0261i 0.873266 + 0.969860i
\(471\) 0 0
\(472\) 22.9990 13.2785i 1.05861 0.611191i
\(473\) −4.18717 5.67438i −0.192526 0.260908i
\(474\) 0 0
\(475\) −1.48089 3.32613i −0.0679479 0.152614i
\(476\) −29.9639 9.73586i −1.37339 0.446242i
\(477\) 0 0
\(478\) −43.9497 + 31.9314i −2.01021 + 1.46051i
\(479\) 2.33164 + 22.1841i 0.106535 + 1.01362i 0.908966 + 0.416871i \(0.136873\pi\)
−0.802430 + 0.596746i \(0.796460\pi\)
\(480\) 0 0
\(481\) −6.18159 29.0821i −0.281856 1.32603i
\(482\) 75.8224 + 7.96925i 3.45361 + 0.362989i
\(483\) 0 0
\(484\) 57.8212 0.855641i 2.62824 0.0388928i
\(485\) 8.74055i 0.396888i
\(486\) 0 0
\(487\) 10.5290 32.4051i 0.477117 1.46841i −0.365965 0.930629i \(-0.619261\pi\)
0.843082 0.537786i \(-0.180739\pi\)
\(488\) −0.580675 + 2.73186i −0.0262859 + 0.123665i
\(489\) 0 0
\(490\) −7.79351 + 17.5045i −0.352075 + 0.790773i
\(491\) −12.5962 + 13.9895i −0.568460 + 0.631338i −0.956998 0.290094i \(-0.906313\pi\)
0.388539 + 0.921432i \(0.372980\pi\)
\(492\) 0 0
\(493\) −0.369228 + 0.164391i −0.0166292 + 0.00740380i
\(494\) −10.0456 −0.451972
\(495\) 0 0
\(496\) 53.6466 2.40880
\(497\) 12.0914 5.38345i 0.542375 0.241481i
\(498\) 0 0
\(499\) 5.08399 5.64634i 0.227591 0.252765i −0.618524 0.785766i \(-0.712269\pi\)
0.846115 + 0.533001i \(0.178936\pi\)
\(500\) −24.4611 + 54.9404i −1.09393 + 2.45701i
\(501\) 0 0
\(502\) 13.0998 61.6298i 0.584674 2.75067i
\(503\) −8.18033 + 25.1765i −0.364743 + 1.12256i 0.585399 + 0.810745i \(0.300938\pi\)
−0.950142 + 0.311818i \(0.899062\pi\)
\(504\) 0 0
\(505\) 16.8451i 0.749599i
\(506\) 44.7425 26.2754i 1.98905 1.16808i
\(507\) 0 0
\(508\) −0.538022 0.0565484i −0.0238709 0.00250893i
\(509\) −2.65076 12.4708i −0.117493 0.552760i −0.997036 0.0769406i \(-0.975485\pi\)
0.879543 0.475820i \(-0.157849\pi\)
\(510\) 0 0
\(511\) −1.07118 10.1916i −0.0473861 0.450849i
\(512\) −2.69612 + 1.95884i −0.119153 + 0.0865695i
\(513\) 0 0
\(514\) 1.06700 + 0.346689i 0.0470633 + 0.0152918i
\(515\) −1.97141 4.42787i −0.0868709 0.195115i
\(516\) 0 0
\(517\) −22.8410 + 7.60878i −1.00455 + 0.334634i
\(518\) 33.6380 19.4209i 1.47797 0.853305i
\(519\) 0 0
\(520\) 25.2877 + 28.0848i 1.10894 + 1.23160i
\(521\) −6.80629 + 2.21150i −0.298189 + 0.0968875i −0.454291 0.890854i \(-0.650107\pi\)
0.156102 + 0.987741i \(0.450107\pi\)
\(522\) 0 0
\(523\) 18.1933 + 25.0410i 0.795539 + 1.09497i 0.993396 + 0.114734i \(0.0366017\pi\)
−0.197857 + 0.980231i \(0.563398\pi\)
\(524\) 79.0112 + 16.7944i 3.45162 + 0.733665i
\(525\) 0 0
\(526\) −7.91758 + 75.3308i −0.345223 + 3.28458i
\(527\) −8.48573 14.6977i −0.369644 0.640243i
\(528\) 0 0
\(529\) 5.36315 9.28924i 0.233180 0.403880i
\(530\) −1.05950 0.769775i −0.0460219 0.0334369i
\(531\) 0 0
\(532\) −2.93777 9.04152i −0.127368 0.392000i
\(533\) 13.5316 1.42223i 0.586118 0.0616035i
\(534\) 0 0
\(535\) −10.1661 9.15362i −0.439520 0.395746i
\(536\) −29.4940 + 6.26914i −1.27395 + 0.270785i
\(537\) 0 0
\(538\) 31.6392 + 18.2669i 1.36406 + 0.787541i
\(539\) −10.9990 12.0354i −0.473762 0.518401i
\(540\) 0 0
\(541\) 25.5272 35.1352i 1.09750 1.51058i 0.258845 0.965919i \(-0.416658\pi\)
0.838656 0.544661i \(-0.183342\pi\)
