Properties

Label 297.2.t.a.260.5
Level $297$
Weight $2$
Character 297.260
Analytic conductor $2.372$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(8,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.8");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.t (of order \(30\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 260.5
Character \(\chi\) \(=\) 297.260
Dual form 297.2.t.a.8.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0386735 + 0.367954i) q^{2} +(1.82240 + 0.387363i) q^{4} +(2.36345 - 0.248408i) q^{5} +(1.17198 + 1.05526i) q^{7} +(-0.441671 + 1.35932i) q^{8} +0.879247i q^{10} +(-3.26686 + 0.572386i) q^{11} +(-2.49300 - 5.59938i) q^{13} +(-0.433611 + 0.390425i) q^{14} +(2.92099 + 1.30051i) q^{16} +(-0.887473 + 0.644787i) q^{17} +(-0.534855 - 0.173785i) q^{19} +(4.40337 + 0.462813i) q^{20} +(-0.0842709 - 1.22419i) q^{22} +(4.81854 + 2.78199i) q^{23} +(0.633436 - 0.134641i) q^{25} +(2.15673 - 0.700764i) q^{26} +(1.72705 + 2.37708i) q^{28} +(0.496707 - 0.551649i) q^{29} +(-5.78029 + 2.57355i) q^{31} +(-2.02077 + 3.50008i) q^{32} +(-0.202930 - 0.351486i) q^{34} +(3.03205 + 2.20291i) q^{35} +(1.32443 + 4.07617i) q^{37} +(0.0846296 - 0.190081i) q^{38} +(-0.706199 + 3.32241i) q^{40} +(-8.13175 - 9.03123i) q^{41} +(7.35471 - 4.24624i) q^{43} +(-6.17525 - 0.222344i) q^{44} +(-1.20999 + 1.66541i) q^{46} +(0.160007 + 0.752776i) q^{47} +(-0.471726 - 4.48817i) q^{49} +(0.0250445 + 0.238282i) q^{50} +(-2.37426 - 11.1700i) q^{52} +(2.66042 - 3.66175i) q^{53} +(-7.57886 + 2.16432i) q^{55} +(-1.95207 + 1.12703i) q^{56} +(0.183772 + 0.204100i) q^{58} +(-0.00233571 + 0.0109886i) q^{59} +(-2.33096 + 5.23542i) q^{61} +(-0.723404 - 2.22641i) q^{62} +(3.96382 + 2.87988i) q^{64} +(-7.28302 - 12.6146i) q^{65} +(-0.738332 + 1.27883i) q^{67} +(-1.86710 + 0.831285i) q^{68} +(-0.927831 + 1.03046i) q^{70} +(-4.89992 - 6.74417i) q^{71} +(-14.9894 + 4.87035i) q^{73} +(-1.55106 + 0.329689i) q^{74} +(-0.907402 - 0.523889i) q^{76} +(-4.43271 - 2.77655i) q^{77} +(-3.16382 - 0.332531i) q^{79} +(7.22666 + 2.34809i) q^{80} +(3.63756 - 2.64284i) q^{82} +(9.48546 + 4.22320i) q^{83} +(-1.93732 + 1.74437i) q^{85} +(1.27799 + 2.87041i) q^{86} +(0.664820 - 4.69353i) q^{88} -9.01115i q^{89} +(2.98703 - 9.19313i) q^{91} +(7.70368 + 6.93642i) q^{92} +(-0.283175 + 0.0297629i) q^{94} +(-1.30727 - 0.277869i) q^{95} +(-0.579063 + 5.50942i) q^{97} +1.66968 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 15 q^{2} + 5 q^{4} + 6 q^{5} - 5 q^{7} + 3 q^{11} - 5 q^{13} + 9 q^{14} + 5 q^{16} - 50 q^{19} + 3 q^{20} - 11 q^{22} + 42 q^{23} - 2 q^{25} - 20 q^{28} - 30 q^{29} - 6 q^{31} - 10 q^{34} - 6 q^{37}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0386735 + 0.367954i −0.0273463 + 0.260183i 0.972304 + 0.233722i \(0.0750905\pi\)
−0.999650 + 0.0264611i \(0.991576\pi\)
\(3\) 0 0
\(4\) 1.82240 + 0.387363i 0.911200 + 0.193682i
\(5\) 2.36345 0.248408i 1.05697 0.111092i 0.439934 0.898030i \(-0.355002\pi\)
0.617031 + 0.786939i \(0.288335\pi\)
\(6\) 0 0
\(7\) 1.17198 + 1.05526i 0.442967 + 0.398850i 0.860205 0.509948i \(-0.170335\pi\)
−0.417238 + 0.908797i \(0.637002\pi\)
\(8\) −0.441671 + 1.35932i −0.156154 + 0.480594i
\(9\) 0 0
\(10\) 0.879247i 0.278042i
\(11\) −3.26686 + 0.572386i −0.984995 + 0.172581i
\(12\) 0 0
\(13\) −2.49300 5.59938i −0.691435 1.55299i −0.826989 0.562219i \(-0.809948\pi\)
0.135553 0.990770i \(-0.456719\pi\)
\(14\) −0.433611 + 0.390425i −0.115887 + 0.104345i
\(15\) 0 0
\(16\) 2.92099 + 1.30051i 0.730248 + 0.325127i
\(17\) −0.887473 + 0.644787i −0.215244 + 0.156384i −0.690183 0.723635i \(-0.742470\pi\)
0.474939 + 0.880019i \(0.342470\pi\)
\(18\) 0 0
