Properties

Label 297.2.t.a.260.9
Level $297$
Weight $2$
Character 297.260
Analytic conductor $2.372$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [297,2,Mod(8,297)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("297.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(297, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([5, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.t (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 260.9
Character \(\chi\) \(=\) 297.260
Dual form 297.2.t.a.8.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.205839 - 1.95843i) q^{2} +(-1.83679 - 0.390421i) q^{4} +(1.96633 - 0.206670i) q^{5} +(0.235695 + 0.212221i) q^{7} +(0.0743474 - 0.228818i) q^{8} -3.89347i q^{10} +(-0.900082 - 3.19215i) q^{11} +(0.782431 + 1.75737i) q^{13} +(0.464135 - 0.417909i) q^{14} +(-3.86377 - 1.72026i) q^{16} +(2.02504 - 1.47127i) q^{17} +(4.44962 + 1.44577i) q^{19} +(-3.69242 - 0.388089i) q^{20} +(-6.43689 + 1.10568i) q^{22} +(-4.68148 - 2.70286i) q^{23} +(-1.06699 + 0.226795i) q^{25} +(3.60274 - 1.17060i) q^{26} +(-0.350066 - 0.481825i) q^{28} +(-5.96640 + 6.62636i) q^{29} +(-0.304670 + 0.135648i) q^{31} +(-3.92374 + 6.79612i) q^{32} +(-2.46456 - 4.26874i) q^{34} +(0.507314 + 0.368585i) q^{35} +(2.37275 + 7.30257i) q^{37} +(3.74735 - 8.41668i) q^{38} +(0.0989020 - 0.465297i) q^{40} +(6.69670 + 7.43744i) q^{41} +(7.95160 - 4.59086i) q^{43} +(0.406974 + 6.21472i) q^{44} +(-6.25699 + 8.61201i) q^{46} +(1.77326 + 8.34251i) q^{47} +(-0.721185 - 6.86161i) q^{49} +(0.224534 + 2.13630i) q^{50} +(-0.751046 - 3.53339i) q^{52} +(1.05383 - 1.45047i) q^{53} +(-2.42958 - 6.09082i) q^{55} +(0.0660832 - 0.0381531i) q^{56} +(11.7492 + 13.0488i) q^{58} +(1.61495 - 7.59774i) q^{59} +(-1.00557 + 2.25856i) q^{61} +(0.202944 + 0.624596i) q^{62} +(5.65871 + 4.11130i) q^{64} +(1.90171 + 3.29387i) q^{65} +(-5.40401 + 9.36002i) q^{67} +(-4.29398 + 1.91180i) q^{68} +(0.826275 - 0.917671i) q^{70} +(-6.99647 - 9.62982i) q^{71} +(0.116476 - 0.0378454i) q^{73} +(14.7900 - 3.14371i) q^{74} +(-7.60855 - 4.39280i) q^{76} +(0.465297 - 0.943391i) q^{77} +(12.4188 + 1.30527i) q^{79} +(-7.95299 - 2.58408i) q^{80} +(15.9442 - 11.5841i) q^{82} +(0.394220 + 0.175518i) q^{83} +(3.67783 - 3.31153i) q^{85} +(-7.35413 - 16.5176i) q^{86} +(-0.797341 - 0.0313737i) q^{88} +8.15328i q^{89} +(-0.188535 + 0.580251i) q^{91} +(7.54364 + 6.79232i) q^{92} +(16.7032 - 1.75558i) q^{94} +(9.04823 + 1.92326i) q^{95} +(-0.903553 + 8.59673i) q^{97} -13.5864 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 15 q^{2} + 5 q^{4} + 6 q^{5} - 5 q^{7} + 3 q^{11} - 5 q^{13} + 9 q^{14} + 5 q^{16} - 50 q^{19} + 3 q^{20} - 11 q^{22} + 42 q^{23} - 2 q^{25} - 20 q^{28} - 30 q^{29} - 6 q^{31} - 10 q^{34} - 6 q^{37}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.205839 1.95843i 0.145550 1.38482i −0.641117 0.767443i \(-0.721529\pi\)
0.786667 0.617377i \(-0.211805\pi\)
\(3\) 0 0
\(4\) −1.83679 0.390421i −0.918394 0.195211i
\(5\) 1.96633 0.206670i 0.879371 0.0924256i 0.345927 0.938261i \(-0.387564\pi\)
0.533443 + 0.845836i \(0.320898\pi\)
\(6\) 0 0
\(7\) 0.235695 + 0.212221i 0.0890843 + 0.0802119i 0.712470 0.701703i \(-0.247577\pi\)
−0.623385 + 0.781915i \(0.714243\pi\)
\(8\) 0.0743474 0.228818i 0.0262858 0.0808993i
\(9\) 0 0
\(10\) 3.89347i 1.23122i
\(11\) −0.900082 3.19215i −0.271385 0.962471i
\(12\) 0 0
\(13\) 0.782431 + 1.75737i 0.217007 + 0.487406i 0.988943 0.148294i \(-0.0473781\pi\)
−0.771936 + 0.635700i \(0.780711\pi\)
\(14\) 0.464135 0.417909i 0.124045 0.111691i
\(15\) 0 0
\(16\) −3.86377 1.72026i −0.965943 0.430066i
\(17\) 2.02504 1.47127i 0.491143 0.356836i −0.314481 0.949264i \(-0.601830\pi\)
0.805624 + 0.592427i \(0.201830\pi\)
\(18\) 0 0
\(19\) 4.44962 + 1.44577i 1.02081 + 0.331682i 0.771152 0.636651i \(-0.219681\pi\)
0.249661 + 0.968333i \(0.419681\pi\)
\(20\) −3.69242 0.388089i −0.825651 0.0867794i
\(21\) 0 0
\(22\) −6.43689 + 1.10568i −1.37235 + 0.235731i
\(23\) −4.68148 2.70286i −0.976157 0.563584i −0.0750491 0.997180i \(-0.523911\pi\)
−0.901108 + 0.433595i \(0.857245\pi\)
\(24\) 0 0
\(25\) −1.06699 + 0.226795i −0.213397 + 0.0453590i
\(26\) 3.60274 1.17060i 0.706556 0.229574i
\(27\) 0 0
\(28\) −0.350066 0.481825i −0.0661563 0.0910563i
\(29\) −5.96640 + 6.62636i −1.10793 + 1.23048i −0.137144 + 0.990551i \(0.543792\pi\)
−0.970789 + 0.239933i \(0.922874\pi\)
\(30\) 0 0
\(31\) −0.304670 + 0.135648i −0.0547203 + 0.0243631i −0.433914 0.900954i \(-0.642868\pi\)
0.379194 + 0.925317i \(0.376201\pi\)
\(32\) −3.92374 + 6.79612i −0.693626 + 1.20140i
\(33\) 0 0
\(34\) −2.46456 4.26874i −0.422668 0.732083i
\(35\) 0.507314 + 0.368585i 0.0857518 + 0.0623023i
\(36\) 0 0
\(37\) 2.37275 + 7.30257i 0.390078 + 1.20054i 0.932729 + 0.360577i \(0.117420\pi\)
−0.542652 + 0.839958i \(0.682580\pi\)
\(38\) 3.74735 8.41668i 0.607900 1.36537i
\(39\) 0 0
\(40\) 0.0989020 0.465297i 0.0156378 0.0735700i
\(41\) 6.69670 + 7.43744i 1.04585 + 1.16153i 0.986578 + 0.163292i \(0.0522112\pi\)
0.0592717 + 0.998242i \(0.481122\pi\)
\(42\) 0 0
\(43\) 7.95160 4.59086i 1.21261 0.700100i 0.249281 0.968431i \(-0.419806\pi\)
0.963327 + 0.268331i \(0.0864723\pi\)
\(44\) 0.406974 + 6.21472i 0.0613536 + 0.936905i
\(45\) 0 0
\(46\) −6.25699 + 8.61201i −0.922543 + 1.26977i
\(47\) 1.77326 + 8.34251i 0.258656 + 1.21688i 0.895209 + 0.445647i \(0.147026\pi\)
−0.636553 + 0.771233i \(0.719640\pi\)
\(48\) 0 0
\(49\) −0.721185 6.86161i −0.103026 0.980231i
\(50\) 0.224534 + 2.13630i 0.0317540 + 0.302119i
\(51\) 0 0
\(52\) −0.751046 3.53339i −0.104151 0.489993i
\(53\) 1.05383 1.45047i 0.144754 0.199237i −0.730483 0.682931i \(-0.760705\pi\)
0.875238 + 0.483693i \(0.160705\pi\)
\(54\) 0 0
\(55\) −2.42958 6.09082i −0.327605 0.821286i
\(56\) 0.0660832 0.0381531i 0.00883074 0.00509843i
\(57\) 0 0
\(58\) 11.7492 + 13.0488i 1.54274 + 1.71339i
\(59\) 1.61495 7.59774i 0.210249 0.989142i −0.738779 0.673948i \(-0.764597\pi\)
0.949027 0.315194i \(-0.102070\pi\)
\(60\) 0 0
\(61\) −1.00557 + 2.25856i −0.128751 + 0.289179i −0.966406 0.257021i \(-0.917259\pi\)
0.837655 + 0.546199i \(0.183926\pi\)
\(62\) 0.202944 + 0.624596i 0.0257739 + 0.0793238i
\(63\) 0 0
\(64\) 5.65871 + 4.11130i 0.707339 + 0.513912i
\(65\) 1.90171 + 3.29387i 0.235879 + 0.408554i
\(66\) 0 0
\(67\) −5.40401 + 9.36002i −0.660205 + 1.14351i 0.320357 + 0.947297i \(0.396197\pi\)
−0.980562 + 0.196211i \(0.937136\pi\)
\(68\) −4.29398 + 1.91180i −0.520721 + 0.231840i