\(542\) −22.3049 + 20.0834i −0.958077 + 0.862657i
\(543\) 0 0
\(544\) 67.5146 + 30.0594i 2.89466 + 1.28879i
\(545\) −5.43688 2.42066i −0.232890 0.103689i
\(546\) 0 0
\(547\) −5.55409 + 5.00092i −0.237476 + 0.213824i −0.779272 0.626686i \(-0.784411\pi\)
0.541796 + 0.840510i \(0.317744\pi\)
\(548\) 11.5056 15.8361i 0.491496 0.676487i
\(549\) 0 0
\(550\) −17.5187 19.1694i −0.747001 0.817386i
\(551\) −0.105618 0.0609787i −0.00449949 0.00259778i
\(552\) 0 0
\(553\) 14.1496 3.00760i 0.601704 0.127896i
\(554\) −19.5876 17.6368i −0.832199 0.749315i
\(555\) 0 0
\(556\) −88.9646 + 9.35056i −3.77294 + 0.396552i
\(557\) −8.26967 25.4514i −0.350397 1.07841i −0.958631 0.284653i \(-0.908121\pi\)
0.608233 0.793758i \(-0.291879\pi\)
\(558\) 0 0
\(559\) 5.12075 + 3.72044i 0.216585 + 0.157358i
\(560\) −13.7049 + 23.7376i −0.579139 + 1.00310i
\(561\) 0 0
\(562\) −16.4124 28.4270i −0.692314 1.19912i
\(563\) 2.44072 23.2219i 0.102864 0.978688i −0.814372 0.580343i \(-0.802918\pi\)
0.917236 0.398344i \(-0.130415\pi\)
\(564\) 0 0
\(565\) 28.6202 + 6.08342i 1.20406 + 0.255931i
\(566\) −24.3742 33.5483i −1.02453 1.41014i
\(567\) 0 0
\(568\) −76.5070 + 24.8586i −3.21016 + 1.04305i
\(569\) −3.63387 4.03583i −0.152340 0.169191i 0.662144 0.749376i \(-0.269647\pi\)
−0.814484 + 0.580186i \(0.802980\pi\)
\(570\) 0 0
\(571\) −8.79380 + 5.07710i −0.368009 + 0.212470i −0.672588 0.740017i \(-0.734817\pi\)
0.304579 + 0.952487i \(0.401484\pi\)
\(572\) −49.2432 + 16.4039i −2.05896 + 0.685880i
\(573\) 0 0
\(574\) 7.22980 + 16.2384i 0.301766 + 0.677777i
\(575\) −16.0533 5.21603i −0.669468 0.217523i
\(576\) 0 0
\(577\) 17.0075 12.3566i 0.708029 0.514414i −0.174508 0.984656i \(-0.555833\pi\)
0.882537 + 0.470242i \(0.155833\pi\)
\(578\) −0.0658919 0.626919i −0.00274074 0.0260764i
\(579\) 0 0
\(580\) 0.153967 + 0.724357i 0.00639313 + 0.0300773i
\(581\) 8.56319 + 0.900028i 0.355261 + 0.0373394i
\(582\) 0 0
\(583\) 0.960918 0.564306i 0.0397972 0.0233712i
\(584\) 62.2837i 2.57732i
\(585\) 0 0
\(586\) −22.6588 + 69.7367i −0.936028 + 2.88080i
\(587\) 9.06898 42.6662i 0.374317 1.76102i −0.238839 0.971059i \(-0.576767\pi\)
0.613155 0.789962i \(-0.289900\pi\)
\(588\) 0 0
\(589\) 2.08294 4.67835i 0.0858259 0.192768i
\(590\) −7.89403 + 8.76721i −0.324992 + 0.360940i
\(591\) 0 0
\(592\) −119.731 + 53.3079i −4.92093 + 2.19094i
\(593\) −37.0300 −1.52064 −0.760319 0.649549i \(-0.774958\pi\)
−0.760319 + 0.649549i \(0.774958\pi\)
\(594\) 0 0
\(595\) 8.67130 0.355489
\(596\) 54.9986 24.4869i 2.25283 1.00302i
\(597\) 0 0
\(598\) −31.1626 + 34.6096i −1.27433 + 1.41529i
\(599\) 9.79998 22.0111i 0.400416 0.899350i −0.595001 0.803725i \(-0.702848\pi\)
0.995417 0.0956251i \(-0.0304850\pi\)
\(600\) 0 0
\(601\) 3.88387 18.2722i 0.158426 0.745337i −0.825160 0.564899i \(-0.808915\pi\)
0.983586 0.180438i \(-0.0577516\pi\)
\(602\) −2.55527 + 7.86431i −0.104145 + 0.320525i
\(603\) 0 0
\(604\) 5.58824i 0.227382i
\(605\) −15.0624 + 5.14167i −0.612372 + 0.209039i
\(606\) 0 0
\(607\) 24.4696 + 2.57186i 0.993192 + 0.104389i 0.587161 0.809470i \(-0.300246\pi\)
0.406032 + 0.913859i \(0.366912\pi\)
\(608\) 4.63650 + 21.8130i 0.188035 + 0.884634i