\(19\) −0.534855 0.173785i −0.122704 0.0398690i 0.247021 0.969010i \(-0.420548\pi\)
−0.369725 + 0.929141i \(0.620548\pi\)
\(20\) 4.40337 + 0.462813i 0.984624 + 0.103488i
\(21\) 0 0
\(22\) −0.0842709 1.22419i −0.0179666 0.260998i
\(23\) 4.81854 + 2.78199i 1.00474 + 0.580085i 0.909646 0.415384i \(-0.136353\pi\)
0.0950898 + 0.995469i \(0.469686\pi\)
\(24\) 0 0
\(25\) 0.633436 0.134641i 0.126687 0.0269282i
\(26\) 2.15673 0.700764i 0.422969 0.137431i
\(27\) 0 0
\(28\) 1.72705 + 2.37708i 0.326382 + 0.449227i
\(29\) 0.496707 0.551649i 0.0922363 0.102439i −0.695260 0.718759i \(-0.744711\pi\)
0.787496 + 0.616320i \(0.211377\pi\)
\(30\) 0 0
\(31\) −5.78029 + 2.57355i −1.03817 + 0.462223i −0.853782 0.520630i \(-0.825697\pi\)
−0.184388 + 0.982854i \(0.559030\pi\)
\(32\) −2.02077 + 3.50008i −0.357225 + 0.618732i
\(33\) 0 0
\(34\) −0.202930 0.351486i −0.0348023 0.0602793i
\(35\) 3.03205 + 2.20291i 0.512510 + 0.372360i
\(36\) 0 0
\(37\) 1.32443 + 4.07617i 0.217735 + 0.670118i 0.998948 + 0.0458543i \(0.0146010\pi\)
−0.781214 + 0.624264i \(0.785399\pi\)
\(38\) 0.0846296 0.190081i 0.0137287 0.0308352i
\(39\) 0 0
\(40\) −0.706199 + 3.32241i −0.111660 + 0.525319i
\(41\) −8.13175 9.03123i −1.26997 1.41044i −0.869352 0.494194i \(-0.835463\pi\)
−0.400614 0.916247i \(-0.631203\pi\)
\(42\) 0 0
\(43\) 7.35471 4.24624i 1.12158 0.647546i 0.179778 0.983707i \(-0.442462\pi\)
0.941804 + 0.336162i \(0.109129\pi\)
\(44\) −6.17525 0.222344i −0.930954 0.0335197i
\(45\) 0 0
\(46\) −1.20999 + 1.66541i −0.178404 + 0.245552i
\(47\) 0.160007 + 0.752776i 0.0233395 + 0.109804i 0.988275 0.152682i \(-0.0487911\pi\)
−0.964936 + 0.262486i \(0.915458\pi\)
\(48\) 0 0
\(49\) −0.471726 4.48817i −0.0673894 0.641167i
\(50\) 0.0250445 + 0.238282i 0.00354183 + 0.0336982i
\(51\) 0 0
\(52\) −2.37426 11.1700i −0.329251 1.54900i
\(53\) 2.66042 3.66175i 0.365437 0.502981i −0.586217 0.810154i \(-0.699383\pi\)
0.951653 + 0.307174i \(0.0993833\pi\)
\(54\) 0 0
\(55\) −7.57886 + 2.16432i −1.02193 + 0.291837i
\(56\) −1.95207 + 1.12703i −0.260856 + 0.150605i
\(57\) 0 0
\(58\) 0.183772 + 0.204100i 0.0241305 + 0.0267996i
\(59\) −0.00233571 + 0.0109886i −0.000304083 + 0.00143060i −0.978299 0.207196i \(-0.933566\pi\)
0.977995 + 0.208627i \(0.0668994\pi\)
\(60\) 0 0
\(61\) −2.33096 + 5.23542i −0.298449 + 0.670327i −0.999066 0.0432102i \(-0.986241\pi\)
0.700617 + 0.713537i \(0.252908\pi\)
\(62\) −0.723404 2.22641i −0.0918724 0.282754i
\(63\) 0 0
\(64\) 3.96382 + 2.87988i 0.495477 + 0.359985i
\(65\) −7.28302 12.6146i −0.903347 1.56464i
\(66\) 0 0
\(67\) −0.738332 + 1.27883i −0.0902017 + 0.156234i −0.907596 0.419845i \(-0.862084\pi\)
0.817394 + 0.576079i \(0.195418\pi\)
\(68\) −1.86710 + 0.831285i −0.226419 + 0.100808i
\(69\) 0 0
\(70\) −0.927831 + 1.03046i −0.110897 + 0.123164i
\(71\) −4.89992 6.74417i −0.581514 0.800385i 0.412346 0.911027i \(-0.364709\pi\)
−0.993860 + 0.110642i \(0.964709\pi\)
\(72\) 0 0
\(73\) −14.9894 + 4.87035i −1.75438 + 0.570031i −0.996593 0.0824752i \(-0.973717\pi\)
−0.757783 + 0.652507i \(0.773717\pi\)
\(74\) −1.55106 + 0.329689i −0.180308 + 0.0383256i
\(75\) 0 0
\(76\) −0.907402 0.523889i −0.104086 0.0600941i
\(77\) −4.43271 2.77655i −0.505155 0.316417i
\(78\) 0 0
\(79\) −3.16382 0.332531i −0.355957 0.0374126i −0.0751377 0.997173i \(-0.523940\pi\)
−0.280820 + 0.959761i \(0.590606\pi\)
\(80\) 7.22666 + 2.34809i 0.807965 + 0.262524i
\(81\) 0 0
\(82\) 3.63756 2.64284i 0.401701 0.291853i
\(83\) 9.48546 + 4.22320i 1.04116 + 0.463556i 0.854818 0.518928i \(-0.173669\pi\)
0.186346 + 0.982484i \(0.440335\pi\)
\(84\) 0 0
\(85\) −1.93732 + 1.74437i −0.210132 + 0.189204i
\(86\) 1.27799 + 2.87041i 0.137809 + 0.309524i
