Properties

Label 297.2.t.a.260.8
Level $297$
Weight $2$
Character 297.260
Analytic conductor $2.372$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(8,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.8");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.t (of order \(30\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 260.8
Character \(\chi\) \(=\) 297.260
Dual form 297.2.t.a.8.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.189668 - 1.80457i) q^{2} +(-1.26420 - 0.268714i) q^{4} +(1.19507 - 0.125607i) q^{5} +(3.59771 + 3.23939i) q^{7} +(0.396737 - 1.22103i) q^{8} -2.18041i q^{10} +(1.93170 + 2.69602i) q^{11} +(-1.24460 - 2.79542i) q^{13} +(6.52808 - 5.87791i) q^{14} +(-4.48960 - 1.99890i) q^{16} +(-1.80866 + 1.31407i) q^{17} +(-4.34428 - 1.41154i) q^{19} +(-1.54456 - 0.162340i) q^{20} +(5.23153 - 2.97455i) q^{22} +(-1.72112 - 0.993689i) q^{23} +(-3.47832 + 0.739340i) q^{25} +(-5.28060 + 1.71577i) q^{26} +(-3.67776 - 5.06200i) q^{28} +(1.13479 - 1.26031i) q^{29} +(4.85274 - 2.16058i) q^{31} +(-3.17481 + 5.49894i) q^{32} +(2.02828 + 3.51308i) q^{34} +(4.70641 + 3.41941i) q^{35} +(0.344857 + 1.06136i) q^{37} +(-3.37119 + 7.57182i) q^{38} +(0.320759 - 1.50905i) q^{40} +(-7.11427 - 7.90120i) q^{41} +(-3.28272 + 1.89528i) q^{43} +(-1.71760 - 3.92738i) q^{44} +(-2.11962 + 2.91741i) q^{46} +(0.678872 + 3.19384i) q^{47} +(1.71815 + 16.3471i) q^{49} +(0.674464 + 6.41710i) q^{50} +(0.822258 + 3.86842i) q^{52} +(0.749954 - 1.03222i) q^{53} +(2.64716 + 2.97930i) q^{55} +(5.38274 - 3.10773i) q^{56} +(-2.05908 - 2.28684i) q^{58} +(0.00657007 - 0.0309097i) q^{59} +(-0.482921 + 1.08466i) q^{61} +(-2.97851 - 9.16690i) q^{62} +(1.36926 + 0.994827i) q^{64} +(-1.83851 - 3.18440i) q^{65} +(1.05277 - 1.82345i) q^{67} +(2.63961 - 1.17523i) q^{68} +(7.06321 - 7.84449i) q^{70} +(2.26013 + 3.11080i) q^{71} +(6.69980 - 2.17690i) q^{73} +(1.98070 - 0.421012i) q^{74} +(5.11273 + 2.95184i) q^{76} +(-1.78375 + 15.9570i) q^{77} +(3.80026 + 0.399424i) q^{79} +(-5.61646 - 1.82490i) q^{80} +(-15.6076 + 11.3396i) q^{82} +(-6.64079 - 2.95667i) q^{83} +(-1.99642 + 1.79758i) q^{85} +(2.79753 + 6.28336i) q^{86} +(4.05830 - 1.28906i) q^{88} +10.2875i q^{89} +(4.57775 - 14.0889i) q^{91} +(1.90882 + 1.71871i) q^{92} +(5.89227 - 0.619302i) q^{94} +(-5.36902 - 1.14122i) q^{95} +(-1.51615 + 14.4252i) q^{97} +29.8254 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 15 q^{2} + 5 q^{4} + 6 q^{5} - 5 q^{7} + 3 q^{11} - 5 q^{13} + 9 q^{14} + 5 q^{16} - 50 q^{19} + 3 q^{20} - 11 q^{22} + 42 q^{23} - 2 q^{25} - 20 q^{28} - 30 q^{29} - 6 q^{31} - 10 q^{34} - 6 q^{37}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.189668 1.80457i 0.134115 1.27602i −0.695841 0.718195i \(-0.744968\pi\)
0.829957 0.557828i \(-0.188365\pi\)
\(3\) 0 0
\(4\) −1.26420 0.268714i −0.632100 0.134357i
\(5\) 1.19507 0.125607i 0.534452 0.0561731i 0.166542 0.986034i \(-0.446740\pi\)
0.367910 + 0.929861i \(0.380073\pi\)
\(6\) 0 0
\(7\) 3.59771 + 3.23939i 1.35981 + 1.22438i 0.950018 + 0.312195i \(0.101064\pi\)
0.409788 + 0.912181i \(0.365603\pi\)
\(8\) 0.396737 1.22103i 0.140268 0.431700i
\(9\) 0 0
\(10\) 2.18041i 0.689506i
\(11\) 1.93170 + 2.69602i 0.582431 + 0.812880i
\(12\) 0 0
\(13\) −1.24460 2.79542i −0.345191 0.775311i −0.999813 0.0193546i \(-0.993839\pi\)
0.654622 0.755956i \(-0.272828\pi\)
\(14\) 6.52808 5.87791i 1.74470 1.57094i
\(15\) 0 0
\(16\) −4.48960 1.99890i −1.12240 0.499724i
\(17\) −1.80866 + 1.31407i −0.438664 + 0.318708i −0.785104 0.619364i \(-0.787390\pi\)
0.346440 + 0.938072i \(0.387390\pi\)
\(18\) 0 0
\(19\) −4.34428 1.41154i −0.996645 0.323830i −0.235121 0.971966i \(-0.575549\pi\)
−0.761524 + 0.648136i \(0.775549\pi\)
\(20\) −1.54456 0.162340i −0.345374 0.0363003i
\(21\) 0 0
\(22\) 5.23153 2.97455i 1.11537 0.634175i
\(23\) −1.72112 0.993689i −0.358878 0.207199i 0.309710 0.950831i \(-0.399768\pi\)
−0.668589 + 0.743632i \(0.733101\pi\)
\(24\) 0 0
\(25\) −3.47832 + 0.739340i −0.695664 + 0.147868i
\(26\) −5.28060 + 1.71577i −1.03561 + 0.336490i
\(27\) 0 0
\(28\) −3.67776 5.06200i −0.695030 0.956627i
\(29\) 1.13479 1.26031i 0.210725 0.234034i −0.628512 0.777800i \(-0.716336\pi\)
0.839237 + 0.543766i \(0.183002\pi\)
\(30\) 0 0
\(31\) 4.85274 2.16058i 0.871579 0.388052i 0.0783139 0.996929i \(-0.475046\pi\)
0.793265 + 0.608877i \(0.208380\pi\)
\(32\) −3.17481 + 5.49894i −0.561233 + 0.972084i
\(33\) 0 0
\(34\) 2.02828 + 3.51308i 0.347847 + 0.602489i
\(35\) 4.70641 + 3.41941i 0.795528 + 0.577985i
\(36\) 0 0
\(37\) 0.344857 + 1.06136i 0.0566941 + 0.174486i 0.975394 0.220471i \(-0.0707594\pi\)
−0.918699 + 0.394957i \(0.870759\pi\)
\(38\) −3.37119 + 7.57182i −0.546880 + 1.22831i
\(39\) 0 0
\(40\) 0.320759 1.50905i 0.0507164 0.238602i
\(41\) −7.11427 7.90120i −1.11106 1.23396i −0.969778 0.243991i \(-0.921543\pi\)
−0.141285 0.989969i \(-0.545123\pi\)
\(42\) 0 0
\(43\) −3.28272 + 1.89528i −0.500609 + 0.289027i −0.728965 0.684551i \(-0.759998\pi\)
0.228356 + 0.973578i \(0.426665\pi\)
\(44\) −1.71760 3.92738i −0.258938 0.592075i
\(45\) 0 0
\(46\) −2.11962 + 2.91741i −0.312521 + 0.430149i
\(47\) 0.678872 + 3.19384i 0.0990236 + 0.465870i 0.999519 + 0.0310045i \(0.00987062\pi\)
−0.900496 + 0.434865i \(0.856796\pi\)
\(48\) 0 0
\(49\) 1.71815 + 16.3471i 0.245450 + 2.33530i
\(50\) 0.674464 + 6.41710i 0.0953837 + 0.907515i
\(51\) 0 0
\(52\) 0.822258 + 3.86842i 0.114027 + 0.536453i
\(53\) 0.749954 1.03222i 0.103014 0.141787i −0.754398 0.656417i \(-0.772071\pi\)
0.857412 + 0.514631i \(0.172071\pi\)
\(54\) 0 0
\(55\) 2.64716 + 2.97930i 0.356943 + 0.401728i
\(56\) 5.38274 3.10773i 0.719299 0.415288i
\(57\) 0 0
\(58\) −2.05908 2.28684i −0.270371 0.300277i
\(59\) 0.00657007 0.0309097i 0.000855350 0.00402410i −0.977718 0.209923i \(-0.932679\pi\)
0.978573 + 0.205899i \(0.0660119\pi\)
\(60\) 0 0
\(61\) −0.482921 + 1.08466i −0.0618317 + 0.138876i −0.941818 0.336122i \(-0.890885\pi\)
0.879987 + 0.474998i \(0.157551\pi\)
\(62\) −2.97851 9.16690i −0.378271 1.16420i
\(63\) 0 0
\(64\) 1.36926 + 0.994827i 0.171158 + 0.124353i
\(65\) −1.83851 3.18440i −0.228039 0.394976i
\(66\) 0 0
\(67\) 1.05277 1.82345i 0.128617 0.222770i −0.794524 0.607232i \(-0.792280\pi\)
0.923141 + 0.384462i \(0.125613\pi\)
\(68\) 2.63961 1.17523i 0.320100 0.142518i
\(69\) 0 0
\(70\) 7.06321 7.84449i 0.844215 0.937595i
\(71\) 2.26013 + 3.11080i 0.268228 + 0.369184i 0.921790 0.387688i \(-0.126726\pi\)