\(609\) 0 0
\(610\) −0.129688 1.23390i −0.00525090 0.0499590i
\(611\) 17.4818 12.7013i 0.707238 0.513839i
\(612\) 0 0
\(613\) 21.4976 + 6.98501i 0.868282 + 0.282122i 0.709083 0.705125i \(-0.249109\pi\)
0.159199 + 0.987247i \(0.449109\pi\)
\(614\) 34.0539 + 76.4864i 1.37431 + 3.08674i
\(615\) 0 0
\(616\) −24.9439 33.8036i −1.00502 1.36198i
\(617\) −8.17258 + 4.71844i −0.329016 + 0.189957i −0.655404 0.755278i \(-0.727502\pi\)
0.326388 + 0.945236i \(0.394168\pi\)
\(618\) 0 0
\(619\) −8.95871 9.94965i −0.360081 0.399910i 0.535698 0.844409i \(-0.320048\pi\)
−0.895779 + 0.444499i \(0.853382\pi\)
\(620\) −29.5739 + 9.60915i −1.18772 + 0.385913i
\(621\) 0 0
\(622\) 9.04845 + 12.4541i 0.362810 + 0.499365i
\(623\) −7.22401 1.53551i −0.289424 0.0615190i
\(624\) 0 0
\(625\) 0.211100 2.00849i 0.00844401 0.0803394i
\(626\) 35.6031 + 61.6663i 1.42298 + 2.46468i
\(627\) 0 0
\(628\) 0.224449 0.388757i 0.00895648 0.0155131i
\(629\) 33.5439 + 24.3710i 1.33748 + 0.971737i
\(630\) 0 0
\(631\) −3.99811 12.3049i −0.159162 0.489851i 0.839397 0.543519i \(-0.182909\pi\)
−0.998559 + 0.0536685i \(0.982909\pi\)
\(632\) −87.4386 + 9.19017i −3.47812 + 0.365565i
\(633\) 0 0
\(634\) 3.96358 + 3.56883i 0.157414 + 0.141736i
\(635\) 0.145641 0.0309569i 0.00577957 0.00122849i
\(636\) 0 0
\(637\) 12.6734 + 7.31701i 0.502140 + 0.289911i
\(638\) −0.852164 0.174554i −0.0337375 0.00691065i
\(639\) 0 0
\(640\) 19.4638 26.7896i 0.769373 1.05895i
\(641\) −7.42438 + 6.68494i −0.293245 + 0.264039i −0.802600 0.596517i \(-0.796551\pi\)
0.509355 + 0.860557i \(0.329884\pi\)
\(642\) 0 0
\(643\) −11.5865 5.15863i −0.456926 0.203436i 0.165349 0.986235i \(-0.447125\pi\)
−0.622275 + 0.782799i \(0.713791\pi\)
\(644\) −40.2637 17.9265i −1.58661 0.706405i
\(645\) 0 0
\(646\) 10.4108 9.37390i 0.409606 0.368811i
\(647\) −19.3401 + 26.6193i −0.760337 + 1.04651i 0.236849 + 0.971547i \(0.423885\pi\)
−0.997186 + 0.0749678i \(0.976115\pi\)
\(648\) 0 0
\(649\) −4.15077 9.14018i −0.162932 0.358784i
\(650\) 20.1856 + 11.6542i 0.791746 + 0.457115i
\(651\) 0 0
\(652\) −15.0653 + 3.20222i −0.590001 + 0.125409i
\(653\) −15.8756 14.2944i −0.621259 0.559384i 0.297242 0.954802i \(-0.403933\pi\)
−0.918501 + 0.395418i \(0.870600\pi\)
\(654\) 0 0
\(655\) −22.1101 + 2.32387i −0.863914 + 0.0908010i
\(656\) −18.5342 57.0424i −0.723639 2.22713i
\(657\) 0 0
\(658\) 22.8383 + 16.5930i 0.890331 + 0.646863i
\(659\) 5.34609 9.25969i 0.208254 0.360706i −0.742911 0.669391i \(-0.766555\pi\)
0.951165 + 0.308684i \(0.0998886\pi\)
\(660\) 0 0
\(661\) −14.6301 25.3401i −0.569045 0.985615i −0.996661 0.0816544i \(-0.973980\pi\)
0.427616 0.903961i \(-0.359354\pi\)
\(662\) 1.14808 10.9233i 0.0446215 0.424545i
\(663\) 0 0
\(664\) −51.1886 10.8805i −1.98650 0.422244i
\(665\) 1.53796 + 2.11683i 0.0596397 + 0.0820870i
\(666\) 0 0
\(667\) −0.537728 + 0.174718i −0.0208209 + 0.00676512i
\(668\) 15.6664 + 17.3994i 0.606153 + 0.673201i
\(669\) 0 0
\(670\) 11.6003 6.69744i 0.448159 0.258745i
\(671\) 1.00643 + 0.318796i 0.0388528 + 0.0123070i
\(672\) 0 0
\(673\) −16.9757 38.1281i −0.654366 1.46973i −0.869897 0.493233i \(-0.835815\pi\)