\(87\) 0 0
\(88\) 0.664820 4.69353i 0.0708700 0.500332i
\(89\) 9.01115i 0.955180i −0.878583 0.477590i \(-0.841511\pi\)
0.878583 0.477590i \(-0.158489\pi\)
\(90\) 0 0
\(91\) 2.98703 9.19313i 0.313126 0.963702i
\(92\) 7.70368 + 6.93642i 0.803164 + 0.723172i
\(93\) 0 0
\(94\) −0.283175 + 0.0297629i −0.0292073 + 0.00306981i
\(95\) −1.30727 0.277869i −0.134123 0.0285087i
\(96\) 0 0
\(97\) −0.579063 + 5.50942i −0.0587950 + 0.559397i 0.924983 + 0.380008i \(0.124079\pi\)
−0.983778 + 0.179389i \(0.942588\pi\)
\(98\) 1.66968 0.168664
\(99\) 0 0
\(100\) 1.20653 0.120653
\(101\) −1.01759 + 9.68168i −0.101254 + 0.963363i 0.819463 + 0.573132i \(0.194272\pi\)
−0.920717 + 0.390231i \(0.872395\pi\)
\(102\) 0 0
\(103\) −1.85159 0.393567i −0.182442 0.0387793i 0.115785 0.993274i \(-0.463062\pi\)
−0.298227 + 0.954495i \(0.596395\pi\)
\(104\) 8.71247 0.915717i 0.854328 0.0897934i
\(105\) 0 0
\(106\) 1.24447 + 1.12053i 0.120874 + 0.108835i
\(107\) −3.79203 + 11.6707i −0.366590 + 1.12825i 0.582390 + 0.812910i \(0.302118\pi\)
−0.948980 + 0.315337i \(0.897882\pi\)
\(108\) 0 0
\(109\) 8.79322i 0.842238i −0.907005 0.421119i \(-0.861638\pi\)
0.907005 0.421119i \(-0.138362\pi\)
\(110\) −0.503269 2.87238i −0.0479848 0.273870i
\(111\) 0 0
\(112\) 2.05098 + 4.60657i 0.193799 + 0.435280i
\(113\) −0.0344743 + 0.0310408i −0.00324307 + 0.00292007i −0.670751 0.741683i \(-0.734028\pi\)
0.667507 + 0.744603i \(0.267361\pi\)
\(114\) 0 0
\(115\) 12.0794 + 5.37811i 1.12641 + 0.501512i
\(116\) 1.11889 0.812920i 0.103886 0.0754777i
\(117\) 0 0
\(118\) −0.00395298 0.00128440i −0.000363902 0.000118239i
\(119\) −1.72052 0.180834i −0.157720 0.0165770i
\(120\) 0 0
\(121\) 10.3447 3.73981i 0.940432 0.339983i
\(122\) −1.83625 1.06016i −0.166246 0.0959823i
\(123\) 0 0
\(124\) −11.5309 + 2.45097i −1.03551 + 0.220103i
\(125\) −9.83712 + 3.19627i −0.879859 + 0.285883i
\(126\) 0 0
\(127\) 3.88014 + 5.34055i 0.344307 + 0.473898i 0.945693 0.325061i \(-0.105385\pi\)
−0.601386 + 0.798958i \(0.705385\pi\)
\(128\) −6.62160 + 7.35403i −0.585272 + 0.650011i
\(129\) 0 0
\(130\) 4.92324 2.19197i 0.431797 0.192248i
\(131\) 3.94169 6.82720i 0.344387 0.596495i −0.640855 0.767662i \(-0.721420\pi\)
0.985242 + 0.171166i \(0.0547536\pi\)
\(132\) 0 0
\(133\) −0.443452 0.768082i −0.0384522 0.0666011i
\(134\) −0.441997 0.321129i −0.0381827 0.0277414i
\(135\) 0 0
\(136\) −0.484503 1.49115i −0.0415458 0.127865i
\(137\) 7.18217 16.1314i 0.613614 1.37820i −0.292948 0.956128i \(-0.594636\pi\)
0.906562 0.422072i \(-0.138697\pi\)
\(138\) 0 0
\(139\) 2.92780 13.7742i 0.248333 1.16831i −0.660393 0.750920i \(-0.729610\pi\)
0.908726 0.417393i \(-0.137056\pi\)
\(140\) 4.67228 + 5.18910i 0.394880 + 0.438559i
\(141\) 0 0
\(142\) 2.67104 1.54213i 0.224149 0.129412i
\(143\) 11.3493 + 16.8654i 0.949077 + 1.41036i
\(144\) 0 0
\(145\) 1.03691 1.42718i 0.0861105 0.118521i
\(146\) −1.21237 5.70376i −0.100337 0.472047i
\(147\) 0 0
\(148\) 0.834680 + 7.94145i 0.0686103 + 0.652783i
\(149\) 1.48901 + 14.1670i 0.121985 + 1.16061i 0.868657 + 0.495415i \(0.164984\pi\)
−0.746672 + 0.665193i \(0.768349\pi\)
\(150\) 0 0
\(151\) 0.535628 + 2.51993i 0.0435888 + 0.205069i 0.994553 0.104232i \(-0.0332383\pi\)
−0.950964 + 0.309301i \(0.899905\pi\)
\(152\) 0.472460 0.650285i 0.0383216 0.0527451i
\(153\) 0 0
\(154\) 1.19307 1.52366i 0.0961405 0.122780i
\(155\) −13.0221 + 7.51832i −1.04596 + 0.603886i
\(156\) 0 0
\(157\) 3.80983 + 4.23125i 0.304058 + 0.337690i 0.875738 0.482786i \(-0.160375\pi\)
−0.571681 + 0.820476i \(0.693708\pi\)
\(158\) 0.244712 1.15128i 0.0194683 0.0915909i
\(159\) 0 0
\(160\) −3.90654 + 8.77423i −0.308839 + 0.693663i
\(161\) 2.71153 + 8.34524i 0.213699 + 0.657697i