\(69\) 0 0
\(70\) 0.826275 0.917671i 0.0987587 0.109683i
\(71\) −6.99647 9.62982i −0.830329 1.14285i −0.987862 0.155336i \(-0.950354\pi\)
0.157533 0.987514i \(-0.449646\pi\)
\(72\) 0 0
\(73\) 0.116476 0.0378454i 0.0136325 0.00442947i −0.302193 0.953247i \(-0.597719\pi\)
0.315825 + 0.948817i \(0.397719\pi\)
\(74\) 14.7900 3.14371i 1.71930 0.365449i
\(75\) 0 0
\(76\) −7.60855 4.39280i −0.872761 0.503889i
\(77\) 0.465297 0.943391i 0.0530255 0.107509i
\(78\) 0 0
\(79\) 12.4188 + 1.30527i 1.39722 + 0.146854i 0.773007 0.634397i \(-0.218752\pi\)
0.624217 + 0.781251i \(0.285418\pi\)
\(80\) −7.95299 2.58408i −0.889171 0.288909i
\(81\) 0 0
\(82\) 15.9442 11.5841i 1.76074 1.27925i
\(83\) 0.394220 + 0.175518i 0.0432713 + 0.0192656i 0.428258 0.903656i \(-0.359127\pi\)
−0.384987 + 0.922922i \(0.625794\pi\)
\(84\) 0 0
\(85\) 3.67783 3.31153i 0.398916 0.359186i
\(86\) −7.35413 16.5176i −0.793016 1.78114i
\(87\) 0 0
\(88\) −0.797341 0.0313737i −0.0849968 0.00334445i
\(89\) 8.15328i 0.864246i 0.901815 + 0.432123i \(0.142235\pi\)
−0.901815 + 0.432123i \(0.857765\pi\)
\(90\) 0 0
\(91\) −0.188535 + 0.580251i −0.0197638 + 0.0608268i
\(92\) 7.54364 + 6.79232i 0.786479 + 0.708149i
\(93\) 0 0
\(94\) 16.7032 1.75558i 1.72281 0.181074i
\(95\) 9.04823 + 1.92326i 0.928329 + 0.197322i
\(96\) 0 0
\(97\) −0.903553 + 8.59673i −0.0917419 + 0.872866i 0.847773 + 0.530359i \(0.177943\pi\)
−0.939515 + 0.342507i \(0.888724\pi\)
\(98\) −13.5864 −1.37244
\(99\) 0 0
\(100\) 2.04837 0.204837
\(101\) −0.172842 + 1.64448i −0.0171984 + 0.163632i −0.999750 0.0223582i \(-0.992883\pi\)
0.982552 + 0.185990i \(0.0595492\pi\)
\(102\) 0 0
\(103\) −6.03852 1.28353i −0.594993 0.126470i −0.0994345 0.995044i \(-0.531703\pi\)
−0.495559 + 0.868574i \(0.665037\pi\)
\(104\) 0.460289 0.0483783i 0.0451350 0.00474388i
\(105\) 0 0
\(106\) −2.62373 2.36241i −0.254839 0.229458i
\(107\) −3.66316 + 11.2740i −0.354131 + 1.08990i 0.602381 + 0.798209i \(0.294219\pi\)
−0.956512 + 0.291694i \(0.905781\pi\)
\(108\) 0 0
\(109\) 3.30028i 0.316109i 0.987430 + 0.158055i \(0.0505222\pi\)
−0.987430 + 0.158055i \(0.949478\pi\)
\(110\) −12.4286 + 3.50444i −1.18502 + 0.334135i
\(111\) 0 0
\(112\) −0.545597 1.22543i −0.0515540 0.115792i
\(113\) −3.84715 + 3.46399i −0.361910 + 0.325865i −0.829945 0.557845i \(-0.811629\pi\)
0.468036 + 0.883710i \(0.344962\pi\)
\(114\) 0 0
\(115\) −9.76395 4.34719i −0.910493 0.405378i
\(116\) 13.5461 9.84181i 1.25772 0.913789i
\(117\) 0 0
\(118\) −14.5472 4.72668i −1.33918 0.435127i
\(119\) 0.789526 + 0.0829825i 0.0723757 + 0.00760699i
\(120\) 0 0
\(121\) −9.37971 + 5.74640i −0.852701 + 0.522400i
\(122\) 4.21624 + 2.43425i 0.381721 + 0.220387i
\(123\) 0 0
\(124\) 0.612574 0.130207i 0.0550107 0.0116929i
\(125\) −11.4532 + 3.72135i −1.02440 + 0.332848i
\(126\) 0 0
\(127\) −2.22013 3.05575i −0.197005 0.271154i 0.699073 0.715050i \(-0.253596\pi\)
−0.896078 + 0.443896i \(0.853596\pi\)
\(128\) −1.28550 + 1.42770i −0.113624 + 0.126192i
\(129\) 0 0
\(130\) 6.84226 3.04637i 0.600106 0.267184i
\(131\) 4.45993 7.72483i 0.389666 0.674921i −0.602738 0.797939i \(-0.705924\pi\)
0.992405 + 0.123017i \(0.0392571\pi\)
\(132\) 0 0
\(133\) 0.741931 + 1.28506i 0.0643336 + 0.111429i
\(134\) 17.2186 + 12.5100i 1.48746 + 1.08070i
\(135\) 0 0
\(136\) −0.186098 0.572750i −0.0159577 0.0491129i
\(137\) 1.96181 4.40630i 0.167609 0.376455i −0.810140 0.586237i \(-0.800609\pi\)
0.977748 + 0.209782i \(0.0672754\pi\)
\(138\) 0 0
\(139\) −1.49662 + 7.04103i −0.126941 + 0.597212i 0.867984 + 0.496593i \(0.165416\pi\)
−0.994925 + 0.100619i \(0.967918\pi\)
\(140\) −0.787925 0.875080i −0.0665918 0.0739577i
\(141\) 0 0
\(142\) −20.2995 + 11.7199i −1.70350 + 0.983514i
\(143\) 4.90554 4.07942i 0.410222 0.341138i
\(144\) 0 0
\(145\) −10.3625 + 14.2627i −0.860556 + 1.18445i
\(146\) −0.0501422 0.235901i −0.00414980 0.0195233i
\(147\) 0 0
\(148\) −1.50716 14.3396i −0.123888 1.17871i
\(149\) −0.354951 3.37713i −0.0290787 0.276666i −0.999394 0.0348205i \(-0.988914\pi\)
0.970315 0.241845i \(-0.0777526\pi\)
\(150\) 0 0
\(151\) −1.76609 8.30882i −0.143723 0.676162i −0.989725 0.142983i \(-0.954330\pi\)
0.846002 0.533179i \(-0.179003\pi\)
\(152\) 0.661635 0.910663i 0.0536657 0.0738645i
\(153\) 0 0
\(154\) −1.75179 1.10544i −0.141163 0.0890788i
\(155\) −0.571048 + 0.329695i −0.0458677 + 0.0264817i
\(156\) 0 0
\(157\) −12.3770 13.7461i −0.987795 1.09706i −0.995276 0.0970857i \(-0.969048\pi\)
0.00748085 0.999972i \(-0.497619\pi\)
\(158\) 5.11256 24.0527i 0.406733 1.91353i
\(159\) 0 0
\(160\) −6.31083 + 14.1743i −0.498915 + 1.12058i
\(161\) −0.529800 1.63056i −0.0417541 0.128506i
\(162\) 0 0
\(163\) −15.0169 10.9104i −1.17622 0.854572i −0.184478 0.982837i \(-0.559059\pi\)
−0.991740 + 0.128265i \(0.959059\pi\)
\(164\) −9.39669 16.2755i −0.733758 1.27091i
\(165\) 0 0
\(166\) 0.424886 0.735925i 0.0329776 0.0571188i
\(167\) −12.5097 + 5.56967i −0.968028 + 0.430994i −0.828972 0.559291i \(-0.811074\pi\)
−0.139056 + 0.990284i \(0.544407\pi\)
\(168\) 0 0
\(169\) 6.22255 6.91084i 0.478658 0.531603i
\(170\) −5.72836 7.88441i −0.439345 0.604707i
\(171\) 0 0
\(172\) −16.3978 + 5.32796i −1.25032 + 0.406253i
\(173\) −12.9398 + 2.75044i −0.983797 + 0.209112i −0.671607 0.740907i \(-0.734396\pi\)
−0.312189 + 0.950020i \(0.601062\pi\)
\(174\) 0 0
\(175\) −0.299614 0.172982i −0.0226487 0.0130762i
\(176\) −2.01363 + 13.8821i −0.151783 + 1.04641i
\(177\) 0 0
\(178\) 15.9676 + 1.67827i 1.19683 + 0.125791i
\(179\) 5.38656 + 1.75020i 0.402611 + 0.130816i 0.503321 0.864100i \(-0.332111\pi\)
−0.100710 + 0.994916i \(0.532111\pi\)
\(180\) 0 0
\(181\) 8.30217 6.03188i 0.617096 0.448346i −0.234810 0.972041i \(-0.575447\pi\)
0.851906 + 0.523695i \(0.175447\pi\)
\(182\) 1.09757 + 0.488671i 0.0813576 + 0.0362227i
\(183\) 0 0
\(184\) −0.966518 + 0.870256i −0.0712526 + 0.0641561i
\(185\) 6.17484 + 13.8689i 0.453983 + 1.01966i
\(186\) 0 0
\(187\) −6.51923 5.13996i −0.476734 0.375871i
\(188\) 16.0157i 1.16807i
\(189\) 0 0
\(190\) 5.62906 17.3245i 0.408375 1.25685i
\(191\) −4.19996 3.78166i −0.303899 0.273631i 0.503045 0.864260i \(-0.332213\pi\)
−0.806943 + 0.590629i \(0.798880\pi\)
\(192\) 0 0
\(193\) 17.8702 1.87823i 1.28633 0.135198i 0.563435 0.826161i \(-0.309480\pi\)
0.722891 + 0.690962i \(0.242813\pi\)
\(194\) 16.6501 + 3.53909i 1.19541 + 0.254092i
\(195\) 0 0
\(196\) −1.35426 + 12.8849i −0.0967327 + 0.920350i
\(197\) −2.51065 −0.178877 −0.0894383 0.995992i \(-0.528507\pi\)