0.215531 0.976497i \(-0.430852\pi\)
\(674\) 73.0890 + 23.7481i 2.81528 + 0.914741i
\(675\) 0 0
\(676\) −17.6003 + 12.7874i −0.676935 + 0.491822i
\(677\) 3.10946 + 29.5845i 0.119506 + 1.13703i 0.875760 + 0.482747i \(0.160361\pi\)
−0.756254 + 0.654278i \(0.772972\pi\)
\(678\) 0 0
\(679\) 1.81318 + 8.53032i 0.0695833 + 0.327364i
\(680\) −52.4139 5.50892i −2.00998 0.211257i
\(681\) 0 0
\(682\) 3.54915 36.3532i 0.135904 1.39204i
\(683\) 27.9122i 1.06803i −0.845475 0.534015i \(-0.820683\pi\)
0.845475 0.534015i \(-0.179317\pi\)
\(684\) 0 0
\(685\) −1.66482 + 5.12378i −0.0636094 + 0.195770i
\(686\) −9.63482 + 45.3283i −0.367859 + 1.73064i
\(687\) 0 0
\(688\) 11.3487 25.4896i 0.432665 0.971782i
\(689\) −0.669268 + 0.743298i −0.0254971 + 0.0283174i
\(690\) 0 0
\(691\) 1.17256 0.522059i 0.0446064 0.0198601i −0.384312 0.923203i \(-0.625561\pi\)
0.428919 + 0.903343i \(0.358895\pi\)
\(692\) 54.9382 2.08844
\(693\) 0 0
\(694\) −27.8516 −1.05723
\(695\) 22.4919 10.0140i 0.853165 0.379854i
\(696\) 0 0
\(697\) −12.6964 + 14.1008i −0.480910 + 0.534104i
\(698\) −20.2197 + 45.4142i −0.765327 + 1.71895i
\(699\) 0 0
\(700\) −4.58618 + 21.5763i −0.173341 + 0.815507i
\(701\) 9.82030 30.2238i 0.370908 1.14154i −0.575290 0.817949i \(-0.695111\pi\)
0.946198 0.323588i \(-0.104889\pi\)
\(702\) 0 0
\(703\) 12.5112i 0.471869i
\(704\) 36.4662 + 62.0959i 1.37437 + 2.34033i
\(705\) 0 0
\(706\) 35.8783 + 3.77097i 1.35030 + 0.141922i
\(707\) 3.49443 + 16.4400i 0.131421 + 0.618289i
\(708\) 0 0
\(709\) −0.0500839 0.476516i −0.00188094 0.0178959i 0.993541 0.113472i \(-0.0361973\pi\)
−0.995422 + 0.0955763i \(0.969531\pi\)
\(710\) 28.9110 21.0050i 1.08501 0.788305i
\(711\) 0 0
\(712\) 42.6902 + 13.8709i 1.59988 + 0.519833i
\(713\) −9.65659 21.6891i −0.361642 0.812262i
\(714\) 0 0
\(715\) 11.4946 8.48197i 0.429874 0.317208i
\(716\) 45.8688 26.4823i 1.71420 0.989692i
\(717\) 0 0
\(718\) 11.2496 + 12.4940i 0.419833 + 0.466271i
\(719\) −22.0526 + 7.16534i −0.822425 + 0.267222i −0.689851 0.723951i \(-0.742324\pi\)
−0.132574 + 0.991173i \(0.542324\pi\)
\(720\) 0 0
\(721\) −2.84253 3.91241i −0.105862 0.145706i
\(722\) −45.9306 9.76285i −1.70936 0.363336i
\(723\) 0 0
\(724\) 8.51985 81.0610i 0.316638 3.01261i
\(725\) 0.141487 + 0.245062i 0.00525468 + 0.00910137i
\(726\) 0 0
\(727\) −19.7219 + 34.1593i −0.731444 + 1.26690i 0.224822 + 0.974400i \(0.427820\pi\)
−0.956266 + 0.292498i \(0.905513\pi\)
\(728\) 30.5055 + 22.1635i 1.13061 + 0.821435i
\(729\) 0 0
\(730\) −8.55002 26.3143i −0.316450 0.973934i
\(731\) −8.77859 + 0.922667i −0.324688 + 0.0341261i
\(732\) 0 0
\(733\) −7.26549 6.54188i −0.268357 0.241630i 0.523955 0.851746i \(-0.324456\pi\)
−0.792312 + 0.610116i \(0.791123\pi\)
\(734\) 20.2904 4.31287i 0.748934 0.159191i
\(735\) 0 0
\(736\) 89.5343 + 51.6927i 3.30028 + 1.90542i
\(737\) 1.27523 + 11.3262i 0.0469735 + 0.417207i
\(738\) 0 0
\(739\) −14.0478 + 19.3351i −0.516757 + 0.711255i −0.985040 0.172324i \(-0.944873\pi\)
0.468284 + 0.883578i \(0.344873\pi\)
\(740\) 56.4563 50.8335i 2.07538 1.86868i
\(741\) 0 0
\(742\) −1.19371 0.531472i −0.0438223 0.0195110i
\(743\) 33.6405 + 14.9777i 1.23415 + 0.549480i 0.916997 0.398894i \(-0.130606\pi\)