−0.653563 + 0.756873i \(0.726726\pi\)
\(72\) 0 0
\(73\) 6.69980 2.17690i 0.784152 0.254786i 0.110540 0.993872i \(-0.464742\pi\)
0.673612 + 0.739085i \(0.264742\pi\)
\(74\) 1.98070 0.421012i 0.230252 0.0489416i
\(75\) 0 0
\(76\) 5.11273 + 2.95184i 0.586471 + 0.338599i
\(77\) −1.78375 + 15.9570i −0.203277 + 1.81847i
\(78\) 0 0
\(79\) 3.80026 + 0.399424i 0.427563 + 0.0449387i 0.315866 0.948804i \(-0.397705\pi\)
0.111697 + 0.993742i \(0.464372\pi\)
\(80\) −5.61646 1.82490i −0.627940 0.204030i
\(81\) 0 0
\(82\) −15.6076 + 11.3396i −1.72357 + 1.25225i
\(83\) −6.64079 2.95667i −0.728922 0.324537i 0.00850508 0.999964i \(-0.497293\pi\)
−0.737427 + 0.675427i \(0.763959\pi\)
\(84\) 0 0
\(85\) −1.99642 + 1.79758i −0.216542 + 0.194975i
\(86\) 2.79753 + 6.28336i 0.301666 + 0.677552i
\(87\) 0 0
\(88\) 4.05830 1.28906i 0.432616 0.137414i
\(89\) 10.2875i 1.09048i 0.838281 + 0.545238i \(0.183561\pi\)
−0.838281 + 0.545238i \(0.816439\pi\)
\(90\) 0 0
\(91\) 4.57775 14.0889i 0.479879 1.47692i
\(92\) 1.90882 + 1.71871i 0.199009 + 0.179188i
\(93\) 0 0
\(94\) 5.89227 0.619302i 0.607741 0.0638761i
\(95\) −5.36902 1.14122i −0.550849 0.117087i
\(96\) 0 0
\(97\) −1.51615 + 14.4252i −0.153941 + 1.46465i 0.595912 + 0.803050i \(0.296791\pi\)
−0.749853 + 0.661605i \(0.769876\pi\)
\(98\) 29.8254 3.01282
\(99\) 0 0
\(100\) 4.59597 0.459597
\(101\) 1.68141 15.9976i 0.167307 1.59182i −0.512670 0.858586i \(-0.671343\pi\)
0.679977 0.733234i \(-0.261990\pi\)
\(102\) 0 0
\(103\) 2.03569 + 0.432699i 0.200582 + 0.0426351i 0.307107 0.951675i \(-0.400639\pi\)
−0.106525 + 0.994310i \(0.533972\pi\)
\(104\) −3.90708 + 0.410651i −0.383121 + 0.0402676i
\(105\) 0 0
\(106\) −1.72047 1.54912i −0.167107 0.150464i
\(107\) −0.129361 + 0.398133i −0.0125058 + 0.0384889i −0.957115 0.289709i \(-0.906441\pi\)
0.944609 + 0.328198i \(0.106441\pi\)
\(108\) 0 0
\(109\) 14.6788i 1.40597i 0.711205 + 0.702985i \(0.248150\pi\)
−0.711205 + 0.702985i \(0.751850\pi\)
\(110\) 5.87843 4.21191i 0.560486 0.401590i
\(111\) 0 0
\(112\) −9.67706 21.7350i −0.914396 2.05377i
\(113\) −2.37557 + 2.13897i −0.223475 + 0.201218i −0.773261 0.634088i \(-0.781376\pi\)
0.549786 + 0.835305i \(0.314709\pi\)
\(114\) 0 0
\(115\) −2.18167 0.971344i −0.203442 0.0905783i
\(116\) −1.77326 + 1.28835i −0.164643 + 0.119620i
\(117\) 0 0
\(118\) −0.0545326 0.0177187i −0.00502013 0.00163114i
\(119\) −10.7638 1.13132i −0.986716 0.103708i
\(120\) 0 0
\(121\) −3.53703 + 10.4158i −0.321548 + 0.946893i
\(122\) 1.86575 + 1.07719i 0.168917 + 0.0975241i
\(123\) 0 0
\(124\) −6.71542 + 1.42741i −0.603062 + 0.128185i
\(125\) −9.77817 + 3.17712i −0.874587 + 0.284170i
\(126\) 0 0
\(127\) −13.1088 18.0428i −1.16322 1.60104i −0.698567 0.715545i \(-0.746179\pi\)
−0.464654 0.885492i \(-0.653821\pi\)
\(128\) −6.44252 + 7.15514i −0.569444 + 0.632431i
\(129\) 0 0
\(130\) −6.09517 + 2.71375i −0.534582 + 0.238011i
\(131\) 7.74960 13.4227i 0.677086 1.17275i −0.298769 0.954326i \(-0.596576\pi\)
0.975855 0.218421i \(-0.0700907\pi\)
\(132\) 0 0
\(133\) −11.0569 19.1511i −0.958756 1.66061i
\(134\) −3.09087 2.24565i −0.267011 0.193995i
\(135\) 0 0
\(136\) 0.886955 + 2.72977i 0.0760557 + 0.234075i
\(137\) −6.97178 + 15.6589i −0.595639 + 1.33783i 0.324370 + 0.945930i \(0.394848\pi\)
−0.920009 + 0.391897i \(0.871819\pi\)
\(138\) 0 0
\(139\) 2.15559 10.1413i 0.182835 0.860172i −0.787103 0.616821i \(-0.788420\pi\)
0.969938 0.243350i \(-0.0782465\pi\)
\(140\) −5.03100 5.58749i −0.425197 0.472229i
\(141\) 0 0
\(142\) 6.04233 3.48854i 0.507061 0.292752i
\(143\) 5.13231 8.75541i 0.429185 0.732164i
\(144\) 0 0
\(145\) 1.19785 1.64870i 0.0994759 0.136917i
\(146\) −2.65762 12.5031i −0.219946 1.03477i
\(147\) 0 0
\(148\) −0.150766 1.43444i −0.0123929 0.117910i
\(149\) 0.00422899 + 0.0402361i 0.000346452 + 0.00329627i 0.994694 0.102880i \(-0.0328058\pi\)
−0.994347 + 0.106176i \(0.966139\pi\)
\(150\) 0 0
\(151\) −0.572095 2.69150i −0.0465564 0.219031i 0.948719 0.316120i \(-0.102380\pi\)
−0.995276 + 0.0970890i \(0.969047\pi\)
\(152\) −3.44707 + 4.74449i −0.279594 + 0.384829i
\(153\) 0 0
\(154\) 28.4573 + 6.24544i 2.29315 + 0.503272i
\(155\) 5.52799 3.19159i 0.444019 0.256354i
\(156\) 0 0
\(157\) 1.41178 + 1.56794i 0.112672 + 0.125135i 0.796842 0.604187i \(-0.206502\pi\)
−0.684170 + 0.729322i \(0.739835\pi\)
\(158\) 1.44158 6.78208i 0.114686 0.539553i
\(159\) 0 0
\(160\) −3.10342 + 6.97040i −0.245347 + 0.551058i
\(161\) −2.97314 9.15039i −0.234316 0.721152i
\(162\) 0 0
\(163\) −11.8085 8.57941i −0.924917 0.671991i 0.0198264 0.999803i \(-0.493689\pi\)
−0.944743 + 0.327812i \(0.893689\pi\)
\(164\) 6.87070 + 11.9004i 0.536512 + 0.929265i
\(165\) 0 0
\(166\) −6.59506 + 11.4230i −0.511876 + 0.886596i
\(167\) −0.815131 + 0.362920i −0.0630767 + 0.0280836i −0.438033 0.898959i \(-0.644325\pi\)
0.374956 + 0.927043i \(0.377658\pi\)
\(168\) 0 0
\(169\) 2.43334 2.70250i 0.187180 0.207884i
\(170\) 2.86520 + 3.94362i 0.219751 + 0.302461i
\(171\) 0 0
\(172\) 4.65930 1.51390i 0.355268 0.115434i
\(173\) 12.9579 2.75430i 0.985175 0.209405i 0.312964 0.949765i \(-0.398678\pi\)
0.672211 + 0.740360i \(0.265345\pi\)
\(174\) 0 0
\(175\) −14.9090 8.60772i −1.12701 0.650682i
\(176\) −3.28351 15.9653i −0.247504 1.20343i
\(177\) 0 0
\(178\) 18.5646 + 1.95121i 1.39147 + 0.146250i
\(179\) 19.1587 + 6.22502i 1.43199 + 0.465280i 0.919389 0.393350i \(-0.128684\pi\)
0.512596 + 0.858630i \(0.328684\pi\)
\(180\) 0 0
\(181\) 3.63758 2.64286i 0.270379 0.196442i −0.444331 0.895863i \(-0.646559\pi\)
0.714710 + 0.699421i \(0.246559\pi\)
\(182\) −24.5561 10.9331i −1.82022 0.810414i
\(183\) 0 0
\(184\) −1.89616 + 1.70731i −0.139787 + 0.125864i
\(185\) 0.545442 + 1.22508i 0.0401017 + 0.0900699i
\(186\) 0 0
\(187\) −7.03654 2.33778i −0.514563 0.170956i
\(188\) 4.22008i 0.307781i
\(189\) 0 0
\(190\) −3.07774 + 9.47231i −0.223283 + 0.687193i
\(191\) 13.2086 + 11.8931i 0.955742 + 0.860554i 0.990314 0.138849i \(-0.0443402\pi\)
−0.0345721 + 0.999402i \(0.511007\pi\)
\(192\) 0 0
\(193\) −6.12522 + 0.643787i −0.440903 + 0.0463408i −0.322380 0.946610i \(-0.604483\pi\)
−0.118523 + 0.992951i \(0.537816\pi\)
\(194\) 25.7437 + 5.47198i 1.84829 + 0.392866i
\(195\) 0 0
\(196\) 2.22062 21.1277i 0.158615 1.50912i
\(197\) −22.5100 −1.60377 −0.801886 0.597477i \(-0.796170\pi\)
−0.801886 + 0.597477i \(0.796170\pi\)
\(198\) 0 0
\(199\) 9.30680 0.659742 0.329871 0.944026i \(-0.392995\pi\)