−0.0894383 + 0.995992i \(0.528507\pi\)
\(198\) 0 0
\(199\) 12.2300 0.866959 0.433479 0.901163i \(-0.357286\pi\)
0.433479 + 0.901163i \(0.357286\pi\)
\(200\) −0.0274329 + 0.261007i −0.00193980 + 0.0184560i
\(201\) 0 0
\(202\) 3.18502 + 0.676998i 0.224097 + 0.0476334i
\(203\) −2.81250 + 0.295606i −0.197399 + 0.0207475i
\(204\) 0 0
\(205\) 14.7050 + 13.2405i 1.02704 + 0.924755i
\(206\) −3.75667 + 11.5618i −0.261739 + 0.805551i
\(207\) 0 0
\(208\) 8.13606i 0.564134i
\(209\) 0.610097 15.5052i 0.0422013 1.07252i
\(210\) 0 0
\(211\) −10.2782 23.0852i −0.707580 1.58925i −0.804496 0.593957i \(-0.797565\pi\)
0.0969168 0.995292i \(-0.469102\pi\)
\(212\) −2.50195 + 2.25277i −0.171835 + 0.154721i
\(213\) 0 0
\(214\) 21.3254 + 9.49468i 1.45777 + 0.649043i
\(215\) 14.6867 10.6705i 1.00162 0.727723i
\(216\) 0 0
\(217\) −0.100596 0.0326858i −0.00682893 0.00221885i
\(218\) 6.46337 + 0.679328i 0.437755 + 0.0460099i
\(219\) 0 0
\(220\) 2.08464 + 12.1361i 0.140547 + 0.818216i
\(221\) 4.17002 + 2.40756i 0.280506 + 0.161950i
\(222\) 0 0
\(223\) −13.7808 + 2.92920i −0.922832 + 0.196154i −0.644741 0.764401i \(-0.723035\pi\)
−0.278091 + 0.960555i \(0.589702\pi\)
\(224\) −2.36708 + 0.769112i −0.158157 + 0.0513884i
\(225\) 0 0
\(226\) 5.99210 + 8.24741i 0.398588 + 0.548610i
\(227\) 10.4271 11.5805i 0.692071 0.768623i −0.290022 0.957020i \(-0.593663\pi\)
0.982093 + 0.188397i \(0.0603292\pi\)
\(228\) 0 0
\(229\) 18.8030 8.37163i 1.24254 0.553213i 0.323068 0.946376i \(-0.395286\pi\)
0.919469 + 0.393163i \(0.128619\pi\)
\(230\) −10.5235 + 18.2272i −0.693898 + 1.20187i
\(231\) 0 0
\(232\) 1.07264 + 1.85787i 0.0704224 + 0.121975i
\(233\) 2.11851 + 1.53918i 0.138788 + 0.100835i 0.655013 0.755618i \(-0.272663\pi\)
−0.516225 + 0.856453i \(0.672663\pi\)
\(234\) 0 0
\(235\) 5.21096 + 16.0377i 0.339925 + 1.04618i
\(236\) −5.93264 + 13.3249i −0.386182 + 0.867379i
\(237\) 0 0
\(238\) 0.325031 1.52915i 0.0210686 0.0991201i
\(239\) −14.9011 16.5494i −0.963873 1.07049i −0.997472 0.0710537i \(-0.977364\pi\)
0.0335998 0.999435i \(-0.489303\pi\)
\(240\) 0 0
\(241\) 21.2923 12.2931i 1.37156 0.791870i 0.380434 0.924808i \(-0.375775\pi\)
0.991124 + 0.132938i \(0.0424412\pi\)
\(242\) 9.32322 + 19.5523i 0.599319 + 1.25687i
\(243\) 0 0
\(244\) 2.72882 3.75589i 0.174695 0.240447i
\(245\) −2.83618 13.3432i −0.181197 0.852464i
\(246\) 0 0
\(247\) 0.940771 + 8.95084i 0.0598598 + 0.569528i
\(248\) 0.00838720 + 0.0797989i 0.000532588 + 0.00506724i
\(249\) 0 0
\(250\) 4.93051 + 23.1962i 0.311833 + 1.46706i
\(251\) 7.34629 10.1113i 0.463694 0.638220i −0.511576 0.859238i \(-0.670938\pi\)
0.975270 + 0.221018i \(0.0709381\pi\)
\(252\) 0 0
\(253\) −4.41422 + 17.3768i −0.277519 + 1.09247i
\(254\) −6.44147 + 3.71898i −0.404174 + 0.233350i
\(255\) 0 0
\(256\) 11.8920 + 13.2074i 0.743249 + 0.825461i
\(257\) −2.54992 + 11.9964i −0.159060 + 0.748317i 0.824228 + 0.566258i \(0.191610\pi\)
−0.983288 + 0.182059i \(0.941724\pi\)
\(258\) 0 0
\(259\) −0.990512 + 2.22473i −0.0615474 + 0.138238i
\(260\) −2.20705 6.79261i −0.136876 0.421259i
\(261\) 0 0
\(262\) −14.2105 10.3245i −0.877929 0.637853i
\(263\) 4.64521 + 8.04575i 0.286436 + 0.496122i 0.972956 0.230989i \(-0.0741960\pi\)
−0.686520 + 0.727111i \(0.740863\pi\)
\(264\) 0 0
\(265\) 1.77241 3.06990i 0.108878 0.188583i
\(266\) 2.66942 1.18850i 0.163673 0.0728719i
\(267\) 0 0
\(268\) 13.5804 15.0825i 0.829553 0.921312i
\(269\) −12.5983 17.3401i −0.768131 1.05724i −0.996494 0.0836659i \(-0.973337\pi\)
0.228363 0.973576i \(-0.426663\pi\)
\(270\) 0 0
\(271\) −7.87807 + 2.55974i −0.478559 + 0.155493i −0.538356 0.842717i \(-0.680954\pi\)
0.0597976 + 0.998211i \(0.480954\pi\)
\(272\) −10.3553 + 2.20108i −0.627880 + 0.133460i
\(273\) 0 0
\(274\) −8.22561 4.74906i −0.496927 0.286901i
\(275\) 1.68434 + 3.20185i 0.101569 + 0.193079i
\(276\) 0 0
\(277\) −11.4853 1.20716i −0.690086 0.0725310i −0.247007 0.969014i \(-0.579447\pi\)
−0.443079 + 0.896483i \(0.646114\pi\)
\(278\) 13.4813 + 4.38034i 0.808555 + 0.262715i
\(279\) 0 0
\(280\) 0.122056 0.0886792i 0.00729427 0.00529959i
\(281\) 1.18330 + 0.526838i 0.0705896 + 0.0314285i 0.441728 0.897149i \(-0.354366\pi\)
−0.371138 + 0.928578i \(0.621032\pi\)
\(282\) 0 0
\(283\) −4.91434 + 4.42489i −0.292127 + 0.263033i −0.802142 0.597133i \(-0.796307\pi\)
0.510015 + 0.860165i \(0.329640\pi\)
\(284\) 9.09135 + 20.4195i 0.539473 + 1.21168i
\(285\) 0 0
\(286\) −6.97950 10.4469i −0.412707 0.617736i
\(287\) 3.17415i 0.187364i
\(288\) 0 0
\(289\) −3.31717 + 10.2092i −0.195128 + 0.600541i
\(290\) 25.7995 + 23.2300i 1.51500 + 1.36411i
\(291\) 0 0
\(292\) −0.228718 + 0.0240392i −0.0133847 + 0.00140679i
\(293\) −6.75675 1.43619i −0.394733 0.0839032i 0.00626865 0.999980i \(-0.498005\pi\)
−0.401002 + 0.916077i \(0.631338\pi\)
\(294\) 0 0
\(295\) 1.60530 15.2735i 0.0934645 0.889255i
\(296\) 1.84737 0.107376
\(297\) 0 0
\(298\) −6.68695 −0.387365
\(299\) 1.08698 10.3419i 0.0628615 0.598087i
\(300\) 0 0
\(301\) 2.84843 + 0.605452i 0.164181 + 0.0348977i
\(302\) −16.6358 + 1.74849i −0.957282 + 0.100614i
\(303\) 0 0
\(304\) −14.7052 13.2406i −0.843402 0.759403i
\(305\) −1.51052 + 4.64890i −0.0864921 + 0.266195i
\(306\) 0 0
\(307\) 11.5549i 0.659473i −0.944073 0.329737i \(-0.893040\pi\)
0.944073 0.329737i \(-0.106960\pi\)
\(308\) −1.22297 + 1.55115i −0.0696853 + 0.0883848i
\(309\) 0 0
\(310\) 0.528140 + 1.18622i 0.0299963 + 0.0673729i
\(311\) 5.18788 4.67119i 0.294178 0.264879i −0.508804 0.860882i \(-0.669912\pi\)
0.802982 + 0.596004i \(0.203246\pi\)
\(312\) 0 0
\(313\) −26.1993 11.6647i −1.48087 0.659327i −0.502199 0.864752i \(-0.667475\pi\)
−0.978673 + 0.205426i \(0.934142\pi\)
\(314\) −29.4685 + 21.4101i −1.66300 + 1.20824i
\(315\) 0 0
\(316\) −22.3011 7.24607i −1.25453 0.407623i
\(317\) 29.8418 + 3.13650i 1.67608 + 0.176163i 0.894324 0.447421i \(-0.147657\pi\)
0.781757 + 0.623584i \(0.214324\pi\)
\(318\) 0 0
\(319\) 26.5226 + 13.0814i 1.48498 + 0.732419i
\(320\) 11.9766 + 6.91469i 0.669512 + 0.386543i
\(321\) 0 0
\(322\) −3.30239 + 0.701944i −0.184035 + 0.0391178i
\(323\) 11.1378 3.61888i 0.619722 0.201360i
\(324\) 0 0
\(325\) −1.23341 1.69764i −0.0684170 0.0941679i
\(326\) −24.4584 + 27.1638i −1.35463 + 1.50447i
\(327\) 0 0
\(328\) 2.19970 0.979370i 0.121458 0.0540767i
\(329\) −1.35251 + 2.34261i −0.0745661 + 0.129152i
\(330\) 0 0
\(331\) −4.26661 7.38998i −0.234514 0.406190i 0.724617 0.689151i \(-0.242017\pi\)