0.317155 + 0.948374i \(0.397273\pi\)
\(744\) 0 0
\(745\) −12.3137 + 11.0873i −0.451137 + 0.406206i
\(746\) −33.3459 + 45.8967i −1.22088 + 1.68040i
\(747\) 0 0
\(748\) 35.7263 62.9508i 1.30628 2.30171i
\(749\) −11.8205 6.82456i −0.431911 0.249364i
\(750\) 0 0
\(751\) 30.0301 6.38311i 1.09582 0.232923i 0.375675 0.926751i \(-0.377411\pi\)
0.720140 + 0.693828i \(0.244077\pi\)
\(752\) −70.7879 63.7377i −2.58137 2.32428i
\(753\) 0 0
\(754\) 0.776471 0.0816104i 0.0282774 0.00297207i
\(755\) −0.475281 1.46276i −0.0172972 0.0532354i
\(756\) 0 0
\(757\) −34.5971 25.1362i −1.25745 0.913592i −0.258822 0.965925i \(-0.583334\pi\)
−0.998630 + 0.0523331i \(0.983334\pi\)
\(758\) 39.9585 69.2101i 1.45136 2.51383i
\(759\) 0 0
\(760\) −7.95143 13.7723i −0.288429 0.499573i
\(761\) −2.82341 + 26.8629i −0.102348 + 0.973781i 0.816012 + 0.578035i \(0.196180\pi\)
−0.918360 + 0.395746i \(0.870486\pi\)
\(762\) 0 0
\(763\) −5.80827 1.23458i −0.210273 0.0446950i
\(764\) −11.4788 15.7991i −0.415287 0.571593i
\(765\) 0 0
\(766\) −6.83574 + 2.22107i −0.246985 + 0.0802504i
\(767\) 6.02897 + 6.69585i 0.217693 + 0.241773i
\(768\) 0 0
\(769\) 41.9099 24.1967i 1.51131 0.872555i 0.511396 0.859345i \(-0.329129\pi\)
0.999913 0.0132095i \(-0.00420483\pi\)
\(770\) 15.1789 + 10.8575i 0.547011 + 0.391277i
\(771\) 0 0
\(772\) 53.3218 + 119.763i 1.91909 + 4.31036i
\(773\) −33.6456 10.9321i −1.21015 0.393201i −0.366664 0.930354i \(-0.619500\pi\)
−0.843485 + 0.537152i \(0.819500\pi\)
\(774\) 0 0
\(775\) −9.61296 + 6.98422i −0.345308 + 0.250881i
\(776\) −5.54043 52.7136i −0.198890 1.89231i
\(777\) 0 0
\(778\) 0.357025 + 1.67967i 0.0128000 + 0.0602192i
\(779\) −5.69412 0.598476i −0.204013 0.0214426i
\(780\) 0 0
\(781\) 6.54205 + 29.6959i 0.234093 + 1.06260i
\(782\) 64.9467i 2.32249i
\(783\) 0 0
\(784\) 19.9344 61.3518i 0.711943 2.19113i
\(785\) −0.0256873 + 0.120849i −0.000916819 + 0.00431330i
\(786\) 0 0
\(787\) 10.4896 23.5601i 0.373914 0.839825i −0.624362 0.781135i \(-0.714641\pi\)
0.998276 0.0586900i \(-0.0186924\pi\)
\(788\) 67.6141 75.0931i 2.40865 2.67508i
\(789\) 0 0
\(790\) 35.6803 15.8859i 1.26945 0.565195i
\(791\) 29.1938 1.03801
\(792\) 0 0
\(793\) −0.947564 −0.0336490
\(794\) −62.0528 + 27.6277i −2.20217 + 0.980470i
\(795\) 0 0
\(796\) −91.5034 + 101.625i −3.24325 + 3.60200i
\(797\) −6.93844 + 15.5840i −0.245772 + 0.552013i −0.993739 0.111722i \(-0.964363\pi\)
0.747967 + 0.663735i \(0.231030\pi\)
\(798\) 0 0
\(799\) −6.26530 + 29.4759i −0.221650 + 1.04278i
\(800\) 15.9893 49.2101i 0.565308 1.73984i
\(801\) 0 0
\(802\) 78.5813i 2.77480i
\(803\) 23.4319 + 2.28764i 0.826892 + 0.0807292i
\(804\) 0 0
\(805\) 12.0640 + 1.26797i 0.425199 + 0.0446902i
\(806\) 6.81623 + 32.0678i 0.240091 + 1.12954i
\(807\) 0 0
\(808\) −10.6777 101.592i −0.375641 3.57399i
\(809\) −38.7684 + 28.1669i −1.36302 + 0.990295i −0.364778 + 0.931095i \(0.618855\pi\)
−0.998246 + 0.0592001i \(0.981145\pi\)
\(810\) 0 0
\(811\) 45.0299 + 14.6311i 1.58121 + 0.513768i 0.962369 0.271745i \(-0.0876009\pi\)
0.618845 + 0.785513i \(0.287601\pi\)
\(812\) 0.300527 + 0.674996i 0.0105464 + 0.0236877i
\(813\) 0 0