\(162\) 0 0
\(163\) 6.92500 + 5.03131i 0.542408 + 0.394083i 0.824979 0.565164i \(-0.191187\pi\)
−0.282570 + 0.959247i \(0.591187\pi\)
\(164\) −11.3209 19.6085i −0.884017 1.53116i
\(165\) 0 0
\(166\) −1.92078 + 3.32689i −0.149081 + 0.258217i
\(167\) 2.78662 1.24068i 0.215635 0.0960071i −0.296076 0.955164i \(-0.595678\pi\)
0.511712 + 0.859157i \(0.329012\pi\)
\(168\) 0 0
\(169\) −16.4393 + 18.2577i −1.26456 + 1.40444i
\(170\) −0.566927 0.780308i −0.0434813 0.0598469i
\(171\) 0 0
\(172\) 15.0481 4.88941i 1.14740 0.372814i
\(173\) 11.1264 2.36499i 0.845926 0.179807i 0.235494 0.971876i \(-0.424329\pi\)
0.610432 + 0.792069i \(0.290996\pi\)
\(174\) 0 0
\(175\) 0.884456 + 0.510641i 0.0668586 + 0.0386008i
\(176\) −10.2869 2.57665i −0.775401 0.194222i
\(177\) 0 0
\(178\) 3.31569 + 0.348493i 0.248521 + 0.0261207i
\(179\) −10.1952 3.31261i −0.762023 0.247596i −0.0978766 0.995199i \(-0.531205\pi\)
−0.664147 + 0.747602i \(0.731205\pi\)
\(180\) 0 0
\(181\) 14.3857 10.4518i 1.06928 0.776879i 0.0934987 0.995619i \(-0.470195\pi\)
0.975783 + 0.218741i \(0.0701949\pi\)
\(182\) 3.26713 + 1.45462i 0.242176 + 0.107824i
\(183\) 0 0
\(184\) −5.90984 + 5.32124i −0.435679 + 0.392287i
\(185\) 4.14277 + 9.30481i 0.304582 + 0.684103i
\(186\) 0 0
\(187\) 2.53018 2.61441i 0.185025 0.191184i
\(188\) 1.43384i 0.104574i
\(189\) 0 0
\(190\) 0.152800 0.470269i 0.0110853 0.0341169i
\(191\) 15.1944 + 13.6811i 1.09943 + 0.989927i 0.999987 0.00511682i \(-0.00162874\pi\)
0.0994383 + 0.995044i \(0.468295\pi\)
\(192\) 0 0
\(193\) 15.1954 1.59710i 1.09379 0.114962i 0.459589 0.888132i \(-0.347997\pi\)
0.634199 + 0.773170i \(0.281330\pi\)
\(194\) −2.00482 0.426138i −0.143938 0.0305949i
\(195\) 0 0
\(196\) 0.878879 8.36197i 0.0627770 0.597284i
\(197\) 13.1024 0.933507 0.466754 0.884387i \(-0.345424\pi\)
0.466754 + 0.884387i \(0.345424\pi\)
\(198\) 0 0
\(199\) −4.72311 −0.334812 −0.167406 0.985888i \(-0.553539\pi\)
−0.167406 + 0.985888i \(0.553539\pi\)
\(200\) −0.0967497 + 0.920512i −0.00684124 + 0.0650900i
\(201\) 0 0
\(202\) −3.52306 0.748850i −0.247882 0.0526889i
\(203\) 1.16426 0.122369i 0.0817153 0.00858862i
\(204\) 0 0
\(205\) −21.4624 19.3248i −1.49900 1.34970i
\(206\) 0.216422 0.666078i 0.0150788 0.0464078i
\(207\) 0 0
\(208\) 19.5979i 1.35887i
\(209\) 1.84677 + 0.261587i 0.127744 + 0.0180944i
\(210\) 0 0
\(211\) 7.94634 + 17.8478i 0.547049 + 1.22869i 0.949649 + 0.313316i \(0.101440\pi\)
−0.402600 + 0.915376i \(0.631893\pi\)
\(212\) 6.26678 5.64263i 0.430404 0.387538i
\(213\) 0 0
\(214\) −4.14762 1.84664i −0.283526 0.126234i
\(215\) 16.3277 11.8627i 1.11354 0.809032i
\(216\) 0 0
\(217\) −9.49015 3.08354i −0.644233 0.209324i
\(218\) 3.23550 + 0.340065i 0.219136 + 0.0230321i
\(219\) 0 0
\(220\) −14.6501 + 1.00848i −0.987710 + 0.0679920i
\(221\) 5.82288 + 3.36184i 0.391689 + 0.226142i
\(222\) 0 0
\(223\) 16.0707 3.41593i 1.07617 0.228748i 0.364461 0.931219i \(-0.381253\pi\)
0.711712 + 0.702471i \(0.247920\pi\)
\(224\) −6.06179 + 1.96959i −0.405020 + 0.131599i
\(225\) 0 0
\(226\) −0.0100884 0.0138854i −0.000671067 0.000923645i
\(227\) −18.1769 + 20.1875i −1.20645 + 1.33989i −0.281610 + 0.959529i \(0.590869\pi\)
−0.924836 + 0.380366i \(0.875798\pi\)
\(228\) 0 0
\(229\) −3.96055 + 1.76335i −0.261720 + 0.116525i −0.533402 0.845862i \(-0.679087\pi\)
0.271682 + 0.962387i \(0.412420\pi\)
\(230\) −2.44605 + 4.23669i −0.161288 + 0.279359i
\(231\) 0 0
\(232\) 0.530489 + 0.918835i 0.0348283 + 0.0603244i
\(233\) −9.48697 6.89268i −0.621512 0.451555i 0.231937 0.972731i \(-0.425494\pi\)
−0.853449 + 0.521176i \(0.825494\pi\)
\(234\) 0 0
\(235\) 0.565165 + 1.73940i 0.0368673 + 0.113466i