−0.959131 + 0.282961i \(0.908683\pi\)
\(332\) −0.655573 0.476302i −0.0359792 0.0261404i
\(333\) 0 0
\(334\) 8.33283 + 25.6458i 0.455952 + 1.40328i
\(335\) −8.69165 + 19.5218i −0.474875 + 1.06659i
\(336\) 0 0
\(337\) −2.48300 + 11.6816i −0.135257 + 0.636336i 0.857326 + 0.514773i \(0.172124\pi\)
−0.992584 + 0.121563i \(0.961209\pi\)
\(338\) −12.2536 13.6090i −0.666506 0.740230i
\(339\) 0 0
\(340\) −8.04828 + 4.64667i −0.436479 + 0.252001i
\(341\) 0.707236 + 0.850459i 0.0382990 + 0.0460549i
\(342\) 0 0
\(343\) 2.59115 3.56641i 0.139909 0.192568i
\(344\) −0.459289 2.16079i −0.0247632 0.116502i
\(345\) 0 0
\(346\) 2.72303 + 25.9079i 0.146391 + 1.39282i
\(347\) −1.50947 14.3616i −0.0810326 0.770974i −0.957290 0.289130i \(-0.906634\pi\)
0.876257 0.481844i \(-0.160033\pi\)
\(348\) 0 0
\(349\) 6.71017 + 31.5689i 0.359187 + 1.68984i 0.672422 + 0.740168i \(0.265254\pi\)
−0.313235 + 0.949676i \(0.601413\pi\)
\(350\) −0.400446 + 0.551167i −0.0214047 + 0.0294611i
\(351\) 0 0
\(352\) 25.2259 + 6.40813i 1.34455 + 0.341554i
\(353\) −5.61311 + 3.24073i −0.298756 + 0.172487i −0.641884 0.766802i \(-0.721847\pi\)
0.343128 + 0.939289i \(0.388513\pi\)
\(354\) 0 0
\(355\) −15.7476 17.4895i −0.835795 0.928245i
\(356\) 3.18322 14.9759i 0.168710 0.793719i
\(357\) 0 0
\(358\) 4.53642 10.1890i 0.239757 0.538503i
\(359\) 2.95299 + 9.08837i 0.155853 + 0.479666i 0.998246 0.0591972i \(-0.0188541\pi\)
−0.842393 + 0.538863i \(0.818854\pi\)
\(360\) 0 0
\(361\) 2.33755 + 1.69833i 0.123029 + 0.0893858i
\(362\) −10.1041 17.5008i −0.531060 0.919824i
\(363\) 0 0
\(364\) 0.572841 0.992190i 0.0300250 0.0520049i
\(365\) 0.221209 0.0984888i 0.0115786 0.00515514i
\(366\) 0 0
\(367\) −5.39961 + 5.99687i −0.281857 + 0.313034i −0.867404 0.497604i \(-0.834213\pi\)
0.585547 + 0.810639i \(0.300880\pi\)
\(368\) 13.4386 + 18.4966i 0.700534 + 0.964202i
\(369\) 0 0
\(370\) 28.4323 9.23822i 1.47813 0.480272i
\(371\) 0.556202 0.118224i 0.0288766 0.00613790i
\(372\) 0 0
\(373\) 0.603037 + 0.348164i 0.0312241 + 0.0180272i 0.515531 0.856871i \(-0.327595\pi\)
−0.484307 + 0.874898i \(0.660928\pi\)
\(374\) −11.4082 + 11.7095i −0.589903 + 0.605482i
\(375\) 0 0
\(376\) 2.04075 + 0.214492i 0.105244 + 0.0110616i
\(377\) −16.3133 5.30050i −0.840175 0.272990i
\(378\) 0 0
\(379\) 2.08014 1.51131i 0.106850 0.0776308i −0.533077 0.846066i \(-0.678965\pi\)
0.639927 + 0.768436i \(0.278965\pi\)
\(380\) −15.8688 7.06525i −0.814052 0.362439i
\(381\) 0 0
\(382\) −8.27064 + 7.44692i −0.423163 + 0.381018i
\(383\) 2.53623 + 5.69646i 0.129595 + 0.291075i 0.966676 0.256004i \(-0.0824061\pi\)
−0.837080 + 0.547080i \(0.815739\pi\)
\(384\) 0 0
\(385\) 0.719958 1.95118i 0.0366924 0.0994415i
\(386\) 35.3842i 1.80101i
\(387\) 0 0
\(388\) 5.01598 15.4376i 0.254648 0.783726i
\(389\) 20.4196 + 18.3859i 1.03532 + 0.932203i 0.997747 0.0670912i \(-0.0213719\pi\)
0.0375692 + 0.999294i \(0.488039\pi\)
\(390\) 0 0
\(391\) −13.4568 + 1.41437i −0.680540 + 0.0715277i
\(392\) −1.62368 0.345123i −0.0820081 0.0174314i
\(393\) 0 0
\(394\) −0.516791 + 4.91694i −0.0260356 + 0.247712i
\(395\) 24.6893 1.24225
\(396\) 0 0
\(397\) 7.45945 0.374379 0.187190 0.982324i \(-0.440062\pi\)
0.187190 + 0.982324i \(0.440062\pi\)
\(398\) 2.51741 23.9515i 0.126186 1.20058i
\(399\) 0 0
\(400\) 4.51274 + 0.959212i 0.225637 + 0.0479606i
\(401\) 2.47498 0.260131i 0.123595 0.0129903i −0.0425291 0.999095i \(-0.513542\pi\)
0.166124 + 0.986105i \(0.446875\pi\)
\(402\) 0 0
\(403\) −0.476766 0.429282i −0.0237494 0.0213841i
\(404\) 0.959514 2.95308i 0.0477376 0.146921i
\(405\) 0 0
\(406\) 5.56894i 0.276382i
\(407\) 21.1753 14.1471i 1.04962 0.701245i
\(408\) 0 0
\(409\) −12.0466 27.0572i −0.595668 1.33789i −0.919989 0.391945i \(-0.871802\pi\)
0.324321 0.945947i \(-0.394864\pi\)
\(410\) 28.9575 26.0734i 1.43011 1.28767i
\(411\) 0 0
\(412\) 10.5904 + 4.71514i 0.521750 + 0.232298i
\(413\) 1.99303 1.44802i 0.0980708 0.0712526i
\(414\) 0 0
\(415\) 0.811442 + 0.263654i 0.0398321 + 0.0129422i
\(416\) −15.0133 1.57797i −0.736090 0.0773661i
\(417\) 0 0
\(418\) −30.2403 4.38641i −1.47910 0.214546i
\(419\) 7.83379 + 4.52284i 0.382706 + 0.220955i 0.678995 0.734143i \(-0.262416\pi\)
−0.296289 + 0.955098i \(0.595749\pi\)
\(420\) 0 0
\(421\) 21.2588 4.51871i 1.03609 0.220228i 0.341688 0.939813i \(-0.389001\pi\)
0.694404 + 0.719585i \(0.255668\pi\)
\(422\) −47.3264 + 15.3773i −2.30381 + 0.748554i
\(423\) 0 0
\(424\) −0.253544 0.348973i −0.0123132 0.0169476i
\(425\) −1.82701 + 2.02910i −0.0886229 + 0.0984257i
\(426\) 0 0
\(427\) −0.716322 + 0.318927i −0.0346652 + 0.0154340i
\(428\) 11.1301 19.2778i 0.537992 0.931830i
\(429\) 0 0
\(430\) −17.8744 30.9593i −0.861979 1.49299i
\(431\) −14.2119 10.3256i −0.684565 0.497366i 0.190304 0.981725i \(-0.439053\pi\)
−0.874869 + 0.484359i \(0.839053\pi\)
\(432\) 0 0
\(433\) −4.84981 14.9262i −0.233067 0.717306i −0.997372 0.0724515i \(-0.976918\pi\)
0.764305 0.644855i \(-0.223082\pi\)
\(434\) −0.0847195 + 0.190283i −0.00406667 + 0.00913388i
\(435\) 0 0
\(436\) 1.28850 6.06191i 0.0617079 0.290313i
\(437\) −16.9231 18.7950i −0.809543 0.899088i
\(438\) 0 0
\(439\) 10.3281 5.96296i 0.492936 0.284597i −0.232856 0.972511i \(-0.574807\pi\)
0.725792 + 0.687915i \(0.241474\pi\)
\(440\) −1.57432 + 0.103095i −0.0750528 + 0.00491487i
\(441\) 0 0
\(442\) 5.57340 7.67113i 0.265100 0.364878i
\(443\) −3.21054 15.1044i −0.152537 0.717632i −0.986227 0.165398i \(-0.947109\pi\)
0.833689 0.552234i \(-0.186224\pi\)
\(444\) 0 0
\(445\) 1.68504 + 16.0321i 0.0798785 + 0.759993i
\(446\) 2.90001 + 27.5917i 0.137319 + 1.30651i
\(447\) 0 0
\(448\) 0.461228 + 2.16991i 0.0217910 + 0.102519i
\(449\) −13.6969 + 18.8521i −0.646395 + 0.889687i −0.998936 0.0461094i \(-0.985318\pi\)
0.352541 + 0.935796i \(0.385318\pi\)
\(450\) 0 0
\(451\) 17.7139 28.0712i 0.834115 1.32182i
\(452\) 8.41882 4.86061i 0.395988 0.228624i
\(453\) 0 0
\(454\) −20.5332 22.8045i −0.963673 1.07027i
\(455\) −0.250802 + 1.17993i −0.0117578 + 0.0553160i
\(456\) 0 0
\(457\) 0.251498 0.564874i 0.0117646 0.0264237i −0.907568 0.419906i \(-0.862063\pi\)
0.919332 + 0.393482i \(0.128730\pi\)
\(458\) −12.5249 38.5476i −0.585249 1.80121i
\(459\) 0 0
\(460\) 16.2371 + 11.7969i 0.757058 + 0.550035i
\(461\) −11.3787 19.7085i −0.529959 0.917915i −0.999389 0.0349460i \(-0.988874\pi\)
0.469430 0.882969i \(-0.344459\pi\)
\(462\) 0 0
\(463\) −3.54426 + 6.13884i −0.164716 + 0.285296i −0.936554 0.350523i \(-0.886004\pi\)