\(814\) 28.2025 + 84.6619i 0.988497 + 2.96740i
\(815\) 3.67109 2.11951i 0.128593 0.0742430i
\(816\) 0 0
\(817\) −1.78223 1.97937i −0.0623524 0.0692494i
\(818\) −42.5510 + 13.8257i −1.48776 + 0.483403i
\(819\) 0 0
\(820\) 20.4348 + 28.1261i 0.713615 + 0.982207i
\(821\) 17.1942 + 3.65474i 0.600081 + 0.127551i 0.497929 0.867218i \(-0.334094\pi\)
0.102152 + 0.994769i \(0.467427\pi\)
\(822\) 0 0
\(823\) −2.98965 + 28.4446i −0.104212 + 0.991516i 0.810041 + 0.586373i \(0.199445\pi\)
−0.914254 + 0.405142i \(0.867222\pi\)
\(824\) 14.6962 + 25.4545i 0.511966 + 0.886751i
\(825\) 0 0
\(826\) −5.88546 + 10.1939i −0.204781 + 0.354691i
\(827\) −13.0031 9.44733i −0.452163 0.328516i 0.338286 0.941043i \(-0.390153\pi\)
−0.790449 + 0.612527i \(0.790153\pi\)
\(828\) 0 0
\(829\) 0.324003 + 0.997179i 0.0112531 + 0.0346335i 0.956525 0.291649i \(-0.0942039\pi\)
−0.945272 + 0.326282i \(0.894204\pi\)
\(830\) 23.1203 2.43004i 0.802517 0.0843479i
\(831\) 0 0
\(832\) −48.0329 43.2490i −1.66524 1.49939i
\(833\) −19.9619 + 4.24304i −0.691640 + 0.147013i
\(834\) 0 0
\(835\) −5.58062 3.22197i −0.193125 0.111501i
\(836\) 21.7040 2.44366i 0.750648 0.0845158i
\(837\) 0 0
\(838\) 14.8427 20.4292i 0.512733 0.705716i
\(839\) 15.6005 14.0468i 0.538590 0.484949i −0.354357 0.935110i \(-0.615300\pi\)
0.892947 + 0.450161i \(0.148634\pi\)
\(840\) 0 0
\(841\) −26.4842 11.7915i −0.913247 0.406604i
\(842\) −8.14849 3.62794i −0.280816 0.125027i
\(843\) 0 0
\(844\) 88.8286 79.9816i 3.05761 2.75308i
\(845\) 3.51944 4.84410i 0.121073 0.166642i
\(846\) 0 0
\(847\) −13.6335 + 8.14260i −0.468451 + 0.279783i
\(848\) 3.81836 + 2.20453i 0.131123 + 0.0757039i
\(849\) 0 0
\(850\) −31.7944 + 6.75811i −1.09054 + 0.231801i
\(851\) 43.1043 + 38.8113i 1.47760 + 1.33043i
\(852\) 0 0
\(853\) 5.26358 0.553224i 0.180222 0.0189420i −0.0139877 0.999902i \(-0.504453\pi\)
0.194209 + 0.980960i \(0.437786\pi\)
\(854\) −0.382533 1.17732i −0.0130900 0.0402869i
\(855\) 0 0
\(856\) 67.1135 + 48.7608i 2.29389 + 1.66661i
\(857\) −3.88021 + 6.72072i −0.132545 + 0.229575i −0.924657 0.380801i \(-0.875648\pi\)
0.792112 + 0.610376i \(0.208982\pi\)
\(858\) 0 0
\(859\) 24.3358 + 42.1508i 0.830326 + 1.43817i 0.897780 + 0.440445i \(0.145179\pi\)
−0.0674537 + 0.997722i \(0.521488\pi\)
\(860\) −1.69055 + 16.0845i −0.0576473 + 0.548478i
\(861\) 0 0
\(862\) −5.60851 1.19213i −0.191027 0.0406039i
\(863\) 8.87079 + 12.2096i 0.301965 + 0.415619i 0.932854 0.360253i \(-0.117310\pi\)
−0.630889 + 0.775873i \(0.717310\pi\)
\(864\) 0 0
\(865\) −14.3805 + 4.67250i −0.488951 + 0.158870i
\(866\) −27.7701 30.8418i −0.943667 1.04805i
\(867\) 0 0
\(868\) −26.8693 + 15.5130i −0.912002 + 0.526545i
\(869\) 0.245878 + 33.2329i 0.00834084 + 1.12735i
\(870\) 0 0
\(871\) −4.16099 9.34573i −0.140990 0.316668i
\(872\) 34.3238 + 11.1525i 1.16235 + 0.377671i
\(873\) 0 0
\(874\) 15.8547 11.5191i 0.536294 0.389640i
\(875\) −1.72628 16.4245i −0.0583589 0.555248i
\(876\) 0 0
\(877\) −4.60549 21.6671i −0.155516 0.731646i −0.984922 0.172999i \(-0.944654\pi\)
0.829406 0.558647i \(-0.188679\pi\)
\(878\) −95.9272 10.0824i −3.23739 0.340263i
\(879\) 0 0