0.329871 + 0.944026i \(0.392995\pi\)
\(200\) −0.477222 + 4.54046i −0.0337447 + 0.321059i
\(201\) 0 0
\(202\) −28.5498 6.06846i −2.00876 0.426975i
\(203\) 8.16528 0.858206i 0.573090 0.0602342i
\(204\) 0 0
\(205\) −9.49450 8.54889i −0.663125 0.597080i
\(206\) 1.16694 3.59147i 0.0813046 0.250230i
\(207\) 0 0
\(208\) 15.0382i 1.04271i
\(209\) −4.58632 14.4389i −0.317242 0.998762i
\(210\) 0 0
\(211\) 5.69884 + 12.7998i 0.392325 + 0.881175i 0.996442 + 0.0842801i \(0.0268591\pi\)
−0.604118 + 0.796895i \(0.706474\pi\)
\(212\) −1.22546 + 1.10341i −0.0841652 + 0.0757827i
\(213\) 0 0
\(214\) 0.693922 + 0.308954i 0.0474355 + 0.0211197i
\(215\) −3.68502 + 2.67732i −0.251316 + 0.182592i
\(216\) 0 0
\(217\) 24.4577 + 7.94680i 1.66030 + 0.539464i
\(218\) 26.4888 + 2.78409i 1.79405 + 0.188562i
\(219\) 0 0
\(220\) −2.54596 4.47776i −0.171649 0.301890i
\(221\) 5.92443 + 3.42047i 0.398520 + 0.230086i
\(222\) 0 0
\(223\) 15.7802 3.35419i 1.05672 0.224613i 0.353391 0.935476i \(-0.385029\pi\)
0.703331 + 0.710863i \(0.251695\pi\)
\(224\) −29.2353 + 9.49912i −1.95336 + 0.634686i
\(225\) 0 0
\(226\) 3.40936 + 4.69258i 0.226787 + 0.312146i
\(227\) 9.84619 10.9353i 0.653515 0.725802i −0.321754 0.946823i \(-0.604272\pi\)
0.975269 + 0.221022i \(0.0709392\pi\)
\(228\) 0 0
\(229\) 20.2798 9.02915i 1.34013 0.596663i 0.393598 0.919283i \(-0.371230\pi\)
0.946529 + 0.322620i \(0.104564\pi\)
\(230\) −2.16665 + 3.75275i −0.142865 + 0.247449i
\(231\) 0 0
\(232\) −1.08867 1.88562i −0.0714744 0.123797i
\(233\) −4.18134 3.03792i −0.273929 0.199021i 0.442336 0.896849i \(-0.354150\pi\)
−0.716265 + 0.697828i \(0.754150\pi\)
\(234\) 0 0
\(235\) 1.21247 + 3.73159i 0.0790927 + 0.243422i
\(236\) −0.0166118 + 0.0373106i −0.00108133 + 0.00242871i
\(237\) 0 0
\(238\) −4.08309 + 19.2094i −0.264668 + 1.24516i
\(239\) 9.14380 + 10.1552i 0.591463 + 0.656886i 0.962357 0.271789i \(-0.0876153\pi\)
−0.370894 + 0.928675i \(0.620949\pi\)
\(240\) 0 0
\(241\) −6.10765 + 3.52625i −0.393428 + 0.227146i −0.683645 0.729815i \(-0.739606\pi\)
0.290216 + 0.956961i \(0.406273\pi\)
\(242\) 18.1252 + 8.35837i 1.16513 + 0.537296i
\(243\) 0 0
\(244\) 0.901971 1.24146i 0.0577428 0.0794761i
\(245\) 4.10663 + 19.3202i 0.262363 + 1.23432i
\(246\) 0 0
\(247\) 1.46104 + 13.9009i 0.0929640 + 0.884493i
\(248\) −0.712873 6.78253i −0.0452675 0.430691i
\(249\) 0 0
\(250\) 3.87873 + 18.2480i 0.245312 + 1.15410i
\(251\) −3.95496 + 5.44354i −0.249635 + 0.343593i −0.915383 0.402583i \(-0.868112\pi\)
0.665748 + 0.746176i \(0.268112\pi\)
\(252\) 0 0
\(253\) −0.645692 6.55969i −0.0405943 0.412404i
\(254\) −35.0457 + 20.2337i −2.19897 + 1.26957i
\(255\) 0 0
\(256\) 13.9550 + 15.4986i 0.872189 + 0.968664i
\(257\) 2.94227 13.8423i 0.183534 0.863457i −0.785948 0.618293i \(-0.787825\pi\)
0.969481 0.245165i \(-0.0788420\pi\)
\(258\) 0 0
\(259\) −2.19747 + 4.93559i −0.136544 + 0.306683i
\(260\) 1.46856 + 4.51975i 0.0910760 + 0.280303i
\(261\) 0 0
\(262\) −22.7523 16.5305i −1.40564 1.02126i
\(263\) 3.47292 + 6.01527i 0.214149 + 0.370917i 0.953009 0.302942i \(-0.0979688\pi\)
−0.738860 + 0.673859i \(0.764635\pi\)
\(264\) 0 0
\(265\) 0.766593 1.32778i 0.0470914 0.0815648i
\(266\) −36.6567 + 16.3206i −2.24757 + 1.00068i
\(267\) 0 0
\(268\) −1.82090 + 2.02232i −0.111229 + 0.123533i
\(269\) 4.05850 + 5.58605i 0.247451 + 0.340587i 0.914617 0.404322i \(-0.132493\pi\)
−0.667165 + 0.744910i \(0.732493\pi\)
\(270\) 0 0
\(271\) −12.9581 + 4.21033i −0.787146 + 0.255759i −0.674888 0.737920i \(-0.735808\pi\)
−0.112258 + 0.993679i \(0.535808\pi\)
\(272\) 10.7468 2.28431i 0.651622 0.138507i
\(273\) 0 0
\(274\) 26.9352 + 15.5510i 1.62721 + 0.939473i
\(275\) −8.71236 7.94943i −0.525375 0.479369i
\(276\) 0 0
\(277\) 11.5914 + 1.21831i 0.696461 + 0.0732010i 0.446142 0.894962i \(-0.352798\pi\)
0.250319 + 0.968163i \(0.419464\pi\)
\(278\) −17.8918 5.81339i −1.07308 0.348664i
\(279\) 0 0
\(280\) 6.04241 4.39007i 0.361103 0.262357i
\(281\) 19.9523 + 8.88333i 1.19025 + 0.529935i 0.903715 0.428134i \(-0.140829\pi\)
0.286538 + 0.958069i \(0.407495\pi\)
\(282\) 0 0
\(283\) 17.4451 15.7076i 1.03700 0.933722i 0.0391513 0.999233i \(-0.487535\pi\)
0.997852 + 0.0655115i \(0.0208679\pi\)
\(284\) −2.02134 4.54000i −0.119944 0.269400i
\(285\) 0 0
\(286\) −14.8263 10.9222i −0.876698 0.645845i
\(287\) 51.4721i 3.03830i
\(288\) 0 0
\(289\) −3.70882 + 11.4146i −0.218166 + 0.671445i
\(290\) −2.74799 2.47431i −0.161368 0.145296i
\(291\) 0 0
\(292\) −9.05485 + 0.951703i −0.529895 + 0.0556942i
\(293\) −1.65959 0.352756i −0.0969542 0.0206082i 0.159179 0.987250i \(-0.449115\pi\)
−0.256133 + 0.966641i \(0.582449\pi\)
\(294\) 0 0
\(295\) 0.00396922 0.0377646i 0.000231097 0.00219874i
\(296\) 1.43277 0.0832781
\(297\) 0 0
\(298\) 0.0734110 0.00425258
\(299\) −0.635671 + 6.04801i −0.0367618 + 0.349765i
\(300\) 0 0
\(301\) −17.9498 3.81535i −1.03461 0.219913i
\(302\) −4.96550 + 0.521895i −0.285732 + 0.0300317i
\(303\) 0 0
\(304\) 16.6825 + 15.0210i 0.956809 + 0.861514i
\(305\) −0.440884 + 1.35690i −0.0252449 + 0.0776959i
\(306\) 0 0
\(307\) 2.35281i 0.134282i −0.997743 0.0671410i \(-0.978612\pi\)
0.997743 0.0671410i \(-0.0213877\pi\)
\(308\) 6.54290 19.6936i 0.372816 1.12215i
\(309\) 0 0
\(310\) −4.71095 10.5810i −0.267564 0.600959i
\(311\) −7.88205 + 7.09703i −0.446950 + 0.402436i −0.861634 0.507530i \(-0.830559\pi\)
0.414684 + 0.909965i \(0.363892\pi\)
\(312\) 0 0
\(313\) −23.1439 10.3043i −1.30817 0.582435i −0.370136 0.928978i \(-0.620689\pi\)
−0.938034 + 0.346543i \(0.887355\pi\)
\(314\) 3.09722 2.25026i 0.174786 0.126990i
\(315\) 0 0
\(316\) −4.69696 1.52614i −0.264225 0.0858518i
\(317\) −26.6656 2.80266i −1.49769 0.157413i −0.680058 0.733158i \(-0.738045\pi\)
−0.817629 + 0.575745i \(0.804712\pi\)
\(318\) 0 0
\(319\) 5.58990 + 0.624864i 0.312974 + 0.0349856i
\(320\) 1.76132 + 1.01690i 0.0984609 + 0.0568464i
\(321\) 0 0
\(322\) −17.0764 + 3.62971i −0.951632 + 0.202276i
\(323\) 9.71216 3.15567i 0.540399 0.175586i
\(324\) 0 0
\(325\) 6.39590 + 8.80320i 0.354781 + 0.488314i
\(326\) −17.7218 + 19.6821i −0.981522 + 1.09009i
\(327\) 0 0
\(328\) −12.4701 + 5.55205i −0.688546 + 0.306561i
\(329\) −7.90372 + 13.6896i −0.435746 + 0.754735i
\(330\) 0 0
\(331\) 8.66186 + 15.0028i 0.476099 + 0.824627i 0.999625 0.0273822i \(-0.00871710\pi\)
−0.523526 + 0.852010i \(0.675384\pi\)
\(332\) 7.60079 + 5.52230i 0.417148 + 0.303076i