0.771839 + 0.635818i \(0.219337\pi\)
\(464\) 34.4519 15.3390i 1.59939 0.712094i
\(465\) 0 0
\(466\) 3.45046 3.83212i 0.159839 0.177520i
\(467\) 3.50195 + 4.82002i 0.162051 + 0.223044i 0.882319 0.470652i \(-0.155981\pi\)
−0.720268 + 0.693696i \(0.755981\pi\)
\(468\) 0 0
\(469\) −3.26009 + 1.05927i −0.150537 + 0.0489124i
\(470\) 32.4813 6.90411i 1.49825 0.318463i
\(471\) 0 0
\(472\) −1.61843 0.934402i −0.0744944 0.0430093i
\(473\) −21.8118 21.2506i −1.00291 0.977104i
\(474\) 0 0
\(475\) −5.07558 0.533465i −0.232883 0.0244770i
\(476\) −1.41779 0.460669i −0.0649844 0.0211147i
\(477\) 0 0
\(478\) −35.4780 + 25.7763i −1.62273 + 1.17898i
\(479\) −1.60986 0.716754i −0.0735562 0.0327493i 0.369629 0.929180i \(-0.379485\pi\)
−0.443185 + 0.896430i \(0.646152\pi\)
\(480\) 0 0
\(481\) −10.9768 + 9.88355i −0.500499 + 0.450651i
\(482\) −19.6924 44.2299i −0.896966 2.01462i
\(483\) 0 0
\(484\) 19.4720 6.89288i 0.885093 0.313313i
\(485\) 17.0908i 0.776052i
\(486\) 0 0
\(487\) −5.37983 + 16.5574i −0.243783 + 0.750288i 0.752051 + 0.659105i \(0.229065\pi\)
−0.995834 + 0.0911829i \(0.970935\pi\)
\(488\) 0.442036 + 0.398011i 0.0200100 + 0.0180171i
\(489\) 0 0
\(490\) −26.7155 + 2.80791i −1.20688 + 0.126848i
\(491\) 32.8692 + 6.98657i 1.48337 + 0.315299i 0.877234 0.480064i \(-0.159386\pi\)
0.606133 + 0.795363i \(0.292720\pi\)
\(492\) 0 0
\(493\) −2.33298 + 22.1968i −0.105072 + 0.999695i
\(494\) 17.7233 0.797407
\(495\) 0 0
\(496\) 1.41052 0.0633344
\(497\) 0.394614 3.75450i 0.0177008 0.168412i
\(498\) 0 0
\(499\) −19.0961 4.05900i −0.854859 0.181706i −0.240419 0.970669i \(-0.577285\pi\)
−0.614440 + 0.788963i \(0.710618\pi\)
\(500\) 22.4899 2.36378i 1.00578 0.105712i
\(501\) 0 0
\(502\) −18.2901 16.4685i −0.816328 0.735025i
\(503\) −7.43631 + 22.8866i −0.331569 + 1.02046i 0.636819 + 0.771013i \(0.280250\pi\)
−0.968388 + 0.249450i \(0.919750\pi\)
\(504\) 0 0
\(505\) 3.26932i 0.145483i
\(506\) 33.1227 + 12.2218i 1.47248 + 0.543324i
\(507\) 0 0
\(508\) 2.88488 + 6.47956i 0.127996 + 0.287484i
\(509\) −13.0245 + 11.7273i −0.577301 + 0.519804i −0.905243 0.424894i \(-0.860311\pi\)
0.327943 + 0.944698i \(0.393645\pi\)
\(510\) 0 0
\(511\) 0.0354844 + 0.0157987i 0.00156974 + 0.000698893i
\(512\) 25.2051 18.3126i 1.11392 0.809309i
\(513\) 0 0
\(514\) 22.9693 + 7.46319i 1.01313 + 0.329187i
\(515\) −12.1390 1.27586i −0.534909 0.0562212i
\(516\) 0 0
\(517\) 25.0345 13.1694i 1.10102 0.579192i
\(518\) 4.15309 + 2.39779i 0.182476 + 0.105353i
\(519\) 0 0
\(520\) 0.895083 0.190256i 0.0392520 0.00834327i
\(521\) 7.32063 2.37862i 0.320723 0.104209i −0.144231 0.989544i \(-0.546071\pi\)
0.464954 + 0.885335i \(0.346071\pi\)
\(522\) 0 0
\(523\) −7.75187 10.6695i −0.338966 0.466546i 0.605173 0.796094i \(-0.293104\pi\)
−0.944139 + 0.329547i \(0.893104\pi\)
\(524\) −11.2079 + 12.4476i −0.489619 + 0.543777i
\(525\) 0 0
\(526\) 16.7132 7.44120i 0.728731 0.324452i
\(527\) −0.417392 + 0.722944i −0.0181819 + 0.0314919i
\(528\) 0 0
\(529\) 3.11086 + 5.38816i 0.135255 + 0.234268i
\(530\) −5.64736 4.10305i −0.245306 0.178225i
\(531\) 0 0
\(532\) −0.861054 2.65005i −0.0373314 0.114894i
\(533\) −7.83062 + 17.5879i −0.339182 + 0.761815i
\(534\) 0 0
\(535\) −4.87298 + 22.9256i −0.210677 + 0.991159i
\(536\) 1.73996 + 1.93243i 0.0751550 + 0.0834681i
\(537\) 0 0
\(538\) −36.5525 + 21.1036i −1.57589 + 0.909842i
\(539\) −21.2542 + 8.47815i −0.915484 + 0.365180i
\(540\) 0 0
\(541\) −8.36941 + 11.5195i −0.359829 + 0.495262i −0.950101 0.311942i \(-0.899021\pi\)
0.590272 + 0.807204i \(0.299021\pi\)
\(542\) 3.39146 + 15.9556i 0.145676 + 0.685350i
\(543\) 0 0
\(544\) 2.05324 + 19.5353i 0.0880320 + 0.837568i
\(545\) 0.682069 + 6.48945i 0.0292166 + 0.277977i
\(546\) 0 0
\(547\) −7.86214 36.9885i −0.336161 1.58151i −0.743821 0.668379i \(-0.766988\pi\)
0.407660 0.913134i \(-0.366345\pi\)
\(548\) −5.32374 + 7.32750i −0.227419 + 0.313015i
\(549\) 0 0
\(550\) 6.61731 2.63960i 0.282163 0.112553i
\(551\) −36.1284 + 20.8588i −1.53912 + 0.888613i
\(552\) 0 0
\(553\) 2.65004 + 2.94317i 0.112691 + 0.125156i
\(554\) −4.72826 + 22.2447i −0.200885 + 0.945088i
\(555\) 0 0
\(556\) 5.49793 12.3486i 0.233164 0.523696i
\(557\) 4.83577 + 14.8830i 0.204898 + 0.630612i 0.999718 + 0.0237660i \(0.00756565\pi\)
−0.794819 + 0.606846i \(0.792434\pi\)
\(558\) 0 0
\(559\) 14.2894 + 10.3819i 0.604378 + 0.439106i
\(560\) −1.32608 2.29684i −0.0560373 0.0970594i
\(561\) 0 0
\(562\) 1.27535 2.20896i 0.0537972 0.0931795i
\(563\) −14.7246 + 6.55580i −0.620566 + 0.276294i −0.692840 0.721091i \(-0.743641\pi\)
0.0722743 + 0.997385i \(0.476974\pi\)
\(564\) 0 0
\(565\) −6.84888 + 7.60645i −0.288135 + 0.320006i
\(566\) 7.65428 + 10.5352i 0.321734 + 0.442828i
\(567\) 0 0
\(568\) −2.72364 + 0.884966i −0.114282 + 0.0371323i
\(569\) 23.7313 5.04424i 0.994868 0.211466i 0.318415 0.947951i \(-0.396849\pi\)
0.676453 + 0.736486i \(0.263516\pi\)
\(570\) 0 0
\(571\) 14.5377 + 8.39334i 0.608384 + 0.351250i 0.772333 0.635218i \(-0.219090\pi\)
−0.163949 + 0.986469i \(0.552423\pi\)
\(572\) −10.6031 + 5.57780i −0.443339 + 0.233219i
\(573\) 0 0
\(574\) 6.21635 + 0.653365i 0.259465 + 0.0272709i
\(575\) 5.60807 + 1.82217i 0.233873 + 0.0759899i
\(576\) 0 0
\(577\) 5.58119 4.05497i 0.232348 0.168811i −0.465519 0.885038i \(-0.654132\pi\)
0.697867 + 0.716227i \(0.254132\pi\)
\(578\) 19.3112 + 8.59790i 0.803240 + 0.357626i
\(579\) 0 0
\(580\) 24.6021 22.1518i 1.02155 0.919805i
\(581\) 0.0556671 + 0.125030i 0.00230946 + 0.00518714i
\(582\) 0 0
\(583\) −5.57866 2.05844i −0.231044 0.0852520i
\(584\) 0.0294655i 0.00121929i
\(585\) 0 0
\(586\) −4.20349 + 12.9370i −0.173644 + 0.534422i
\(587\) −18.2680 16.4486i −0.754003 0.678907i 0.199633 0.979871i \(-0.436025\pi\)
−0.953636 + 0.300964i \(0.902692\pi\)
\(588\) 0 0
\(589\) −1.55178 + 0.163099i −0.0639400 + 0.00672036i
\(590\) −29.5816 6.28776i −1.21785 0.258863i
\(591\) 0 0
\(592\) 3.39458 32.2972i 0.139516 1.32741i
\(593\) 25.3400 1.04059 0.520295 0.853987i \(-0.325822\pi\)
0.520295 + 0.853987i \(0.325822\pi\)
\(594\) 0 0
\(595\) 1.56962 0.0643481
\(596\) −0.666535 + 6.34166i −0.0273024 + 0.259765i
\(597\) 0 0
\(598\) −20.0301 4.25754i −0.819093 0.174104i
\(599\) −21.6110 + 2.27140i −0.883000 + 0.0928070i −0.535164 0.844748i \(-0.679750\pi\)
−0.347836 + 0.937555i \(0.613083\pi\)
\(600\) 0 0
\(601\) 13.9577 + 12.5676i 0.569346 + 0.512642i 0.902763 0.430138i \(-0.141535\pi\)
−0.333417 + 0.942779i \(0.608202\pi\)