\(880\) −47.1077 41.7890i −1.58800 1.40871i
\(881\) 18.8235i 0.634180i 0.948395 + 0.317090i \(0.102706\pi\)
−0.948395 + 0.317090i \(0.897294\pi\)
\(882\) 0 0
\(883\) −11.7223 + 36.0776i −0.394488 + 1.21411i 0.534872 + 0.844933i \(0.320360\pi\)
−0.929360 + 0.369175i \(0.879640\pi\)
\(884\) −13.5074 + 63.5475i −0.454304 + 2.13733i
\(885\) 0 0
\(886\) 13.1458 29.5260i 0.441643 0.991947i
\(887\) 19.4805 21.6352i 0.654090 0.726440i −0.321288 0.946982i \(-0.604116\pi\)
0.975378 + 0.220541i \(0.0707824\pi\)
\(888\) 0 0
\(889\) 0.135716 0.0604246i 0.00455176 0.00202658i
\(890\) −19.9403 −0.668401
\(891\) 0 0
\(892\) −119.589 −4.00414
\(893\) −8.30685 + 3.69845i −0.277978 + 0.123764i
\(894\) 0 0
\(895\) −9.75416 + 10.8331i −0.326046 + 0.362110i
\(896\) 13.4383 30.1829i 0.448942 1.00834i
\(897\) 0 0
\(898\) 14.3016 67.2838i 0.477251 2.24529i
\(899\) −0.122993 + 0.378534i −0.00410205 + 0.0126248i
\(900\) 0 0
\(901\) 1.39484i 0.0464688i
\(902\) −39.8806 + 8.78575i −1.32788 + 0.292534i
\(903\) 0 0
\(904\) −176.463 18.5470i −5.86906 0.616863i
\(905\) 4.66411 + 21.9429i 0.155040 + 0.729407i
\(906\) 0 0
\(907\) 1.93945 + 18.4526i 0.0643984 + 0.612710i 0.978360 + 0.206910i \(0.0663406\pi\)
−0.913962 + 0.405801i \(0.866993\pi\)
\(908\) −34.5673 + 25.1146i −1.14716 + 0.833458i
\(909\) 0 0
\(910\) −15.9308 5.17622i −0.528100 0.171590i
\(911\) −13.5116 30.3475i −0.447658 1.00546i −0.986607 0.163118i \(-0.947845\pi\)
0.538949 0.842339i \(-0.318822\pi\)
\(912\) 0 0
\(913\) −5.97348 + 18.8581i −0.197693 + 0.624112i
\(914\) −2.37949 + 1.37380i −0.0787064 + 0.0454411i
\(915\) 0 0
\(916\) 47.8173 + 53.1065i 1.57993 + 1.75469i
\(917\) −21.0963 + 6.85459i −0.696660 + 0.226359i
\(918\) 0 0
\(919\) −10.8277 14.9031i −0.357173 0.491606i 0.592185 0.805802i \(-0.298265\pi\)
−0.949358 + 0.314195i \(0.898265\pi\)
\(920\) −72.1153 15.3286i −2.37757 0.505369i
\(921\) 0 0
\(922\) 1.27392 12.1205i 0.0419543 0.399168i
\(923\) −13.6464 23.6363i −0.449178 0.777999i
\(924\) 0 0
\(925\) 14.5146 25.1401i 0.477238 0.826600i
\(926\) 18.4200 + 13.3829i 0.605320 + 0.439791i
\(927\) 0 0
\(928\) −0.535586 1.64836i −0.0175815 0.0541102i
\(929\) −29.1247 + 3.06113i −0.955551 + 0.100432i −0.569452 0.822025i \(-0.692844\pi\)
−0.386099 + 0.922457i \(0.626178\pi\)
\(930\) 0 0
\(931\) −4.57631 4.12052i −0.149982 0.135045i
\(932\) 26.0063 5.52781i 0.851865 0.181070i
\(933\) 0 0
\(934\) 14.4710 + 8.35483i 0.473505 + 0.273378i
\(935\) −3.99765 + 19.5164i −0.130737 + 0.638253i
\(936\) 0 0
\(937\) −9.28756 + 12.7832i −0.303411 + 0.417610i −0.933312 0.359066i \(-0.883095\pi\)
0.629901 + 0.776675i \(0.283095\pi\)
\(938\) 9.93196 8.94277i 0.324290 0.291992i
\(939\) 0 0
\(940\) 50.4402 + 22.4574i 1.64518 + 0.732480i
\(941\) 7.56700 + 3.36905i 0.246677 + 0.109828i 0.526351 0.850267i \(-0.323560\pi\)
−0.279674 + 0.960095i \(0.590226\pi\)
\(942\) 0 0
\(943\) −19.7258 + 17.7611i −0.642359 + 0.578383i
\(944\) 23.3457 32.1326i 0.759839 1.04583i
\(945\) 0 0
\(946\) −16.5220 9.37671i −0.537178 0.304863i
\(947\) 4.25424 + 2.45619i 0.138244 + 0.0798154i 0.567527 0.823355i \(-0.307900\pi\)
−0.429283 + 0.903170i \(0.641234\pi\)
\(948\) 0 0