\(236\) −0.00851319 + 0.0191209i −0.000554161 + 0.00124467i
\(237\) 0 0
\(238\) 0.133077 0.626078i 0.00862610 0.0405826i
\(239\) −12.0054 13.3334i −0.776566 0.862464i 0.216947 0.976183i \(-0.430390\pi\)
−0.993513 + 0.113719i \(0.963724\pi\)
\(240\) 0 0
\(241\) 2.31388 1.33592i 0.149050 0.0860541i −0.423620 0.905840i \(-0.639241\pi\)
0.572670 + 0.819786i \(0.305908\pi\)
\(242\) 0.976011 + 3.95102i 0.0627404 + 0.253982i
\(243\) 0 0
\(244\) −6.27595 + 8.63811i −0.401777 + 0.552998i
\(245\) −2.22980 10.4904i −0.142456 0.670205i
\(246\) 0 0
\(247\) 0.360308 + 3.42810i 0.0229258 + 0.218125i
\(248\) −0.945302 8.99395i −0.0600268 0.571116i
\(249\) 0 0
\(250\) −0.795646 3.74322i −0.0503211 0.236742i
\(251\) −7.98861 + 10.9954i −0.504237 + 0.694022i −0.982934 0.183958i \(-0.941109\pi\)
0.478697 + 0.877980i \(0.341109\pi\)
\(252\) 0 0
\(253\) −17.3339 6.33030i −1.08977 0.397982i
\(254\) −2.11514 + 1.22118i −0.132716 + 0.0766234i
\(255\) 0 0
\(256\) 4.10701 + 4.56130i 0.256688 + 0.285081i
\(257\) 0.988609 4.65104i 0.0616677 0.290124i −0.936497 0.350675i \(-0.885952\pi\)
0.998165 + 0.0605507i \(0.0192857\pi\)
\(258\) 0 0
\(259\) −2.74920 + 6.17481i −0.170827 + 0.383684i
\(260\) −8.38616 25.8099i −0.520088 1.60066i
\(261\) 0 0
\(262\) 2.35966 + 1.71439i 0.145780 + 0.105915i
\(263\) 9.26116 + 16.0408i 0.571067 + 0.989118i 0.996457 + 0.0841073i \(0.0268039\pi\)
−0.425389 + 0.905010i \(0.639863\pi\)
\(264\) 0 0
\(265\) 5.37815 9.31523i 0.330377 0.572230i
\(266\) 0.299769 0.133466i 0.0183800 0.00818330i
\(267\) 0 0
\(268\) −1.84091 + 2.04454i −0.112451 + 0.124890i
\(269\) −12.6954 17.4737i −0.774049 1.06539i −0.995914 0.0903100i \(-0.971214\pi\)
0.221864 0.975078i \(-0.428786\pi\)
\(270\) 0 0
\(271\) −0.869236 + 0.282432i −0.0528023 + 0.0171565i −0.335299 0.942112i \(-0.608837\pi\)
0.282497 + 0.959268i \(0.408837\pi\)
\(272\) −3.43085 + 0.729250i −0.208026 + 0.0442173i
\(273\) 0 0
\(274\) 5.65786 + 3.26657i 0.341804 + 0.197341i
\(275\) −1.99228 + 0.802423i −0.120139 + 0.0483879i
\(276\) 0 0
\(277\) −14.7319 1.54838i −0.885153 0.0930333i −0.348969 0.937134i \(-0.613468\pi\)
−0.536184 + 0.844101i \(0.680135\pi\)
\(278\) 4.95505 + 1.60999i 0.297184 + 0.0965610i
\(279\) 0 0
\(280\) −4.33365 + 3.14858i −0.258985 + 0.188164i
\(281\) 1.67870 + 0.747406i 0.100143 + 0.0445865i 0.456197 0.889879i \(-0.349211\pi\)
−0.356054 + 0.934465i \(0.615878\pi\)
\(282\) 0 0
\(283\) 8.96978 8.07643i 0.533198 0.480094i −0.357991 0.933725i \(-0.616538\pi\)
0.891190 + 0.453631i \(0.149872\pi\)
\(284\) −6.31718 14.1886i −0.374856 0.841940i
\(285\) 0 0
\(286\) −6.64462 + 3.52378i −0.392905 + 0.208365i
\(287\) 19.1655i 1.13130i
\(288\) 0 0
\(289\) −4.88143 + 15.0235i −0.287143 + 0.883735i
\(290\) 0.485036 + 0.436728i 0.0284823 + 0.0256456i
\(291\) 0 0
\(292\) −29.2033 + 3.06939i −1.70899 + 0.179622i
\(293\) 16.7085 + 3.55150i 0.976120 + 0.207481i 0.668241 0.743945i \(-0.267048\pi\)
0.307879 + 0.951426i \(0.400381\pi\)
\(294\) 0 0
\(295\) −0.00279065 + 0.0265513i −0.000162478 + 0.00154587i
\(296\) −6.12580 −0.356055
\(297\) 0 0
\(298\) −5.27040 −0.305306
\(299\) 3.56475 33.9164i 0.206155 1.96143i
\(300\) 0 0
\(301\) 13.1005 + 2.78459i 0.755098 + 0.160501i
\(302\) −0.947934 + 0.0996319i −0.0545475 + 0.00573317i
\(303\) 0 0
\(304\) −1.33630 1.20321i −0.0766419 0.0690087i
\(305\) −4.20858 + 12.9527i −0.240983 + 0.741668i
\(306\) 0 0
\(307\) 16.6906i 0.952585i 0.879287 + 0.476293i \(0.158020\pi\)
−0.879287 + 0.476293i \(0.841980\pi\)
\(308\) −7.00265 6.77706i −0.399013 0.386159i
\(309\) 0 0
\(310\) −2.26279 5.08230i −0.128518 0.288655i
\(311\) −21.9566 + 19.7698i −1.24504 + 1.12104i −0.257074 + 0.966392i \(0.582758\pi\)