\(333\) 0 0
\(334\) 0.500309 + 1.53979i 0.0273757 + 0.0842538i
\(335\) 1.02910 2.31139i 0.0562256 0.126285i
\(336\) 0 0
\(337\) 2.70366 12.7197i 0.147278 0.692887i −0.841101 0.540877i \(-0.818092\pi\)
0.988379 0.152009i \(-0.0485743\pi\)
\(338\) −4.41532 4.90371i −0.240162 0.266727i
\(339\) 0 0
\(340\) 3.00691 1.73604i 0.163072 0.0941499i
\(341\) 15.1990 + 8.90948i 0.823074 + 0.482476i
\(342\) 0 0
\(343\) −26.8543 + 36.9618i −1.45000 + 1.99575i
\(344\) 1.01182 + 4.76023i 0.0545535 + 0.256654i
\(345\) 0 0
\(346\) −2.51261 23.9059i −0.135079 1.28519i
\(347\) 2.22189 + 21.1399i 0.119277 + 1.13485i 0.876403 + 0.481578i \(0.159936\pi\)
−0.757126 + 0.653269i \(0.773397\pi\)
\(348\) 0 0
\(349\) −1.94002 9.12708i −0.103847 0.488562i −0.999077 0.0429571i \(-0.986322\pi\)
0.895230 0.445604i \(-0.147011\pi\)
\(350\) −18.3610 + 25.2717i −0.981436 + 1.35083i
\(351\) 0 0
\(352\) −20.9580 + 2.06297i −1.11707 + 0.109957i
\(353\) −7.89937 + 4.56070i −0.420441 + 0.242742i −0.695266 0.718753i \(-0.744713\pi\)
0.274825 + 0.961494i \(0.411380\pi\)
\(354\) 0 0
\(355\) 3.09175 + 3.43374i 0.164093 + 0.182244i
\(356\) 2.76440 13.0055i 0.146513 0.689290i
\(357\) 0 0
\(358\) 14.8673 33.3924i 0.785760 1.76484i
\(359\) −2.41692 7.43851i −0.127560 0.392589i 0.866799 0.498658i \(-0.166174\pi\)
−0.994359 + 0.106069i \(0.966174\pi\)
\(360\) 0 0
\(361\) 1.50897 + 1.09633i 0.0794193 + 0.0577015i
\(362\) −4.07929 7.06553i −0.214402 0.371356i
\(363\) 0 0
\(364\) −9.57308 + 16.5811i −0.501766 + 0.869084i
\(365\) 7.73330 3.44309i 0.404779 0.180219i
\(366\) 0 0
\(367\) 16.3966 18.2102i 0.855894 0.950567i −0.143341 0.989673i \(-0.545785\pi\)
0.999235 + 0.0391068i \(0.0124513\pi\)
\(368\) 5.74086 + 7.90161i 0.299263 + 0.411900i
\(369\) 0 0
\(370\) 2.31420 0.751929i 0.120310 0.0390909i
\(371\) 6.04189 1.28424i 0.313679 0.0666746i
\(372\) 0 0
\(373\) 2.47795 + 1.43065i 0.128303 + 0.0740760i 0.562778 0.826608i \(-0.309733\pi\)
−0.434475 + 0.900684i \(0.643066\pi\)
\(374\) −5.55330 + 12.2545i −0.287154 + 0.633666i
\(375\) 0 0
\(376\) 4.16911 + 0.438191i 0.215006 + 0.0225980i
\(377\) −4.93546 1.60363i −0.254189 0.0825911i
\(378\) 0 0
\(379\) 23.6747 17.2007i 1.21609 0.883540i 0.220320 0.975428i \(-0.429290\pi\)
0.995769 + 0.0918872i \(0.0292899\pi\)
\(380\) 6.48085 + 2.88546i 0.332461 + 0.148021i
\(381\) 0 0
\(382\) 23.9671 21.5801i 1.22627 1.10413i
\(383\) −11.5755 25.9990i −0.591480 1.32849i −0.922914 0.385007i \(-0.874199\pi\)
0.331434 0.943478i \(-0.392468\pi\)
\(384\) 0 0
\(385\) −0.127390 + 19.2938i −0.00649240 + 0.983305i
\(386\) 11.1755i 0.568818i
\(387\) 0 0
\(388\) 5.79296 17.8289i 0.294093 0.905125i
\(389\) −10.6132 9.55615i −0.538110 0.484516i 0.354681 0.934987i \(-0.384589\pi\)
−0.892791 + 0.450471i \(0.851256\pi\)
\(390\) 0 0
\(391\) 4.41869 0.464423i 0.223463 0.0234869i
\(392\) 20.6420 + 4.38760i 1.04258 + 0.221607i
\(393\) 0 0
\(394\) −4.26943 + 40.6209i −0.215091 + 2.04645i
\(395\) 4.59175 0.231036
\(396\) 0 0
\(397\) 2.20687 0.110760 0.0553798 0.998465i \(-0.482363\pi\)
0.0553798 + 0.998465i \(0.482363\pi\)
\(398\) 1.76520 16.7948i 0.0884815 0.841845i
\(399\) 0 0
\(400\) 17.0941 + 3.63347i 0.854707 + 0.181673i
\(401\) 31.3702 3.29714i 1.56655 0.164651i 0.718866 0.695148i \(-0.244661\pi\)
0.847687 + 0.530497i \(0.177995\pi\)
\(402\) 0 0
\(403\) −12.0795 10.8764i −0.601722 0.541793i
\(404\) −6.42442 + 19.7723i −0.319627 + 0.983710i
\(405\) 0 0
\(406\) 14.8976i 0.739355i
\(407\) −2.19528 + 2.97997i −0.108816 + 0.147712i
\(408\) 0 0
\(409\) −2.75694 6.19219i −0.136322 0.306184i 0.832466 0.554077i \(-0.186929\pi\)
−0.968788 + 0.247893i \(0.920262\pi\)
\(410\) −17.2279 + 15.5120i −0.850823 + 0.766085i
\(411\) 0 0
\(412\) −2.45725 1.09404i −0.121060 0.0538993i
\(413\) 0.123766 0.0899212i 0.00609012 0.00442473i
\(414\) 0 0
\(415\) −8.30760 2.69930i −0.407804 0.132504i
\(416\) 19.3232 + 2.03095i 0.947400 + 0.0995757i
\(417\) 0 0
\(418\) −26.9259 + 5.53773i −1.31699 + 0.270859i
\(419\) 24.7759 + 14.3044i 1.21038 + 0.698815i 0.962843 0.270062i \(-0.0870442\pi\)
0.247541 + 0.968877i \(0.420378\pi\)
\(420\) 0 0
\(421\) 5.47106 1.16291i 0.266643 0.0566768i −0.0726497 0.997358i \(-0.523146\pi\)
0.339293 + 0.940681i \(0.389812\pi\)
\(422\) 24.1790 7.85624i 1.17702 0.382436i
\(423\) 0 0
\(424\) −0.962842 1.32524i −0.0467597 0.0643592i
\(425\) 5.31955 5.90796i 0.258036 0.286578i
\(426\) 0 0
\(427\) −5.25104 + 2.33791i −0.254116 + 0.113140i
\(428\) 0.270522 0.468558i 0.0130762 0.0226486i
\(429\) 0 0
\(430\) 4.13248 + 7.15767i 0.199286 + 0.345173i
\(431\) 15.7825 + 11.4667i 0.760216 + 0.552329i 0.898977 0.437997i \(-0.144312\pi\)
−0.138760 + 0.990326i \(0.544312\pi\)
\(432\) 0 0
\(433\) −6.96921 21.4490i −0.334919 1.03077i −0.966762 0.255678i \(-0.917701\pi\)
0.631843 0.775096i \(-0.282299\pi\)
\(434\) 18.9794 42.6284i 0.911040 2.04623i
\(435\) 0 0
\(436\) 3.94439 18.5569i 0.188902 0.888714i
\(437\) 6.07439 + 6.74629i 0.290577 + 0.322719i
\(438\) 0 0
\(439\) −25.9695 + 14.9935i −1.23946 + 0.715601i −0.968983 0.247126i \(-0.920514\pi\)
−0.270474 + 0.962727i \(0.587181\pi\)
\(440\) 4.68804 2.05027i 0.223494 0.0977428i
\(441\) 0 0
\(442\) 7.29615 10.0423i 0.347043 0.477663i
\(443\) −6.55910 30.8582i −0.311632 1.46612i −0.803427 0.595404i \(-0.796992\pi\)
0.491794 0.870711i \(-0.336341\pi\)
\(444\) 0 0
\(445\) 1.29219 + 12.2943i 0.0612555 + 0.582807i
\(446\) −3.05986 29.1127i −0.144889 1.37852i
\(447\) 0 0
\(448\) 1.70357 + 8.01468i 0.0804862 + 0.378658i
\(449\) 22.3362 30.7432i 1.05411 1.45086i 0.168921 0.985630i \(-0.445972\pi\)
0.885190 0.465229i \(-0.154028\pi\)
\(450\) 0 0
\(451\) 7.55911 34.4430i 0.355944 1.62186i
\(452\) 3.57797 2.06574i 0.168294 0.0971644i
\(453\) 0 0
\(454\) −17.8660 19.8422i −0.838493 0.931241i
\(455\) 3.70108 17.4122i 0.173509 0.816297i
\(456\) 0 0
\(457\) −15.9546 + 35.8347i −0.746327 + 1.67628i −0.00972362 + 0.999953i \(0.503095\pi\)
−0.736603 + 0.676325i \(0.763571\pi\)
\(458\) −12.4473 38.3088i −0.581624 1.79005i
\(459\) 0 0
\(460\) 2.49706 + 1.81422i 0.116426 + 0.0845885i
\(461\) −8.77604 15.2006i −0.408741 0.707960i 0.586008 0.810305i \(-0.300699\pi\)
−0.994749 + 0.102345i \(0.967365\pi\)
\(462\) 0 0
\(463\) −2.53619 + 4.39282i −0.117867 + 0.204151i −0.918922 0.394439i \(-0.870939\pi\)
0.801055 + 0.598590i \(0.204272\pi\)
\(464\) −7.61398 + 3.38996i −0.353470 + 0.157375i
\(465\) 0 0