\(949\) −20.6697 + 4.39347i −0.670966 + 0.142618i
\(950\) −7.28892 6.56297i −0.236484 0.212931i
\(951\) 0 0
\(952\) −52.2960 + 5.49653i −1.69492 + 0.178144i
\(953\) 1.81366 + 5.58186i 0.0587501 + 0.180814i 0.976125 0.217211i \(-0.0696958\pi\)
−0.917375 + 0.398025i \(0.869696\pi\)
\(954\) 0 0
\(955\) 4.34837 + 3.15927i 0.140710 + 0.102232i
\(956\) −53.0067 + 91.8103i −1.71436 + 2.96936i
\(957\) 0 0
\(958\) 30.0453 + 52.0401i 0.970721 + 1.68134i
\(959\) −0.561877 + 5.34590i −0.0181439 + 0.172628i
\(960\) 0 0
\(961\) 13.9749 + 2.97045i 0.450802 + 0.0958210i
\(962\) −47.0782 64.7976i −1.51786 2.08916i
\(963\) 0 0
\(964\) 141.498 45.9756i 4.55735 1.48077i
\(965\) −24.1432 26.8137i −0.777197 0.863165i
\(966\) 0 0
\(967\) 15.1909 8.77049i 0.488507 0.282040i −0.235448 0.971887i \(-0.575656\pi\)
0.723955 + 0.689847i \(0.242322\pi\)
\(968\) 87.5808 40.5567i 2.81495 1.30354i
\(969\) 0 0
\(970\) 9.57706 + 21.5104i 0.307501 + 0.690658i
\(971\) 46.6836 + 15.1684i 1.49815 + 0.486778i 0.939478 0.342610i \(-0.111311\pi\)
0.558672 + 0.829389i \(0.311311\pi\)
\(972\) 0 0
\(973\) 19.8735 14.4390i 0.637117 0.462892i
\(974\) −9.59448 91.2854i −0.307427 2.92497i
\(975\) 0 0
\(976\) 0.868449 + 4.08573i 0.0277984 + 0.130781i
\(977\) −12.4796 1.31166i −0.399258 0.0419637i −0.0972278 0.995262i \(-0.530998\pi\)
−0.302030 + 0.953298i \(0.597664\pi\)
\(978\) 0 0
\(979\) 6.78637 15.5511i 0.216893 0.497014i
\(980\) 37.3923i 1.19445i
\(981\) 0 0
\(982\) −15.6708 + 48.2298i −0.500076 + 1.53908i
\(983\) −4.38228 + 20.6170i −0.139773 + 0.657580i 0.851346 + 0.524604i \(0.175787\pi\)
−0.991119 + 0.132976i \(0.957547\pi\)
\(984\) 0 0
\(985\) −11.3118 + 25.4067i −0.360424 + 0.809526i
\(986\) −0.728544 + 0.809130i −0.0232016 + 0.0257680i
\(987\) 0 0
\(988\) −17.9088 + 7.97353i −0.569756 + 0.253672i
\(989\) −12.3481 −0.392648
\(990\) 0 0
\(991\) 60.3045 1.91564 0.957818 0.287375i \(-0.0927826\pi\)
0.957818 + 0.287375i \(0.0927826\pi\)
\(992\) 66.4861 29.6015i 2.11094 0.939849i
\(993\) 0 0
\(994\) 23.8582 26.4973i 0.756737 0.840442i
\(995\) 15.3085 34.3834i 0.485311 1.09003i
\(996\) 0 0
\(997\) −11.6859 + 54.9777i −0.370096 + 1.74116i 0.260890 + 0.965368i \(0.415984\pi\)
−0.630986 + 0.775794i \(0.717349\pi\)
\(998\) 6.32493 19.4661i 0.200212 0.616190i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.t.a.62.10 80
3.2 odd 2 99.2.p.a.29.1 80
9.2 odd 6 891.2.k.a.161.20 80
9.4 even 3 99.2.p.a.95.1 yes 80
9.5 odd 6 inner 297.2.t.a.260.10 80
9.7 even 3 891.2.k.a.161.1 80
11.8 odd 10 inner 297.2.t.a.8.10 80
33.8 even 10 99.2.p.a.74.1 yes 80
99.41 even 30 inner 297.2.t.a.206.10 80
99.52 odd 30 891.2.k.a.404.20 80
99.74 even 30 891.2.k.a.404.1 80
99.85 odd 30 99.2.p.a.41.1 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.1 80 3.2 odd 2
99.2.p.a.41.1 yes 80 99.85 odd 30
99.2.p.a.74.1 yes 80 33.8 even 10
99.2.p.a.95.1 yes 80 9.4 even 3
297.2.t.a.8.10 80 11.8 odd 10 inner
297.2.t.a.62.10 80 1.1 even 1 trivial
297.2.t.a.206.10 80 99.41 even 30 inner
297.2.t.a.260.10 80 9.5 odd 6 inner
891.2.k.a.161.1 80 9.7 even 3
891.2.k.a.161.20 80 9.2 odd 6
891.2.k.a.404.1 80 99.74 even 30
891.2.k.a.404.20 80 99.52 odd 30