−0.987969 + 0.154650i \(0.950575\pi\)
\(312\) 0 0
\(313\) 14.7478 + 6.56615i 0.833596 + 0.371141i 0.778735 0.627353i \(-0.215862\pi\)
0.0548610 + 0.998494i \(0.482528\pi\)
\(314\) −1.70424 + 1.23821i −0.0961761 + 0.0698760i
\(315\) 0 0
\(316\) −5.63693 1.83155i −0.317102 0.103033i
\(317\) −8.33839 0.876400i −0.468331 0.0492235i −0.132576 0.991173i \(-0.542325\pi\)
−0.335755 + 0.941949i \(0.608991\pi\)
\(318\) 0 0
\(319\) −1.30692 + 2.08647i −0.0731733 + 0.116820i
\(320\) 10.0837 + 5.82181i 0.563694 + 0.325449i
\(321\) 0 0
\(322\) −3.17553 + 0.674980i −0.176965 + 0.0376152i
\(323\) 0.586723 0.190638i 0.0326462 0.0106074i
\(324\) 0 0
\(325\) −2.33306 3.21119i −0.129415 0.178125i
\(326\) −2.11911 + 2.35351i −0.117366 + 0.130349i
\(327\) 0 0
\(328\) 15.8679 7.06486i 0.876160 0.390092i
\(329\) −0.606846 + 1.05109i −0.0334565 + 0.0579484i
\(330\) 0 0
\(331\) 0.503541 + 0.872158i 0.0276771 + 0.0479381i 0.879532 0.475839i \(-0.157856\pi\)
−0.851855 + 0.523778i \(0.824522\pi\)
\(332\) 15.6504 + 11.3707i 0.858927 + 0.624047i
\(333\) 0 0
\(334\) 0.348746 + 1.07333i 0.0190826 + 0.0587301i
\(335\) −1.42734 + 3.20585i −0.0779838 + 0.175154i
\(336\) 0 0
\(337\) −4.61956 + 21.7333i −0.251644 + 1.18389i 0.652878 + 0.757463i \(0.273561\pi\)
−0.904522 + 0.426427i \(0.859772\pi\)
\(338\) −6.08223 6.75500i −0.330829 0.367423i
\(339\) 0 0
\(340\) −4.20629 + 2.42850i −0.228118 + 0.131704i
\(341\) 17.4103 11.7160i 0.942822 0.634456i
\(342\) 0 0
\(343\) 10.6721 14.6889i 0.576240 0.793126i
\(344\) 2.52366 + 11.8729i 0.136067 + 0.640143i
\(345\) 0 0
\(346\) 0.439911 + 4.18547i 0.0236498 + 0.225012i
\(347\) 1.25369 + 11.9281i 0.0673017 + 0.640333i 0.975228 + 0.221203i \(0.0709982\pi\)
−0.907926 + 0.419130i \(0.862335\pi\)
\(348\) 0 0
\(349\) 2.11394 + 9.94531i 0.113157 + 0.532360i 0.997812 + 0.0661146i \(0.0210603\pi\)
−0.884655 + 0.466245i \(0.845606\pi\)
\(350\) −0.222097 + 0.305691i −0.0118716 + 0.0163399i
\(351\) 0 0
\(352\) 4.59818 12.5909i 0.245084 0.671099i
\(353\) 3.99680 2.30756i 0.212728 0.122819i −0.389850 0.920878i \(-0.627473\pi\)
0.602579 + 0.798059i \(0.294140\pi\)
\(354\) 0 0
\(355\) −13.2560 14.7223i −0.703556 0.781378i
\(356\) 3.49059 16.4219i 0.185001 0.870360i
\(357\) 0 0
\(358\) 1.61317 3.62325i 0.0852589 0.191495i
\(359\) 2.51158 + 7.72985i 0.132556 + 0.407966i 0.995202 0.0978426i \(-0.0311942\pi\)
−0.862646 + 0.505809i \(0.831194\pi\)
\(360\) 0 0
\(361\) −15.1155 10.9820i −0.795550 0.578001i
\(362\) 3.28945 + 5.69749i 0.172890 + 0.299454i
\(363\) 0 0
\(364\) 9.00465 15.5965i 0.471972 0.817479i
\(365\) −34.2168 + 15.2343i −1.79099 + 0.797400i
\(366\) 0 0
\(367\) 25.3961 28.2052i 1.32567 1.47230i 0.561111 0.827740i \(-0.310374\pi\)
0.764554 0.644560i \(-0.222959\pi\)
\(368\) 10.4569 + 14.3927i 0.545105 + 0.750272i
\(369\) 0 0
\(370\) −3.58396 + 1.16450i −0.186321 + 0.0605394i
\(371\) 6.98206 1.48408i 0.362490 0.0770497i
\(372\) 0 0
\(373\) −5.61495 3.24179i −0.290731 0.167854i 0.347540 0.937665i \(-0.387017\pi\)
−0.638272 + 0.769811i \(0.720350\pi\)
\(374\) 0.864130 + 1.03210i 0.0446831 + 0.0533686i
\(375\) 0 0
\(376\) −1.09394 0.114978i −0.0564155 0.00592951i
\(377\) −4.32719 1.40599i −0.222862 0.0724121i
\(378\) 0 0
\(379\) −10.0492 + 7.30119i −0.516194 + 0.375037i −0.815168 0.579224i \(-0.803356\pi\)
0.298974 + 0.954261i \(0.403356\pi\)
\(380\) −2.27473 1.01278i −0.116691 0.0519544i
\(381\) 0 0
\(382\) −5.62162 + 5.06173i −0.287627 + 0.258981i
\(383\) −5.80437 13.0368i −0.296590 0.666151i 0.702367 0.711815i \(-0.252126\pi\)
−0.998957 + 0.0456636i \(0.985460\pi\)
\(384\) 0 0
\(385\) −11.1662 5.46111i −0.569082 0.278324i
\(386\) 5.65297i 0.287729i
\(387\) 0 0