\(466\) −6.27521 + 6.96932i −0.290693 + 0.322848i
\(467\) −9.96792 13.7197i −0.461260 0.634870i 0.513509 0.858084i \(-0.328345\pi\)
−0.974770 + 0.223214i \(0.928345\pi\)
\(468\) 0 0
\(469\) 9.69445 3.14992i 0.447648 0.145450i
\(470\) 6.96389 1.48022i 0.321220 0.0682774i
\(471\) 0 0
\(472\) −0.0351352 0.0202853i −0.00161723 0.000933706i
\(473\) −11.4509 5.18915i −0.526515 0.238597i
\(474\) 0 0
\(475\) 16.1544 + 1.69790i 0.741215 + 0.0779048i
\(476\) 13.3036 + 4.32260i 0.609769 + 0.198126i
\(477\) 0 0
\(478\) 20.0601 14.5745i 0.917526 0.666622i
\(479\) −16.5165 7.35362i −0.754658 0.335996i −0.00690859 0.999976i \(-0.502199\pi\)
−0.747750 + 0.663981i \(0.768866\pi\)
\(480\) 0 0
\(481\) 2.53774 2.28499i 0.115711 0.104187i
\(482\) 5.20495 + 11.6905i 0.237079 + 0.532488i
\(483\) 0 0
\(484\) 7.27040 12.2172i 0.330473 0.555329i
\(485\) 17.4295i 0.791435i
\(486\) 0 0
\(487\) −8.03498 + 24.7291i −0.364100 + 1.12058i 0.586443 + 0.809991i \(0.300528\pi\)
−0.950543 + 0.310594i \(0.899472\pi\)
\(488\) 1.13281 + 1.01999i 0.0512798 + 0.0461726i
\(489\) 0 0
\(490\) 35.6435 3.74628i 1.61021 0.169240i
\(491\) −7.17172 1.52440i −0.323655 0.0687950i 0.0432191 0.999066i \(-0.486239\pi\)
−0.366874 + 0.930271i \(0.619572\pi\)
\(492\) 0 0
\(493\) −0.396312 + 3.77066i −0.0178490 + 0.169822i
\(494\) 25.3622 1.14110
\(495\) 0 0
\(496\) −26.1057 −1.17218
\(497\) −1.94582 + 18.5132i −0.0872818 + 0.830431i
\(498\) 0 0
\(499\) 9.21321 + 1.95833i 0.412440 + 0.0876668i 0.409458 0.912329i \(-0.365718\pi\)
0.00298137 + 0.999996i \(0.499051\pi\)
\(500\) 13.2153 1.38898i 0.591007 0.0621173i
\(501\) 0 0
\(502\) 9.07311 + 8.16946i 0.404953 + 0.364621i
\(503\) −10.3211 + 31.7652i −0.460196 + 1.41634i 0.404728 + 0.914437i \(0.367366\pi\)
−0.864925 + 0.501902i \(0.832634\pi\)
\(504\) 0 0
\(505\) 19.3294i 0.860149i
\(506\) −11.9599 0.0789666i −0.531681 0.00351050i
\(507\) 0 0
\(508\) 11.7239 + 26.3322i 0.520162 + 1.16830i
\(509\) −15.2373 + 13.7197i −0.675379 + 0.608114i −0.933748 0.357932i \(-0.883482\pi\)
0.258368 + 0.966047i \(0.416815\pi\)
\(510\) 0 0
\(511\) 31.1557 + 13.8714i 1.37825 + 0.613636i
\(512\) 15.0364 10.9246i 0.664521 0.482803i
\(513\) 0 0
\(514\) −24.4213 7.93496i −1.07718 0.349996i
\(515\) 2.48714 + 0.261409i 0.109597 + 0.0115191i
\(516\) 0 0
\(517\) −7.29928 + 7.99981i −0.321022 + 0.351831i
\(518\) 8.48982 + 4.90160i 0.373021 + 0.215364i
\(519\) 0 0
\(520\) −4.61766 + 0.981513i −0.202498 + 0.0430422i
\(521\) −12.4115 + 4.03273i −0.543757 + 0.176677i −0.568000 0.823029i \(-0.692282\pi\)
0.0242430 + 0.999706i \(0.492282\pi\)
\(522\) 0 0
\(523\) −4.85832 6.68690i −0.212439 0.292398i 0.689478 0.724307i \(-0.257840\pi\)
−0.901917 + 0.431909i \(0.857840\pi\)
\(524\) −13.4039 + 14.8866i −0.585553 + 0.650322i
\(525\) 0 0
\(526\) 11.5137 5.12621i 0.502020 0.223514i
\(527\) −5.93780 + 10.2846i −0.258655 + 0.448003i
\(528\) 0 0
\(529\) −9.52516 16.4981i −0.414138 0.717307i
\(530\) −2.25067 1.63521i −0.0977628 0.0710289i
\(531\) 0 0
\(532\) 8.83197 + 27.1820i 0.382915 + 1.17849i
\(533\) −13.2328 + 29.7213i −0.573174 + 1.28737i
\(534\) 0 0
\(535\) −0.104587 + 0.492045i −0.00452171 + 0.0212730i
\(536\) −1.80882 2.00890i −0.0781292 0.0867712i
\(537\) 0 0
\(538\) 10.8502 6.26435i 0.467784 0.270075i
\(539\) −40.7532 + 36.2100i −1.75537 + 1.55968i
\(540\) 0 0
\(541\) 5.73469 7.89312i 0.246554 0.339352i −0.667747 0.744388i \(-0.732741\pi\)
0.914301 + 0.405036i \(0.132741\pi\)
\(542\) 5.14010 + 24.1823i 0.220786 + 1.03872i
\(543\) 0 0
\(544\) −1.48382 14.1176i −0.0636183 0.605287i
\(545\) 1.84375 + 17.5421i 0.0789777 + 0.751423i
\(546\) 0 0
\(547\) −1.61861 7.61497i −0.0692068 0.325592i 0.929902 0.367808i \(-0.119892\pi\)
−0.999109 + 0.0422157i \(0.986558\pi\)
\(548\) 13.0215 17.9225i 0.556250 0.765613i
\(549\) 0 0
\(550\) −15.9978 + 14.2143i −0.682147 + 0.606100i
\(551\) −6.70882 + 3.87334i −0.285805 + 0.165010i
\(552\) 0 0
\(553\) 12.3784 + 13.7476i 0.526381 + 0.584605i
\(554\) 4.39704 20.6864i 0.186812 0.878883i
\(555\) 0 0
\(556\) −5.45021 + 12.2414i −0.231140 + 0.519149i
\(557\) 1.09093 + 3.35755i 0.0462244 + 0.142264i 0.971505 0.237019i \(-0.0761705\pi\)
−0.925281 + 0.379283i \(0.876171\pi\)
\(558\) 0 0
\(559\) 9.38378 + 6.81772i 0.396892 + 0.288359i
\(560\) −14.2948 24.7594i −0.604067 1.04627i
\(561\) 0 0
\(562\) 19.8149 34.3204i 0.835841 1.44772i
\(563\) 1.37274 0.611183i 0.0578540 0.0257583i −0.377606 0.925966i \(-0.623253\pi\)
0.435460 + 0.900208i \(0.356586\pi\)
\(564\) 0 0
\(565\) −2.57031 + 2.85461i −0.108134 + 0.120095i
\(566\) −25.0367 34.4601i −1.05237 1.44847i
\(567\) 0 0
\(568\) 4.69506 1.52552i 0.197000 0.0640093i
\(569\) 14.5137 3.08499i 0.608447 0.129329i 0.106624 0.994299i \(-0.465996\pi\)
0.501823 + 0.864970i \(0.332663\pi\)
\(570\) 0 0
\(571\) −25.8594 14.9299i −1.08218 0.624798i −0.150697 0.988580i \(-0.548152\pi\)
−0.931484 + 0.363782i \(0.881485\pi\)
\(572\) −8.84097 + 9.68946i −0.369659 + 0.405137i
\(573\) 0 0
\(574\) −92.8850 9.76261i −3.87695 0.407483i
\(575\) 6.72128 + 2.18388i 0.280297 + 0.0910740i
\(576\) 0 0
\(577\) −20.6394 + 14.9954i −0.859228 + 0.624266i −0.927675 0.373389i \(-0.878196\pi\)
0.0684465 + 0.997655i \(0.478196\pi\)
\(578\) 19.8949 + 8.85780i 0.827520 + 0.368436i
\(579\) 0 0
\(580\) −1.95735 + 1.76240i −0.0812745 + 0.0731799i
\(581\) −14.3138 32.1494i −0.593838 1.33378i
\(582\) 0 0
\(583\) 4.23158 + 0.0279396i 0.175254 + 0.00115714i
\(584\) 9.04432i 0.374256i
\(585\) 0 0
\(586\) −0.951344 + 2.92793i −0.0392996 + 0.120952i
\(587\) 17.5588 + 15.8100i 0.724731 + 0.652550i 0.946557 0.322536i \(-0.104535\pi\)
−0.221827 + 0.975086i \(0.571202\pi\)
\(588\) 0 0
\(589\) −24.1314 + 2.53631i −0.994317 + 0.104507i
\(590\) −0.0673959 0.0143254i −0.00277465 0.000589769i
\(591\) 0 0
\(592\) 0.573282 5.45441i 0.0235617 0.224175i
\(593\) −10.1681 −0.417553 −0.208777 0.977963i \(-0.566948\pi\)
−0.208777 + 0.977963i \(0.566948\pi\)
\(594\) 0 0
\(595\) −13.0056 −0.533178
\(596\) 0.00546573 0.0520029i 0.000223885 0.00213012i
\(597\) 0 0
\(598\) 10.7935 + 2.29423i 0.441378 + 0.0938179i
\(599\) −6.06202 + 0.637144i −0.247687 + 0.0260330i −0.227559 0.973764i \(-0.573074\pi\)
−0.0201288 + 0.999797i \(0.506408\pi\)
\(600\) 0 0
\(601\) −10.4219 9.38389i −0.425117 0.382777i 0.428617 0.903486i \(-0.359001\pi\)
−0.853734 + 0.520709i \(0.825667\pi\)
\(602\) −10.2896 + 31.6680i −0.419371 + 1.29069i
\(603\) 0 0
\(604\) 3.55632i 0.144705i