\(602\) 1.77206 5.45383i 0.0722236 0.222281i
\(603\) 0 0
\(604\) 15.9511i 0.649040i
\(605\) −17.2560 + 13.2378i −0.701557 + 0.538195i
\(606\) 0 0
\(607\) 19.5340 + 43.8741i 0.792862 + 1.78080i 0.600774 + 0.799419i \(0.294859\pi\)
0.192088 + 0.981378i \(0.438474\pi\)
\(608\) −27.2848 + 24.5673i −1.10654 + 0.996336i
\(609\) 0 0
\(610\) 8.79362 + 3.91517i 0.356043 + 0.158521i
\(611\) −13.2734 + 9.64370i −0.536985 + 0.390142i
\(612\) 0 0
\(613\) 1.96455 + 0.638321i 0.0793474 + 0.0257815i 0.348422 0.937338i \(-0.386718\pi\)
−0.269074 + 0.963119i \(0.586718\pi\)
\(614\) −22.6295 2.37845i −0.913252 0.0959866i
\(615\) 0 0
\(616\) −0.181271 0.176607i −0.00730362 0.00711569i
\(617\) 29.9543 + 17.2941i 1.20591 + 0.696235i 0.961864 0.273527i \(-0.0881904\pi\)
0.244050 + 0.969763i \(0.421524\pi\)
\(618\) 0 0
\(619\) −26.8319 + 5.70330i −1.07847 + 0.229235i −0.712698 0.701471i \(-0.752527\pi\)
−0.365768 + 0.930706i \(0.619194\pi\)
\(620\) 1.17761 0.382630i 0.0472941 0.0153668i
\(621\) 0 0
\(622\) −8.08033 11.1216i −0.323992 0.445936i
\(623\) −1.73030 + 1.92169i −0.0693228 + 0.0769908i
\(624\) 0 0
\(625\) −16.7690 + 7.46605i −0.670761 + 0.298642i
\(626\) −28.2373 + 48.9085i −1.12859 + 1.95478i
\(627\) 0 0
\(628\) 17.3672 + 30.0809i 0.693028 + 1.20036i
\(629\) 15.5490 + 11.2970i 0.619979 + 0.450441i
\(630\) 0 0
\(631\) −8.09100 24.9015i −0.322098 0.991315i −0.972734 0.231925i \(-0.925498\pi\)
0.650636 0.759390i \(-0.274502\pi\)
\(632\) 1.22197 2.74460i 0.0486075 0.109174i
\(633\) 0 0
\(634\) 12.2852 57.7974i 0.487908 2.29543i
\(635\) −4.99705 5.54979i −0.198302 0.220237i
\(636\) 0 0
\(637\) 11.4941 6.63613i 0.455413 0.262933i
\(638\) 31.0784 49.2501i 1.23041 1.94983i
\(639\) 0 0
\(640\) −2.23267 + 3.07300i −0.0882539 + 0.121471i
\(641\) −1.27122 5.98060i −0.0502100 0.236220i 0.945886 0.324500i \(-0.105196\pi\)
−0.996096 + 0.0882806i \(0.971863\pi\)
\(642\) 0 0
\(643\) 0.0855453 + 0.813909i 0.00337358 + 0.0320974i 0.996079 0.0884661i \(-0.0281965\pi\)
−0.992706 + 0.120564i \(0.961530\pi\)
\(644\) 0.336526 + 3.20183i 0.0132610 + 0.126170i
\(645\) 0 0
\(646\) −4.79473 22.5575i −0.188646 0.887511i
\(647\) −3.42533 + 4.71456i −0.134664 + 0.185349i −0.871023 0.491242i \(-0.836543\pi\)
0.736360 + 0.676590i \(0.236543\pi\)
\(648\) 0 0
\(649\) −25.7068 + 1.68342i −1.00908 + 0.0660800i
\(650\) −3.57859 + 2.06610i −0.140364 + 0.0810391i
\(651\) 0 0
\(652\) 23.3233 + 25.9031i 0.913410 + 1.01444i
\(653\) −0.541428 + 2.54722i −0.0211877 + 0.0996803i −0.987471 0.157801i \(-0.949559\pi\)
0.966283 + 0.257482i \(0.0828927\pi\)
\(654\) 0 0
\(655\) 7.17322 16.1113i 0.280281 0.629521i
\(656\) −13.0802 40.2567i −0.510696 1.57176i
\(657\) 0 0
\(658\) 4.30944 + 3.13099i 0.168000 + 0.122059i
\(659\) 11.2518 + 19.4886i 0.438306 + 0.759169i 0.997559 0.0698283i \(-0.0222451\pi\)
−0.559253 + 0.828997i \(0.688912\pi\)
\(660\) 0 0
\(661\) 3.23287 5.59950i 0.125744 0.217795i −0.796279 0.604929i \(-0.793201\pi\)
0.922024 + 0.387134i \(0.126535\pi\)
\(662\) −15.3510 + 6.83471i −0.596634 + 0.265639i
\(663\) 0 0
\(664\) 0.0694709 0.0771553i 0.00269599 0.00299420i
\(665\) 1.72447 + 2.37353i 0.0668720 + 0.0920414i
\(666\) 0 0
\(667\) 45.8417 14.8949i 1.77500 0.576732i
\(668\) 25.1521 5.34625i 0.973166 0.206853i
\(669\) 0 0
\(670\) 36.4429 + 21.0403i 1.40791 + 0.812859i
\(671\) 8.11477 + 1.17706i 0.313267 + 0.0454400i
\(672\) 0 0
\(673\) −0.353467 0.0371509i −0.0136252 0.00143206i 0.0977134 0.995215i \(-0.468847\pi\)
−0.111339 + 0.993783i \(0.535514\pi\)
\(674\) 22.3665 + 7.26731i 0.861524 + 0.279926i
\(675\) 0 0
\(676\) −14.1276 + 10.2643i −0.543371 + 0.394782i
\(677\) −26.7176 11.8955i −1.02684 0.457179i −0.176996 0.984212i \(-0.556638\pi\)
−0.849845 + 0.527032i \(0.823305\pi\)
\(678\) 0 0
\(679\) −2.03737 + 1.83445i −0.0781870 + 0.0703999i
\(680\) −0.484300 1.08776i −0.0185721 0.0417135i
\(681\) 0 0
\(682\) 1.81114 1.21002i 0.0693522 0.0463339i
\(683\) 26.1630i 1.00110i −0.865708 0.500549i \(-0.833132\pi\)
0.865708 0.500549i \(-0.166868\pi\)
\(684\) 0 0
\(685\) 2.94692 9.06969i 0.112596 0.346535i
\(686\) −6.45120 5.80869i −0.246308 0.221777i
\(687\) 0 0
\(688\) −38.6207 + 4.05920i −1.47240 + 0.154755i
\(689\) 3.37356 + 0.717072i 0.128522 + 0.0273183i
\(690\) 0 0
\(691\) −4.66483 + 44.3829i −0.177458 + 1.68840i 0.437006 + 0.899459i \(0.356039\pi\)
−0.614464 + 0.788945i \(0.710628\pi\)
\(692\) 24.8415 0.944334
\(693\) 0 0
\(694\) −28.4370 −1.07945
\(695\) −1.48768 + 14.1543i −0.0564308 + 0.536903i
\(696\) 0 0
\(697\) 24.5036 + 5.20840i 0.928139 + 0.197282i
\(698\) 63.2067 6.64329i 2.39241 0.251452i
\(699\) 0 0
\(700\) 0.482791 + 0.434707i 0.0182478 + 0.0164304i
\(701\) 3.87098 11.9137i 0.146205 0.449972i −0.850959 0.525232i \(-0.823979\pi\)
0.997164 + 0.0752595i \(0.0239785\pi\)
\(702\) 0 0
\(703\) 35.9241i 1.35490i
\(704\) 8.03059 21.7640i 0.302664 0.820261i
\(705\) 0 0
\(706\) 5.19135 + 11.6600i 0.195379 + 0.438828i
\(707\) −0.389731 + 0.350915i −0.0146573 + 0.0131975i
\(708\) 0 0
\(709\) −10.2712 4.57305i −0.385744 0.171745i 0.204696 0.978826i \(-0.434379\pi\)
−0.590441 + 0.807081i \(0.701046\pi\)
\(710\) −37.4934 + 27.2406i −1.40710 + 1.02232i
\(711\) 0 0
\(712\) 1.86562 + 0.606176i 0.0699169 + 0.0227174i
\(713\) 1.79294 + 0.188446i 0.0671462 + 0.00705735i
\(714\) 0 0
\(715\) 8.80283 9.03532i 0.329207 0.337902i
\(716\) −9.21066 5.31778i −0.344219 0.198735i
\(717\) 0 0
\(718\) 18.4068 3.91248i 0.686935 0.146013i
\(719\) −8.20360 + 2.66551i −0.305942 + 0.0994067i −0.457965 0.888970i \(-0.651421\pi\)
0.152022 + 0.988377i \(0.451421\pi\)
\(720\) 0 0
\(721\) −1.15086 1.58402i −0.0428602 0.0589920i
\(722\) 3.80723 4.22835i 0.141690 0.157363i
\(723\) 0 0
\(724\) −17.6043 + 7.83794i −0.654259 + 0.291295i
\(725\) 4.86324 8.42338i 0.180616 0.312837i
\(726\) 0 0
\(727\) 23.7016 + 41.0524i 0.879044 + 1.52255i 0.852391 + 0.522905i \(0.175152\pi\)
0.0266533 + 0.999645i \(0.491515\pi\)
\(728\) 0.118755 + 0.0862803i 0.00440134 + 0.00319776i
\(729\) 0 0
\(730\) −0.147350 0.453496i −0.00545366 0.0167847i
\(731\) 9.34786 20.9956i 0.345743 0.776552i
\(732\) 0 0
\(733\) 3.21853 15.1420i 0.118879 0.559282i −0.877883 0.478875i \(-0.841045\pi\)
0.996762 0.0804070i \(-0.0256220\pi\)
\(734\) 10.6330 + 11.8092i 0.392472 + 0.435884i
\(735\) 0 0
\(736\) 36.7379 21.2106i 1.35418 0.781833i
\(737\) 34.7427 + 8.82565i 1.27976 + 0.325097i
\(738\) 0 0
\(739\) 25.0234 34.4418i 0.920502 1.26696i −0.0429492 0.999077i \(-0.513675\pi\)