\(388\) −3.18943 + 9.81606i −0.161919 + 0.498335i
\(389\) 8.00313 + 7.20605i 0.405775 + 0.365361i 0.846598 0.532233i \(-0.178647\pi\)
−0.440823 + 0.897594i \(0.645313\pi\)
\(390\) 0 0
\(391\) −6.07012 + 0.637995i −0.306979 + 0.0322648i
\(392\) 6.30923 + 1.34107i 0.318664 + 0.0677342i
\(393\) 0 0
\(394\) −0.506716 + 4.82108i −0.0255280 + 0.242883i
\(395\) −7.56012 −0.380391
\(396\) 0 0
\(397\) 13.8356 0.694387 0.347193 0.937794i \(-0.387135\pi\)
0.347193 + 0.937794i \(0.387135\pi\)
\(398\) 0.182659 1.73789i 0.00915589 0.0871125i
\(399\) 0 0
\(400\) 2.02536 + 0.430504i 0.101268 + 0.0215252i
\(401\) 35.6592 3.74793i 1.78073 0.187163i 0.843797 0.536663i \(-0.180315\pi\)
0.936936 + 0.349500i \(0.113649\pi\)
\(402\) 0 0
\(403\) 28.8206 + 25.9502i 1.43565 + 1.29267i
\(404\) −5.60477 + 17.2497i −0.278848 + 0.858206i
\(405\) 0 0
\(406\) 0.433128i 0.0214958i
\(407\) −6.65986 12.5582i −0.330117 0.622487i
\(408\) 0 0
\(409\) −6.39194 14.3565i −0.316061 0.709885i 0.683742 0.729724i \(-0.260351\pi\)
−0.999803 + 0.0198391i \(0.993685\pi\)
\(410\) 7.94068 7.14982i 0.392162 0.353104i
\(411\) 0 0
\(412\) −3.22188 1.43447i −0.158730 0.0706714i
\(413\) −0.0143332 + 0.0104137i −0.000705293 + 0.000512425i
\(414\) 0 0
\(415\) 23.4675 + 7.62504i 1.15197 + 0.374298i
\(416\) 24.6361 + 2.58935i 1.20788 + 0.126954i
\(417\) 0 0
\(418\) −0.167673 + 0.669409i −0.00820116 + 0.0327419i
\(419\) 13.1723 + 7.60505i 0.643510 + 0.371531i 0.785965 0.618270i \(-0.212166\pi\)
−0.142455 + 0.989801i \(0.545500\pi\)
\(420\) 0 0
\(421\) 11.8761 2.52435i 0.578807 0.123029i 0.0908001 0.995869i \(-0.471058\pi\)
0.488006 + 0.872840i \(0.337724\pi\)
\(422\) −6.87448 + 2.23365i −0.334644 + 0.108733i
\(423\) 0 0
\(424\) 3.80248 + 5.23367i 0.184665 + 0.254169i
\(425\) −0.475342 + 0.527921i −0.0230575 + 0.0256079i
\(426\) 0 0
\(427\) −8.25656 + 3.67606i −0.399563 + 0.177897i
\(428\) −11.4314 + 19.7998i −0.552557 + 0.957057i
\(429\) 0 0
\(430\) 3.73349 + 6.46660i 0.180045 + 0.311847i
\(431\) 20.7468 + 15.0734i 0.999336 + 0.726060i 0.961946 0.273240i \(-0.0880954\pi\)
0.0373906 + 0.999301i \(0.488095\pi\)
\(432\) 0 0
\(433\) −0.399073 1.22822i −0.0191782 0.0590245i 0.941009 0.338380i \(-0.109879\pi\)
−0.960188 + 0.279356i \(0.909879\pi\)
\(434\) 1.50162 3.37269i 0.0720799 0.161894i
\(435\) 0 0
\(436\) 3.40617 16.0248i 0.163126 0.767447i
\(437\) −2.09375 2.32535i −0.100158 0.111237i
\(438\) 0 0
\(439\) −7.78450 + 4.49438i −0.371534 + 0.214505i −0.674128 0.738614i \(-0.735481\pi\)
0.302595 + 0.953119i \(0.402147\pi\)
\(440\) 0.405354 11.2581i 0.0193245 0.536707i
\(441\) 0 0
\(442\) −1.46220 + 2.01254i −0.0695495 + 0.0957267i
\(443\) 2.98230 + 14.0306i 0.141693 + 0.666614i 0.990455 + 0.137838i \(0.0440154\pi\)
−0.848762 + 0.528776i \(0.822651\pi\)
\(444\) 0 0
\(445\) −2.23844 21.2974i −0.106112 1.00959i
\(446\) 0.635396 + 6.04538i 0.0300869 + 0.286257i
\(447\) 0 0
\(448\) 1.60651 + 7.55802i 0.0759003 + 0.357083i
\(449\) −8.37515 + 11.5274i −0.395248 + 0.544012i −0.959543 0.281561i \(-0.909148\pi\)
0.564296 + 0.825573i \(0.309148\pi\)
\(450\) 0 0
\(451\) 31.7346 + 24.8492i 1.49433 + 1.17011i
\(452\) −0.0748501 + 0.0432147i −0.00352065 + 0.00203265i
\(453\) 0 0
\(454\) −6.72512 7.46901i −0.315626 0.350538i
\(455\) 4.77604 22.4695i 0.223904 1.05339i
\(456\) 0 0
\(457\) 10.5654 23.7302i 0.494227 1.11005i −0.478498 0.878089i \(-0.658818\pi\)
0.972725 0.231963i \(-0.0745149\pi\)
\(458\) −0.495664 1.52550i −0.0231608 0.0712817i
\(459\) 0 0
\(460\) 19.9303 + 14.4802i 0.929255 + 0.675143i
\(461\) −5.82733 10.0932i −0.271406 0.470089i 0.697816 0.716277i \(-0.254155\pi\)
−0.969222 + 0.246188i \(0.920822\pi\)
\(462\) 0 0