\(605\) −2.91870 + 12.8919i −0.118662 + 0.524131i
\(606\) 0 0
\(607\) −0.344302 0.773316i −0.0139748 0.0313879i 0.906423 0.422371i \(-0.138802\pi\)
−0.920398 + 0.390983i \(0.872135\pi\)
\(608\) 21.5542 19.4075i 0.874140 0.787079i
\(609\) 0 0
\(610\) 2.36500 + 1.05297i 0.0957560 + 0.0426333i
\(611\) 8.08321 5.87280i 0.327012 0.237588i
\(612\) 0 0
\(613\) −24.1513 7.84724i −0.975462 0.316947i −0.222443 0.974946i \(-0.571403\pi\)
−0.753019 + 0.657999i \(0.771403\pi\)
\(614\) −4.24581 0.446253i −0.171347 0.0180093i
\(615\) 0 0
\(616\) 18.7764 + 8.50876i 0.756521 + 0.342828i
\(617\) −8.73291 5.04195i −0.351574 0.202981i 0.313805 0.949488i \(-0.398396\pi\)
−0.665378 + 0.746507i \(0.731730\pi\)
\(618\) 0 0
\(619\) 25.4818 5.41633i 1.02420 0.217701i 0.334960 0.942232i \(-0.391277\pi\)
0.689241 + 0.724532i \(0.257944\pi\)
\(620\) −7.84611 + 2.54935i −0.315107 + 0.102385i
\(621\) 0 0
\(622\) 11.3121 + 15.5698i 0.453574 + 0.624291i
\(623\) −33.3253 + 37.0115i −1.33515 + 1.48284i
\(624\) 0 0
\(625\) 4.95643 2.20675i 0.198257 0.0882698i
\(626\) −22.9845 + 39.8103i −0.918646 + 1.59114i
\(627\) 0 0
\(628\) −1.36344 2.36155i −0.0544073 0.0942362i
\(629\) −2.01842 1.46647i −0.0804798 0.0584720i
\(630\) 0 0
\(631\) 3.44605 + 10.6058i 0.137185 + 0.422212i 0.995923 0.0902022i \(-0.0287513\pi\)
−0.858739 + 0.512414i \(0.828751\pi\)
\(632\) 1.99541 4.48177i 0.0793733 0.178275i
\(633\) 0 0
\(634\) −10.1152 + 47.5883i −0.401726 + 1.88997i
\(635\) −17.9323 19.9158i −0.711621 0.790335i
\(636\) 0 0
\(637\) 43.5588 25.1487i 1.72586 0.996426i
\(638\) 2.18783 9.96884i 0.0866172 0.394670i
\(639\) 0 0
\(640\) −6.80053 + 9.36013i −0.268815 + 0.369991i
\(641\) −2.29516 10.7979i −0.0906534 0.426491i −0.999947 0.0103346i \(-0.996710\pi\)
0.909293 0.416156i \(-0.136623\pi\)
\(642\) 0 0
\(643\) −3.84039 36.5389i −0.151450 1.44095i −0.761281 0.648422i \(-0.775429\pi\)
0.609831 0.792532i \(-0.291237\pi\)
\(644\) 1.29981 + 12.3669i 0.0512196 + 0.487322i
\(645\) 0 0
\(646\) −3.85255 18.1248i −0.151576 0.713111i
\(647\) 1.59821 2.19975i 0.0628321 0.0864810i −0.776445 0.630186i \(-0.782979\pi\)
0.839277 + 0.543705i \(0.182979\pi\)
\(648\) 0 0
\(649\) 0.0960246 0.0419955i 0.00376930 0.00164847i
\(650\) 17.0991 9.87215i 0.670681 0.387218i
\(651\) 0 0
\(652\) 12.6230 + 14.0192i 0.494353 + 0.549035i
\(653\) −9.19912 + 43.2784i −0.359989 + 1.69362i 0.309586 + 0.950872i \(0.399810\pi\)
−0.669575 + 0.742745i \(0.733524\pi\)
\(654\) 0 0
\(655\) 7.57534 17.0145i 0.295993 0.664811i
\(656\) 16.1465 + 49.6939i 0.630416 + 1.94022i
\(657\) 0 0
\(658\) 23.2048 + 16.8593i 0.904618 + 0.657244i
\(659\) 4.58714 + 7.94516i 0.178690 + 0.309499i 0.941432 0.337203i \(-0.109481\pi\)
−0.762742 + 0.646702i \(0.776148\pi\)
\(660\) 0 0
\(661\) 4.94816 8.57046i 0.192461 0.333352i −0.753604 0.657328i \(-0.771686\pi\)
0.946065 + 0.323976i \(0.105020\pi\)
\(662\) 28.7164 12.7854i 1.11610 0.496918i
\(663\) 0 0
\(664\) −6.24484 + 6.93560i −0.242347 + 0.269153i
\(665\) −15.6193 21.4981i −0.605691 0.833662i
\(666\) 0 0
\(667\) −3.20547 + 1.04152i −0.124116 + 0.0403278i
\(668\) 1.12801 0.239766i 0.0436440 0.00927682i
\(669\) 0 0
\(670\) −3.97588 2.29547i −0.153602 0.0886819i
\(671\) −3.85712 + 0.793275i −0.148902 + 0.0306241i
\(672\) 0 0
\(673\) 17.5860 + 1.84836i 0.677891 + 0.0712492i 0.437216 0.899357i \(-0.355965\pi\)
0.240675 + 0.970606i \(0.422631\pi\)
\(674\) −22.4408 7.29146i −0.864387 0.280856i
\(675\) 0 0
\(676\) −3.80243 + 2.76263i −0.146247 + 0.106255i
\(677\) 10.8673 + 4.83844i 0.417665 + 0.185956i 0.604799 0.796378i \(-0.293253\pi\)
−0.187134 + 0.982334i \(0.559920\pi\)
\(678\) 0 0
\(679\) −52.1835 + 46.9862i −2.00262 + 1.80316i
\(680\) 1.40285 + 3.15085i 0.0537969 + 0.120830i
\(681\) 0 0
\(682\) 18.9605 25.7379i 0.726037 0.985554i
\(683\) 18.2564i 0.698561i −0.937018 0.349280i \(-0.886426\pi\)
0.937018 0.349280i \(-0.113574\pi\)
\(684\) 0 0
\(685\) −6.36490 + 19.5892i −0.243190 + 0.748463i
\(686\) 61.6066 + 55.4709i 2.35215 + 2.11789i
\(687\) 0 0
\(688\) 18.5265 1.94722i 0.706318 0.0742370i
\(689\) −3.81889 0.811731i −0.145488 0.0309245i
\(690\) 0 0
\(691\) −1.88403 + 17.9254i −0.0716720 + 0.681914i 0.898414 + 0.439150i \(0.144721\pi\)
−0.970086 + 0.242763i \(0.921946\pi\)
\(692\) −17.1216 −0.650864
\(693\) 0 0
\(694\) 38.5698 1.46409
\(695\) 1.30227 12.3903i 0.0493980 0.469991i
\(696\) 0 0
\(697\) 23.2500 + 4.94193i 0.880655 + 0.187189i
\(698\) −16.8384 + 1.76979i −0.637343 + 0.0669875i
\(699\) 0 0
\(700\) 16.5350 + 14.8881i 0.624962 + 0.562719i
\(701\) −2.60431 + 8.01524i −0.0983635 + 0.302732i −0.988116 0.153712i \(-0.950877\pi\)
0.889752 + 0.456444i \(0.150877\pi\)
\(702\) 0 0
\(703\) 5.09762i 0.192260i
\(704\) −0.0370623 + 5.61327i −0.00139684 + 0.211558i
\(705\) 0 0
\(706\) 6.73185 + 15.1200i 0.253356 + 0.569048i
\(707\) 57.8717 52.1079i 2.17649 1.95972i
\(708\) 0 0
\(709\) 18.9224 + 8.42480i 0.710646 + 0.316400i 0.730033 0.683412i \(-0.239505\pi\)
−0.0193869 + 0.999812i \(0.506171\pi\)
\(710\) 6.78282 4.92801i 0.254555 0.184945i
\(711\) 0 0
\(712\) 12.5614 + 4.08144i 0.470758 + 0.152959i
\(713\) −10.4991 1.10350i −0.393194 0.0413264i
\(714\) 0 0
\(715\) 5.03373 11.1080i 0.188251 0.415415i
\(716\) −22.5476 13.0179i −0.842644 0.486501i
\(717\) 0 0
\(718\) −13.8817 + 2.95065i −0.518061 + 0.110117i
\(719\) −34.3009 + 11.1450i −1.27921 + 0.415640i −0.868301 0.496038i \(-0.834788\pi\)
−0.410906 + 0.911678i \(0.634788\pi\)
\(720\) 0 0
\(721\) 5.92214 + 8.15112i 0.220552 + 0.303564i
\(722\) 2.26460 2.51510i 0.0842798 0.0936022i
\(723\) 0 0
\(724\) −5.30880 + 2.36363i −0.197300 + 0.0878437i
\(725\) −3.01536 + 5.22276i −0.111988 + 0.193968i
\(726\) 0 0
\(727\) 10.4928 + 18.1741i 0.389158 + 0.674042i 0.992337 0.123565i \(-0.0394327\pi\)
−0.603178 + 0.797606i \(0.706099\pi\)
\(728\) −15.3868 11.1792i −0.570273 0.414327i
\(729\) 0 0
\(730\) −4.74653 14.6083i −0.175677 0.540678i
\(731\) 3.44679 7.74161i 0.127484 0.286334i
\(732\) 0 0
\(733\) −8.44604 + 39.7355i −0.311962 + 1.46766i 0.490752 + 0.871299i \(0.336722\pi\)
−0.802714 + 0.596364i \(0.796611\pi\)
\(734\) −29.7517 33.0426i −1.09816 1.21963i
\(735\) 0 0
\(736\) 10.9285 6.30956i 0.402829 0.232573i
\(737\) 6.94971 0.684083i 0.255996 0.0251985i
\(738\) 0 0
\(739\) −0.159730 + 0.219850i −0.00587578 + 0.00808731i −0.811945 0.583734i \(-0.801591\pi\)
0.806069 + 0.591822i \(0.201591\pi\)