0.963451 0.267885i \(-0.0863246\pi\)
\(740\) −5.92715 27.8850i −0.217886 1.02507i
\(741\) 0 0
\(742\) −0.117046 1.11362i −0.00429690 0.0408822i
\(743\) 5.04718 + 48.0207i 0.185163 + 1.76171i 0.554283 + 0.832328i \(0.312993\pi\)
−0.369120 + 0.929382i \(0.620341\pi\)
\(744\) 0 0
\(745\) −1.39590 6.56721i −0.0511420 0.240604i
\(746\) 0.805983 1.10934i 0.0295091 0.0406159i
\(747\) 0 0
\(748\) 9.96770 + 11.9863i 0.364455 + 0.438261i
\(749\) −3.25597 + 1.87984i −0.118971 + 0.0686877i
\(750\) 0 0
\(751\) 17.2188 + 19.1234i 0.628323 + 0.697823i 0.970305 0.241883i \(-0.0777651\pi\)
−0.341983 + 0.939706i \(0.611098\pi\)
\(752\) 7.49986 35.2840i 0.273492 1.28668i
\(753\) 0 0
\(754\) −13.7386 + 30.8573i −0.500329 + 1.12376i
\(755\) −5.18991 15.9729i −0.188880 0.581314i
\(756\) 0 0
\(757\) −41.1683 29.9105i −1.49629 1.08712i −0.971832 0.235676i \(-0.924269\pi\)
−0.524454 0.851439i \(-0.675731\pi\)
\(758\) −2.53162 4.38490i −0.0919527 0.159267i
\(759\) 0 0
\(760\) 1.11279 1.92741i 0.0403651 0.0699144i
\(761\) −19.4991 + 8.68155i −0.706841 + 0.314706i −0.728487 0.685060i \(-0.759776\pi\)
0.0216460 + 0.999766i \(0.493109\pi\)
\(762\) 0 0
\(763\) −0.700388 + 0.777859i −0.0253557 + 0.0281604i
\(764\) 6.23800 + 8.58587i 0.225683 + 0.310626i
\(765\) 0 0
\(766\) 11.6782 3.79447i 0.421950 0.137100i
\(767\) 14.6156 3.10665i 0.527740 0.112175i
\(768\) 0 0
\(769\) −18.7124 10.8036i −0.674786 0.389588i 0.123102 0.992394i \(-0.460716\pi\)
−0.797888 + 0.602806i \(0.794049\pi\)
\(770\) −3.67306 1.81162i −0.132368 0.0652862i
\(771\) 0 0
\(772\) −33.5571 3.52699i −1.20775 0.126939i
\(773\) −9.33763 3.03398i −0.335851 0.109125i 0.136236 0.990676i \(-0.456499\pi\)
−0.472088 + 0.881552i \(0.656499\pi\)
\(774\) 0 0
\(775\) 0.294314 0.213832i 0.0105721 0.00768106i
\(776\) 1.89991 + 0.845894i 0.0682027 + 0.0303658i
\(777\) 0 0
\(778\) 40.2107 36.2059i 1.44162 1.29804i
\(779\) 19.0450 + 42.7757i 0.682357 + 1.53260i
\(780\) 0 0
\(781\) −24.4425 + 31.0015i −0.874621 + 1.10932i
\(782\) 26.6454i 0.952837i
\(783\) 0 0
\(784\) −9.01729 + 27.7524i −0.322046 + 0.991155i
\(785\) −27.1783 24.4714i −0.970034 0.873423i
\(786\) 0 0
\(787\) 34.9251 3.67077i 1.24494 0.130849i 0.540950 0.841055i \(-0.318065\pi\)
0.703994 + 0.710206i \(0.251398\pi\)
\(788\) 4.61154 + 0.980212i 0.164279 + 0.0349186i
\(789\) 0 0
\(790\) 5.08202 48.3522i 0.180810 1.72029i
\(791\) −1.64189 −0.0583787
\(792\) 0 0
\(793\) −4.75591 −0.168887
\(794\) 1.53545 14.6088i 0.0544911 0.518448i
\(795\) 0 0
\(796\) −22.4638 4.77484i −0.796210 0.169240i
\(797\) 48.4165 5.08878i 1.71500 0.180254i 0.804553 0.593881i \(-0.202405\pi\)
0.910446 + 0.413627i \(0.135738\pi\)
\(798\) 0 0
\(799\) 15.8650 + 14.2849i 0.561264 + 0.505365i
\(800\) 2.64525 8.14125i 0.0935238 0.287837i
\(801\) 0 0
\(802\) 4.90063i 0.173047i
\(803\) −0.225647 0.337746i −0.00796289 0.0119188i
\(804\) 0 0
\(805\) −1.37875 3.09672i −0.0485946 0.109145i
\(806\) −0.938857 + 0.845351i −0.0330698 + 0.0297762i
\(807\) 0 0
\(808\) 0.363436 + 0.161812i 0.0127856 + 0.00569253i
\(809\) 1.95603 1.42114i 0.0687705 0.0499647i −0.552869 0.833268i \(-0.686467\pi\)
0.621639 + 0.783304i \(0.286467\pi\)
\(810\) 0 0
\(811\) 22.4513 + 7.29488i 0.788373 + 0.256158i 0.675411 0.737441i \(-0.263966\pi\)
0.112962 + 0.993599i \(0.463966\pi\)
\(812\) 5.28138 + 0.555095i 0.185340 + 0.0194800i
\(813\) 0 0
\(814\) −23.3474 44.3823i −0.818326 1.55560i
\(815\) −31.7832 18.3500i −1.11332 0.642773i
\(816\) 0 0
\(817\) 42.0189 8.93140i 1.47006 0.312470i
\(818\) −55.4693 + 18.0231i −1.93944 + 0.630162i
\(819\) 0 0
\(820\) −21.8407 30.0611i −0.762710 1.04978i
\(821\) 23.9476 26.5965i 0.835778 0.928226i −0.162510 0.986707i \(-0.551959\pi\)
0.998289 + 0.0584813i \(0.0186258\pi\)
\(822\) 0 0
\(823\) −32.7895 + 14.5988i −1.14297 + 0.508883i −0.888809 0.458279i \(-0.848466\pi\)
−0.254162 + 0.967162i \(0.581800\pi\)
\(824\) −0.742643 + 1.28629i −0.0258712 + 0.0448102i
\(825\) 0 0
\(826\) −2.42561 4.20128i −0.0843978 0.146181i
\(827\) −11.6799 8.48596i −0.406151 0.295086i 0.365891 0.930658i \(-0.380764\pi\)
−0.772042 + 0.635572i \(0.780764\pi\)
\(828\) 0 0
\(829\) −16.7616 51.5868i −0.582153 1.79168i −0.610415 0.792082i \(-0.708997\pi\)
0.0282623 0.999601i \(-0.491003\pi\)
\(830\) 0.683374 1.53488i 0.0237203 0.0532766i
\(831\) 0 0
\(832\) −2.79751 + 13.1612i −0.0969862 + 0.456284i
\(833\) −11.5557 12.8340i −0.400383 0.444670i
\(834\) 0 0
\(835\) −23.4471 + 13.5372i −0.811421 + 0.468474i
\(836\) −7.17418 + 28.2416i −0.248124 + 0.976754i
\(837\) 0 0
\(838\) 10.4702 14.4110i 0.361686 0.497819i
\(839\) 11.5611 + 54.3907i 0.399134 + 1.87778i 0.473905 + 0.880576i \(0.342844\pi\)
−0.0747712 + 0.997201i \(0.523823\pi\)
\(840\) 0 0
\(841\) −5.27938 50.2299i −0.182048 1.73207i
\(842\) −4.47367 42.5641i −0.154173 1.46686i
\(843\) 0 0
\(844\) 9.86590 + 46.4154i 0.339598 + 1.59768i
\(845\) 10.8073 14.8750i 0.371784 0.511717i
\(846\) 0 0
\(847\) −3.43025 0.636170i −0.117865 0.0218591i
\(848\) −6.56695 + 3.79143i −0.225510 + 0.130198i
\(849\) 0 0
\(850\) 3.59778 + 3.99574i 0.123403 + 0.137053i
\(851\) 8.62981 40.6001i 0.295826 1.39175i
\(852\) 0 0
\(853\) 6.56555 14.7465i 0.224800 0.504909i −0.765570 0.643352i \(-0.777543\pi\)
0.990370 + 0.138443i \(0.0442097\pi\)
\(854\) 0.477149 + 1.46851i 0.0163277 + 0.0502515i
\(855\) 0 0
\(856\) 2.30735 + 1.67639i 0.0788637 + 0.0572979i
\(857\) 23.6770 + 41.0098i 0.808792 + 1.40087i 0.913701 + 0.406387i \(0.133211\pi\)
−0.104909 + 0.994482i \(0.533455\pi\)
\(858\) 0 0
\(859\) 4.16516 7.21427i 0.142114 0.246148i −0.786179 0.617999i \(-0.787944\pi\)
0.928292 + 0.371851i \(0.121277\pi\)
\(860\) −31.1424 + 13.8655i −1.06195 + 0.472809i
\(861\) 0 0
\(862\) −23.1473 + 25.7077i −0.788401 + 0.875608i
\(863\) 3.57452 + 4.91990i 0.121678 + 0.167475i 0.865511 0.500890i \(-0.166994\pi\)
−0.743833 + 0.668366i \(0.766994\pi\)
\(864\) 0 0
\(865\) −24.8756 + 8.08256i −0.845795 + 0.274815i
\(866\) −30.2302 + 6.42562i −1.02726 + 0.218352i
\(867\) 0 0
\(868\) 0.172013 + 0.0993118i 0.00583850 + 0.00337086i
\(869\) −7.01132 40.8176i −0.237843 1.38464i
\(870\) 0 0
\(871\) −20.6773 2.17327i −0.700623 0.0736384i
\(872\) 0.755163 + 0.245367i 0.0255730 + 0.00830918i
\(873\) 0 0
\(874\) −40.2922 + 29.2740i −1.36290 + 0.990208i
\(875\) −3.48920 1.55349i −0.117956 0.0525176i
\(876\) 0 0
\(877\) 9.24839 8.32729i 0.312296 0.281193i −0.498045 0.867151i \(-0.665949\pi\)
0.810341 + 0.585959i \(0.199282\pi\)
\(878\) −9.55211 21.4544i −0.322368 0.724050i
\(879\) 0 0
\(880\) −1.09045 + 27.7131i −0.0367591 + 0.934207i
\(881\) 59.2385i 1.99580i −0.0647993 0.997898i \(-0.520641\pi\)
0.0647993 0.997898i \(-0.479359\pi\)
\(882\) 0 0
\(883\) −13.1258 + 40.3970i −0.441718 + 1.35947i 0.444325 + 0.895866i \(0.353444\pi\)
−0.886043 + 0.463603i \(0.846556\pi\)
\(884\) −6.71948 6.05025i −0.226001 0.203492i
\(885\) 0 0
\(886\) −30.2418 + 3.17854i −1.01599 + 0.106785i
\(887\) −22.5087 4.78438i −0.755769 0.160644i −0.186115 0.982528i \(-0.559590\pi\)
−0.569654 + 0.821884i \(0.692923\pi\)
\(888\) 0 0
\(889\) 0.125219 1.19138i 0.00419973 0.0399577i
\(890\) 31.7446 1.06408
\(891\) 0 0
\(892\) 26.4561 0.885815
\(893\) −4.17103 + 39.6847i −0.139578 + 1.32800i
\(894\) 0 0
\(895\) 10.9535 + 2.32824i 0.366135 + 0.0778244i
\(896\) −0.605973 + 0.0636904i −0.0202441 + 0.00212775i
\(897\) 0 0
\(898\) 34.1012 + 30.7049i 1.13797 + 1.02464i
\(899\) 0.918932 2.82818i 0.0306481 0.0943251i
\(900\) 0 0
\(901\) 4.48773i 0.149508i
\(902\) −51.3294 40.4696i −1.70908 1.34749i
\(903\) 0 0
\(904\) 0.506597 + 1.13784i 0.0168492 + 0.0378439i
\(905\) 15.0782 13.5765i 0.501217 0.451298i
\(906\) 0 0
\(907\) −10.3132 4.59175i −0.342446 0.152467i 0.228306 0.973589i \(-0.426681\pi\)
−0.570752 + 0.821123i \(0.693348\pi\)
\(908\) −23.6736 + 17.1999i −0.785637 + 0.570799i
\(909\) 0 0
\(910\) 2.25919 + 0.734055i 0.0748914 + 0.0243337i
\(911\) −24.3589 2.56022i −0.807046 0.0848240i −0.307986 0.951391i \(-0.599655\pi\)
−0.499061 + 0.866567i \(0.666322\pi\)
\(912\) 0 0
\(913\) 0.205451 1.41639i 0.00679942 0.0468757i
\(914\) −1.05450 0.608815i −0.0348797 0.0201378i
\(915\) 0 0
\(916\) −37.8056 + 8.03583i −1.24913 + 0.265511i
\(917\) 2.69055 0.874214i 0.0888499 0.0288691i
\(918\) 0 0
\(919\) 20.6927 + 28.4811i 0.682590 + 0.939504i 0.999961 0.00879691i \(-0.00280018\pi\)
−0.317371 + 0.948301i \(0.602800\pi\)
\(920\) −1.72064 + 1.91096i −0.0567278 + 0.0630026i
\(921\) 0 0
\(922\) −40.9399 + 18.2276i −1.34828 + 0.600294i
\(923\) 11.4489 19.8301i 0.376845 0.652714i
\(924\) 0 0
\(925\) −4.18788 7.25361i −0.137696 0.238497i
\(926\) 11.2929 + 8.20480i 0.371109 + 0.269626i
\(927\) 0 0
\(928\) −21.6229 66.5485i −0.709807 2.18456i
\(929\) −7.37153 + 16.5567i −0.241852 + 0.543209i −0.993162 0.116740i \(-0.962755\pi\)
0.751310 + 0.659949i \(0.229422\pi\)
\(930\) 0 0
\(931\) 6.71131 31.5742i 0.219954 1.03480i
\(932\) −3.29032 3.65427i −0.107778 0.119699i
\(933\) 0 0
\(934\) 10.1605 5.86618i 0.332462 0.191947i
\(935\) −13.8813 8.75954i −0.453966 0.286468i
\(936\) 0 0
\(937\) −17.7777 + 24.4689i −0.580772 + 0.799365i −0.993780 0.111363i \(-0.964478\pi\)
0.413007 + 0.910728i \(0.364478\pi\)
\(938\) 1.40345 + 6.60270i 0.0458242 + 0.215586i
\(939\) 0 0
\(940\) −3.30997 31.4923i −0.107959 1.02716i
\(941\) −2.73892 26.0591i −0.0892862 0.849502i −0.943899 0.330235i \(-0.892872\pi\)
0.854612 0.519266i \(-0.173795\pi\)
\(942\) 0 0
\(943\) −11.2482 52.9185i −0.366291 1.72326i
\(944\) −19.3099 + 26.5778i −0.628484 + 0.865035i
\(945\) 0 0
\(946\) −46.1076 + 38.3428i −1.49909 + 1.24663i
\(947\) 28.0006 16.1662i 0.909897 0.525330i 0.0294993 0.999565i \(-0.490609\pi\)
0.880398 + 0.474235i \(0.157275\pi\)
\(948\) 0 0
\(949\) 0.157643 + 0.175080i 0.00511731 + 0.00568334i
\(950\) −2.08951 + 9.83036i −0.0677926 + 0.318939i
\(951\) 0 0
\(952\) 0.0776870 0.174488i 0.00251785 0.00565519i
\(953\) 10.9868 + 33.8138i 0.355897 + 1.09534i 0.955488 + 0.295031i \(0.0953299\pi\)
−0.599591 + 0.800306i \(0.704670\pi\)
\(954\) 0 0
\(955\) −9.04008 6.56800i −0.292530 0.212536i
\(956\) 20.9090 + 36.2154i 0.676244 + 1.17129i
\(957\) 0 0
\(958\) −1.73509 + 3.00526i −0.0560581 + 0.0970954i
\(959\) 1.39750 0.622205i 0.0451275 0.0200921i
\(960\) 0 0
\(961\) −20.6686 + 22.9548i −0.666730 + 0.740479i
\(962\) 17.0968 + 23.5317i 0.551223 + 0.758693i
\(963\) 0 0
\(964\) −43.9090 + 14.2669i −1.41421 + 0.459506i
\(965\) 34.7506 7.38647i 1.11866 0.237779i
\(966\) 0 0
\(967\) 37.9734 + 21.9240i 1.22114 + 0.705027i 0.965161 0.261655i \(-0.0842683\pi\)
0.255981 + 0.966682i \(0.417602\pi\)
\(968\) 0.617522 + 2.57347i 0.0198479 + 0.0827146i
\(969\) 0 0
\(970\) 33.4711 + 3.51795i 1.07469 + 0.112955i
\(971\) −24.4501 7.94432i −0.784641 0.254945i −0.110820 0.993840i \(-0.535348\pi\)
−0.673820 + 0.738895i \(0.735348\pi\)
\(972\) 0 0
\(973\) −1.84700 + 1.34192i −0.0592120 + 0.0430200i
\(974\) 31.3192 + 13.9442i 1.00353 + 0.446801i
\(975\) 0 0
\(976\) 7.77063 6.99670i 0.248732 0.223959i
\(977\) −6.74930 15.1592i −0.215929 0.484985i 0.772809 0.634638i \(-0.218851\pi\)
−0.988739 + 0.149653i \(0.952184\pi\)
\(978\) 0 0
\(979\) 26.0265 7.33862i 0.831812 0.234543i
\(980\) 25.6159i 0.818269i
\(981\) 0 0
\(982\) 20.4485 62.9340i 0.652538 2.00830i
\(983\) 31.1446 + 28.0427i 0.993357 + 0.894423i 0.994411 0.105576i \(-0.0336687\pi\)
−0.00105371 + 0.999999i \(0.500335\pi\)
\(984\) 0 0
\(985\) −4.93678 + 0.518876i −0.157299 + 0.0165328i
\(986\) 42.9907 + 9.13796i 1.36910 + 0.291012i
\(987\) 0 0
\(988\) 1.76660 16.8081i 0.0562031 0.534737i
\(989\) −49.6337 −1.57826
\(990\) 0 0
\(991\) −21.9883 −0.698482 −0.349241 0.937033i \(-0.613561\pi\)
−0.349241 + 0.937033i \(0.613561\pi\)
\(992\) 0.273567 2.60282i 0.00868577 0.0826396i
\(993\) 0 0
\(994\) −7.27170 1.54565i −0.230644 0.0490249i
\(995\) 24.0482 2.52756i 0.762378 0.0801292i
\(996\) 0 0
\(997\) −35.1693 31.6666i −1.11382 1.00289i −0.999956 0.00939598i \(-0.997009\pi\)
−0.113868 0.993496i \(-0.536324\pi\)
\(998\) −11.8800 + 36.5629i −0.376055 + 1.15738i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.t.a.260.9 80
3.2 odd 2 99.2.p.a.95.2 yes 80
9.2 odd 6 inner 297.2.t.a.62.9 80
9.4 even 3 891.2.k.a.161.17 80
9.5 odd 6 891.2.k.a.161.4 80
9.7 even 3 99.2.p.a.29.2 80
11.8 odd 10 inner 297.2.t.a.206.9 80
33.8 even 10 99.2.p.a.41.2 yes 80
99.41 even 30 891.2.k.a.404.17 80
99.52 odd 30 99.2.p.a.74.2 yes 80
99.74 even 30 inner 297.2.t.a.8.9 80
99.85 odd 30 891.2.k.a.404.4 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.2 80 9.7 even 3
99.2.p.a.41.2 yes 80 33.8 even 10
99.2.p.a.74.2 yes 80 99.52 odd 30
99.2.p.a.95.2 yes 80 3.2 odd 2
297.2.t.a.8.9 80 99.74 even 30 inner
297.2.t.a.62.9 80 9.2 odd 6 inner
297.2.t.a.206.9 80 11.8 odd 10 inner
297.2.t.a.260.9 80 1.1 even 1 trivial
891.2.k.a.161.4 80 9.5 odd 6
891.2.k.a.161.17 80 9.4 even 3
891.2.k.a.404.4 80 99.85 odd 30
891.2.k.a.404.17 80 99.41 even 30