\(740\) −0.360351 1.69532i −0.0132468 0.0623212i
\(741\) 0 0
\(742\) −1.17155 11.1466i −0.0430091 0.409204i
\(743\) 2.14939 + 20.4500i 0.0788533 + 0.750239i 0.960491 + 0.278312i \(0.0897749\pi\)
−0.881637 + 0.471927i \(0.843558\pi\)
\(744\) 0 0
\(745\) 0.0101079 + 0.0475538i 0.000370324 + 0.00174224i
\(746\) 3.05169 4.20029i 0.111730 0.153783i
\(747\) 0 0
\(748\) 8.26740 + 4.84624i 0.302286 + 0.177196i
\(749\) −1.75511 + 1.01331i −0.0641304 + 0.0370257i
\(750\) 0 0
\(751\) −34.8745 38.7320i −1.27259 1.41335i −0.866237 0.499634i \(-0.833468\pi\)
−0.406351 0.913717i \(-0.633199\pi\)
\(752\) 3.33630 15.6961i 0.121662 0.572376i
\(753\) 0 0
\(754\) −3.82996 + 8.60223i −0.139479 + 0.313275i
\(755\) −1.02176 3.14467i −0.0371858 0.114446i
\(756\) 0 0
\(757\) 30.2153 + 21.9527i 1.09819 + 0.797884i 0.980764 0.195197i \(-0.0625347\pi\)
0.117429 + 0.993081i \(0.462535\pi\)
\(758\) −26.5495 45.9851i −0.964322 1.67025i
\(759\) 0 0
\(760\) −3.52355 + 6.10297i −0.127813 + 0.221378i
\(761\) 40.7814 18.1571i 1.47833 0.658193i 0.500144 0.865942i \(-0.333280\pi\)
0.978182 + 0.207749i \(0.0666138\pi\)
\(762\) 0 0
\(763\) −47.5502 + 52.8099i −1.72143 + 1.91185i
\(764\) −13.5025 18.5846i −0.488503 0.672367i
\(765\) 0 0
\(766\) −49.1124 + 15.9576i −1.77450 + 0.576571i
\(767\) −0.0945829 + 0.0201042i −0.00341519 + 0.000725921i
\(768\) 0 0
\(769\) −19.3337 11.1623i −0.697192 0.402524i 0.109109 0.994030i \(-0.465200\pi\)
−0.806301 + 0.591506i \(0.798534\pi\)
\(770\) 34.7929 + 3.88931i 1.25385 + 0.140161i
\(771\) 0 0
\(772\) 7.91650 + 0.832058i 0.284921 + 0.0299464i
\(773\) 19.1268 + 6.21468i 0.687944 + 0.223526i 0.632070 0.774911i \(-0.282206\pi\)
0.0558738 + 0.998438i \(0.482206\pi\)
\(774\) 0 0
\(775\) −15.2820 + 11.1030i −0.548946 + 0.398832i
\(776\) 17.0121 + 7.57426i 0.610698 + 0.271900i
\(777\) 0 0
\(778\) −19.2577 + 17.3397i −0.690423 + 0.621659i
\(779\) 19.7535 + 44.3671i 0.707742 + 1.58962i
\(780\) 0 0
\(781\) −4.02087 + 12.1025i −0.143878 + 0.433061i
\(782\) 8.06192i 0.288294i
\(783\) 0 0
\(784\) 24.9624 76.8265i 0.891516 2.74380i
\(785\) 1.88412 + 1.69647i 0.0672471 + 0.0605495i
\(786\) 0 0
\(787\) 34.6278 3.63953i 1.23435 0.129735i 0.535208 0.844721i \(-0.320233\pi\)
0.699139 + 0.714985i \(0.253567\pi\)
\(788\) 28.4572 + 6.04876i 1.01374 + 0.215478i
\(789\) 0 0
\(790\) 0.870908 8.28613i 0.0309855 0.294807i
\(791\) −15.4756 −0.550249
\(792\) 0 0
\(793\) 3.63312 0.129016
\(794\) 0.418572 3.98245i 0.0148546 0.141332i
\(795\) 0 0
\(796\) −11.7657 2.50087i −0.417023 0.0886409i
\(797\) −0.782420 + 0.0822356i −0.0277147 + 0.00291294i −0.118376 0.992969i \(-0.537769\pi\)
0.0906609 + 0.995882i \(0.471102\pi\)
\(798\) 0 0
\(799\) −5.42477 4.88448i −0.191914 0.172800i
\(800\) 6.97744 21.4743i 0.246690 0.759233i
\(801\) 0 0
\(802\) 57.2351i 2.02104i
\(803\) 18.8110 + 13.8577i 0.663825 + 0.489026i
\(804\) 0 0
\(805\) −4.70247 10.5619i −0.165740 0.372259i
\(806\) −21.9183 + 19.7353i −0.772040 + 0.695148i
\(807\) 0 0
\(808\) −18.8665 8.39990i −0.663720 0.295507i
\(809\) 24.9035 18.0934i 0.875560 0.636131i −0.0565132 0.998402i \(-0.517998\pi\)
0.932073 + 0.362270i \(0.117998\pi\)
\(810\) 0 0
\(811\) 41.4535 + 13.4691i 1.45563 + 0.472963i 0.926732 0.375723i \(-0.122606\pi\)
0.528898 + 0.848686i \(0.322606\pi\)
\(812\) −10.5532 1.10918i −0.370343 0.0389247i
\(813\) 0 0
\(814\) 4.96119 + 4.52675i 0.173890 + 0.158662i
\(815\) −15.1897 8.76976i −0.532071 0.307191i
\(816\) 0 0
\(817\) 16.9363 3.59992i 0.592526 0.125945i
\(818\) −11.6971 + 3.80063i −0.408981 + 0.132886i
\(819\) 0 0
\(820\) 9.70574 + 13.3588i 0.338939 + 0.466510i
\(821\) 26.0695 28.9531i 0.909833 1.01047i −0.0900617 0.995936i \(-0.528706\pi\)
0.999894 0.0145354i \(-0.00462691\pi\)
\(822\) 0 0
\(823\) 34.3311 15.2852i 1.19671 0.532809i 0.291005 0.956721i \(-0.406010\pi\)
0.905703 + 0.423913i \(0.139344\pi\)
\(824\) 1.33597 2.31397i 0.0465408 0.0806111i
\(825\) 0 0
\(826\) −0.138795 0.240399i −0.00482928 0.00836456i
\(827\) 36.8905 + 26.8025i 1.28281 + 0.932015i 0.999634 0.0270532i \(-0.00861234\pi\)
0.283175 + 0.959068i \(0.408612\pi\)
\(828\) 0 0
\(829\) 8.83146 + 27.1804i 0.306729 + 0.944016i 0.979026 + 0.203734i \(0.0653078\pi\)
−0.672297 + 0.740282i \(0.734692\pi\)
\(830\) −6.44676 + 14.4797i −0.223770 + 0.502596i
\(831\) 0 0
\(832\) 1.07678 5.06583i 0.0373305 0.175626i
\(833\) −24.5888 27.3086i −0.851950 0.946187i
\(834\) 0 0
\(835\) −0.928554 + 0.536101i −0.0321339 + 0.0185525i
\(836\) 1.91808 + 19.4861i 0.0663382 + 0.673941i
\(837\) 0 0
\(838\) 30.5125 41.9968i 1.05404 1.45076i
\(839\) 1.18333 + 5.56715i 0.0408532 + 0.192199i 0.993842 0.110806i \(-0.0353433\pi\)
−0.952989 + 0.303005i \(0.902010\pi\)
\(840\) 0 0
\(841\) 2.73069 + 25.9808i 0.0941617 + 0.895888i
\(842\) −1.06087 10.0935i −0.0365599 0.347844i
\(843\) 0 0
\(844\) −3.76499 17.7129i −0.129596 0.609703i
\(845\) 2.56856 3.53532i 0.0883612 0.121619i
\(846\) 0 0
\(847\) −46.4662 + 26.0153i −1.59660 + 0.893895i
\(848\) −5.43030 + 3.13518i −0.186477 + 0.107663i
\(849\) 0 0
\(850\) −9.65237 10.7200i −0.331074 0.367694i
\(851\) 0.461122 2.16941i 0.0158071 0.0743664i
\(852\) 0 0
\(853\) 10.1942 22.8965i 0.349042 0.783962i −0.650655 0.759373i \(-0.725506\pi\)
0.999698 0.0245888i \(-0.00782763\pi\)
\(854\) 3.22297 + 9.91929i 0.110288 + 0.339431i
\(855\) 0 0
\(856\) 0.434810 + 0.315908i 0.0148615 + 0.0107975i
\(857\) −17.9582 31.1045i −0.613440 1.06251i −0.990656 0.136385i \(-0.956452\pi\)
0.377216 0.926126i \(-0.376882\pi\)
\(858\) 0 0
\(859\) 7.86620 13.6247i 0.268391 0.464868i −0.700055 0.714089i \(-0.746841\pi\)
0.968447 + 0.249221i \(0.0801746\pi\)
\(860\) 5.37803 2.39445i 0.183389 0.0816502i
\(861\) 0 0
\(862\) 23.6858 26.3058i 0.806742 0.895978i
\(863\) 16.0883 + 22.1436i 0.547652 + 0.753778i 0.989691 0.143217i \(-0.0457448\pi\)
−0.442039 + 0.896996i \(0.645745\pi\)
\(864\) 0 0
\(865\) 15.1397 4.91919i 0.514765 0.167257i
\(866\) −40.0281 + 8.50823i −1.36021 + 0.289121i
\(867\) 0 0
\(868\) −28.7841 16.6185i −0.976995 0.564068i
\(869\) 6.26413 + 11.0171i 0.212496 + 0.373731i
\(870\) 0 0
\(871\) −6.40761 0.673467i −0.217114 0.0228196i
\(872\) 17.9232 + 5.82361i 0.606957 + 0.197212i
\(873\) 0 0
\(874\) 13.3263 9.68210i 0.450768 0.327502i
\(875\) −45.4710 20.2450i −1.53720 0.684405i
\(876\) 0 0
\(877\) −38.6754 + 34.8235i −1.30597 + 1.17590i −0.333538 + 0.942737i \(0.608242\pi\)
−0.972437 + 0.233168i \(0.925091\pi\)
\(878\) 22.1312 + 49.7076i 0.746893 + 1.67755i
\(879\) 0 0
\(880\) −5.92938 18.6673i −0.199880 0.629273i
\(881\) 39.9758i 1.34682i 0.739270 + 0.673409i \(0.235171\pi\)
−0.739270 + 0.673409i \(0.764829\pi\)
\(882\) 0 0
\(883\) −5.74452 + 17.6798i −0.193318 + 0.594973i 0.806674 + 0.590997i \(0.201266\pi\)
−0.999992 + 0.00397571i \(0.998734\pi\)
\(884\) −6.57054 5.91614i −0.220991 0.198981i
\(885\) 0 0
\(886\) −56.9297 + 5.98356i −1.91259 + 0.201021i
\(887\) −53.3355 11.3368i −1.79083 0.380653i −0.811731 0.584032i \(-0.801474\pi\)
−0.979100 + 0.203379i \(0.934808\pi\)
\(888\) 0 0
\(889\) 11.2858 107.377i 0.378514 3.60132i
\(890\) 22.4310 0.751890
\(891\) 0 0
\(892\) −20.8507 −0.698132
\(893\) 1.55903 14.8332i 0.0521710 0.496374i
\(894\) 0 0
\(895\) 23.6779 + 5.03288i 0.791463 + 0.168231i
\(896\) −46.3566 + 4.87228i −1.54867 + 0.162771i
\(897\) 0 0
\(898\) −51.2417 46.1382i −1.70996 1.53965i
\(899\) 2.78384 8.56777i 0.0928461 0.285751i
\(900\) 0 0
\(901\) 2.85243i 0.0950281i
\(902\) −60.7210 20.1737i −2.02179 0.671709i
\(903\) 0 0
\(904\) 1.66928 + 3.74926i 0.0555193 + 0.124698i
\(905\) 4.01520 3.61531i 0.133470 0.120177i
\(906\) 0 0
\(907\) −11.3582 5.05700i −0.377143 0.167915i 0.209406 0.977829i \(-0.432847\pi\)
−0.586549 + 0.809914i \(0.699514\pi\)
\(908\) −15.3860 + 11.1786i −0.510603 + 0.370975i
\(909\) 0 0
\(910\) −30.7195 9.98139i −1.01834 0.330880i
\(911\) 44.7416 + 4.70253i 1.48235 + 0.155802i 0.810874 0.585220i \(-0.198992\pi\)
0.671481 + 0.741022i \(0.265659\pi\)
\(912\) 0 0
\(913\) −4.85681 23.6151i −0.160737 0.781546i
\(914\) 61.6402 + 35.5880i 2.03887 + 1.17715i
\(915\) 0 0
\(916\) −28.0640 + 5.96518i −0.927260 + 0.197095i
\(917\) 71.3622 23.1870i 2.35659 0.765702i
\(918\) 0 0
\(919\) 13.6185 + 18.7442i 0.449232 + 0.618315i 0.972232 0.234017i \(-0.0751872\pi\)
−0.523000 + 0.852333i \(0.675187\pi\)
\(920\) −2.05159 + 2.27852i −0.0676390 + 0.0751207i
\(921\) 0 0
\(922\) −29.0950 + 12.9539i −0.958192 + 0.426615i
\(923\) 5.88304 10.1897i 0.193643 0.335399i
\(924\) 0 0
\(925\) −1.98423 3.43678i −0.0652410 0.113001i
\(926\) 7.44610 + 5.40991i 0.244694 + 0.177781i
\(927\) 0 0
\(928\) 3.32763 + 10.2414i 0.109235 + 0.336190i
\(929\) 4.70492 10.5674i 0.154364 0.346706i −0.819765 0.572700i \(-0.805896\pi\)
0.974129 + 0.225993i \(0.0725628\pi\)
\(930\) 0 0
\(931\) 15.6105 73.4417i 0.511614 2.40696i
\(932\) 4.46972 + 4.96413i 0.146411 + 0.162605i
\(933\) 0 0
\(934\) −26.6487 + 15.3856i −0.871971 + 0.503433i
\(935\) −8.70280 1.90998i −0.284612 0.0624630i
\(936\) 0 0
\(937\) 15.1544 20.8582i 0.495071 0.681407i −0.486242 0.873824i \(-0.661633\pi\)
0.981313 + 0.192417i \(0.0616326\pi\)
\(938\) −3.84552 18.0917i −0.125561 0.590716i
\(939\) 0 0
\(940\) −0.530071 5.04329i −0.0172890 0.164494i
\(941\) −6.18370 58.8340i −0.201583 1.91793i −0.364339 0.931267i \(-0.618705\pi\)
0.162756 0.986666i \(-0.447962\pi\)
\(942\) 0 0
\(943\) 4.39318 + 20.6683i 0.143062 + 0.673052i
\(944\) −0.0912824 + 0.125639i −0.00297099 + 0.00408921i
\(945\) 0 0
\(946\) −11.5361 + 19.6798i −0.375069 + 0.639845i
\(947\) −0.104615 + 0.0603997i −0.00339954 + 0.00196272i −0.501699 0.865042i \(-0.667291\pi\)
0.498299 + 0.867005i \(0.333958\pi\)
\(948\) 0 0
\(949\) −14.4239 16.0194i −0.468221 0.520012i
\(950\) 6.12794 28.8297i 0.198817 0.935359i
\(951\) 0 0
\(952\) −5.65178 + 12.6941i −0.183175 + 0.411418i
\(953\) −2.50261 7.70223i −0.0810674 0.249500i 0.902306 0.431097i \(-0.141873\pi\)
−0.983373 + 0.181597i \(0.941873\pi\)
\(954\) 0 0
\(955\) 17.2791 + 12.5540i 0.559138 + 0.406237i
\(956\) −8.83074 15.2953i −0.285607 0.494685i
\(957\) 0 0
\(958\) −16.4028 + 28.4104i −0.529949 + 0.917899i
\(959\) −75.8077 + 33.7517i −2.44796 + 1.08990i
\(960\) 0 0
\(961\) −1.86203 + 2.06800i −0.0600656 + 0.0667096i
\(962\) −3.64210 5.01292i −0.117426 0.161623i
\(963\) 0 0
\(964\) 8.66885 2.81668i 0.279205 0.0907192i
\(965\) −7.23921 + 1.53874i −0.233038 + 0.0495338i
\(966\) 0 0
\(967\) 8.61320 + 4.97284i 0.276982 + 0.159916i 0.632056 0.774922i \(-0.282211\pi\)
−0.355074 + 0.934838i \(0.615544\pi\)
\(968\) 11.3148 + 8.45117i 0.363671 + 0.271631i
\(969\) 0 0
\(970\) 31.4528 + 3.30582i 1.00989 + 0.106144i
\(971\) −36.6171 11.8976i −1.17510 0.381813i −0.344555 0.938766i \(-0.611970\pi\)
−0.830544 + 0.556953i \(0.811970\pi\)
\(972\) 0 0
\(973\) 40.6068 29.5025i 1.30179 0.945808i
\(974\) 43.1015 + 19.1900i 1.38106 + 0.614887i
\(975\) 0 0
\(976\) 4.33624 3.90437i 0.138800 0.124976i
\(977\) 8.26143 + 18.5555i 0.264307 + 0.593642i 0.996134 0.0878477i \(-0.0279989\pi\)
−0.731827 + 0.681490i \(0.761332\pi\)
\(978\) 0 0
\(979\) −27.7354 + 19.8725i −0.886426 + 0.635127i
\(980\) 25.5281i 0.815464i
\(981\) 0 0
\(982\) −4.11112 + 12.6527i −0.131191 + 0.403765i
\(983\) 7.22568 + 6.50603i 0.230464 + 0.207510i 0.776269 0.630401i \(-0.217110\pi\)
−0.545806 + 0.837912i \(0.683776\pi\)
\(984\) 0 0
\(985\) −26.9011 + 2.82742i −0.857139 + 0.0900889i
\(986\) 6.72924 + 1.43034i 0.214303 + 0.0455515i
\(987\) 0 0
\(988\) 1.88832 17.9661i 0.0600753 0.571579i
\(989\) 7.53327 0.239544
\(990\) 0 0
\(991\) −22.9196 −0.728065 −0.364032 0.931386i \(-0.618600\pi\)
−0.364032 + 0.931386i \(0.618600\pi\)
\(992\) −3.52566 + 33.5444i −0.111940 + 1.06504i
\(993\) 0 0
\(994\) 33.0393 + 7.02272i 1.04794 + 0.222747i
\(995\) 11.1223 1.16900i 0.352600 0.0370598i
\(996\) 0 0
\(997\) 15.9789 + 14.3875i 0.506057 + 0.455656i 0.882179 0.470914i \(-0.156076\pi\)
−0.376122 + 0.926570i \(0.622743\pi\)
\(998\) 5.28139 16.2544i 0.167179 0.514525i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.t.a.260.8 80
3.2 odd 2 99.2.p.a.95.3 yes 80
9.2 odd 6 inner 297.2.t.a.62.8 80
9.4 even 3 891.2.k.a.161.16 80
9.5 odd 6 891.2.k.a.161.5 80
9.7 even 3 99.2.p.a.29.3 80
11.8 odd 10 inner 297.2.t.a.206.8 80
33.8 even 10 99.2.p.a.41.3 yes 80
99.41 even 30 891.2.k.a.404.16 80
99.52 odd 30 99.2.p.a.74.3 yes 80
99.74 even 30 inner 297.2.t.a.8.8 80
99.85 odd 30 891.2.k.a.404.5 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.3 80 9.7 even 3
99.2.p.a.41.3 yes 80 33.8 even 10
99.2.p.a.74.3 yes 80 99.52 odd 30
99.2.p.a.95.3 yes 80 3.2 odd 2
297.2.t.a.8.8 80 99.74 even 30 inner
297.2.t.a.62.8 80 9.2 odd 6 inner
297.2.t.a.206.8 80 11.8 odd 10 inner
297.2.t.a.260.8 80 1.1 even 1 trivial
891.2.k.a.161.5 80 9.5 odd 6
891.2.k.a.161.16 80 9.4 even 3
891.2.k.a.404.5 80 99.85 odd 30
891.2.k.a.404.16 80 99.41 even 30