\(463\) −9.33236 + 16.1641i −0.433712 + 0.751211i −0.997190 0.0749205i \(-0.976130\pi\)
0.563478 + 0.826131i \(0.309463\pi\)
\(464\) 2.16830 0.965391i 0.100661 0.0448171i
\(465\) 0 0
\(466\) 2.90309 3.22420i 0.134483 0.149358i
\(467\) 1.77499 + 2.44307i 0.0821369 + 0.113052i 0.848108 0.529823i \(-0.177742\pi\)
−0.765971 + 0.642875i \(0.777742\pi\)
\(468\) 0 0
\(469\) −2.21481 + 0.719634i −0.102270 + 0.0332296i
\(470\) −0.661876 + 0.140686i −0.0305301 + 0.00648937i
\(471\) 0 0
\(472\) −0.0139055 0.00802835i −0.000640053 0.000369535i
\(473\) −21.5963 + 18.0816i −0.992999 + 0.831393i
\(474\) 0 0
\(475\) −0.362195 0.0380682i −0.0166186 0.00174669i
\(476\) −3.06542 0.996017i −0.140503 0.0456523i
\(477\) 0 0
\(478\) 5.37036 3.90180i 0.245635 0.178464i
\(479\) −35.3397 15.7343i −1.61471 0.718917i −0.617031 0.786939i \(-0.711665\pi\)
−0.997684 + 0.0680220i \(0.978331\pi\)
\(480\) 0 0
\(481\) 19.5222 17.5779i 0.890137 0.801483i
\(482\) 0.402071 + 0.903067i 0.0183138 + 0.0411336i
\(483\) 0 0
\(484\) 20.3009 2.80826i 0.922770 0.127648i
\(485\) 13.1651i 0.597795i
\(486\) 0 0
\(487\) −3.79422 + 11.6774i −0.171933 + 0.529154i −0.999480 0.0322416i \(-0.989735\pi\)
0.827548 + 0.561396i \(0.189735\pi\)
\(488\) −6.08712 5.48087i −0.275551 0.248107i
\(489\) 0 0
\(490\) 3.94621 0.414763i 0.178272 0.0187371i
\(491\) 35.6716 + 7.58222i 1.60984 + 0.342181i 0.923050 0.384680i \(-0.125688\pi\)
0.686785 + 0.726861i \(0.259021\pi\)
\(492\) 0 0
\(493\) −0.0851181 + 0.809844i −0.00383352 + 0.0364736i
\(494\) −1.27532 −0.0573793
\(495\) 0 0
\(496\) −20.2311 −0.908403
\(497\) 1.37421 13.0747i 0.0616417 0.586481i
\(498\) 0 0
\(499\) −23.7506 5.04835i −1.06322 0.225995i −0.357087 0.934071i \(-0.616230\pi\)
−0.706136 + 0.708076i \(0.749563\pi\)
\(500\) −19.1653 + 2.01435i −0.857098 + 0.0900846i
\(501\) 0 0
\(502\) −3.73685 3.36467i −0.166784 0.150173i
\(503\) 6.87821 21.1689i 0.306684 0.943876i −0.672359 0.740225i \(-0.734719\pi\)
0.979043 0.203652i \(-0.0652810\pi\)
\(504\) 0 0
\(505\) 23.1349i 1.02949i
\(506\) 2.99962 6.13326i 0.133349 0.272657i
\(507\) 0 0
\(508\) 5.00244 + 11.2357i 0.221947 + 0.498501i
\(509\) 21.0596 18.9621i 0.933448 0.840481i −0.0539810 0.998542i \(-0.517191\pi\)
0.987429 + 0.158061i \(0.0505244\pi\)
\(510\) 0 0
\(511\) −22.7068 10.1097i −1.00449 0.447227i
\(512\) −17.8490 + 12.9680i −0.788820 + 0.573111i
\(513\) 0 0
\(514\) 1.67314 + 0.543635i 0.0737989 + 0.0239787i
\(515\) −4.47389 0.470225i −0.197143 0.0207206i
\(516\) 0 0
\(517\) −0.953601 2.36763i −0.0419393 0.104128i
\(518\) −2.16573 1.25038i −0.0951565 0.0549386i
\(519\) 0 0
\(520\) 20.3640 4.32850i 0.893019 0.189817i
\(521\) −14.9548 + 4.85911i −0.655182 + 0.212882i −0.617698 0.786416i \(-0.711934\pi\)
−0.0374843 + 0.999297i \(0.511934\pi\)
\(522\) 0 0
\(523\) 8.59617 + 11.8316i 0.375884 + 0.517360i 0.954488 0.298248i \(-0.0964023\pi\)
−0.578604 + 0.815609i \(0.696402\pi\)
\(524\) 9.82794 10.9150i 0.429335 0.476825i
\(525\) 0 0
\(526\) −6.26044 + 2.78733i −0.272968 + 0.121533i
\(527\) 3.47046 6.01101i 0.151175 0.261844i
\(528\) 0 0
\(529\) 3.97891 + 6.89168i 0.172996 + 0.299638i
\(530\) 3.21959 + 2.33917i 0.139850 + 0.101607i
\(531\) 0 0
\(532\) −0.510621 1.57153i −0.0221382 0.0681345i
\(533\) −30.2968 + 68.0477i −1.31230 + 2.94747i
\(534\) 0 0
\(535\) −6.06318 + 28.5250i −0.262134 + 1.23324i
\(536\) −1.41224 1.56846i −0.0609997 0.0677470i
\(537\) 0 0
\(538\) 6.92048 3.99554i 0.298363 0.172260i
\(539\) 4.11003 + 14.3922i 0.177031 + 0.619916i
\(540\) 0 0
\(541\) 10.4934 14.4429i 0.451146 0.620950i −0.521497 0.853253i \(-0.674626\pi\)
0.972643 + 0.232303i \(0.0746262\pi\)
\(542\) −0.0703055 0.330762i −0.00301988 0.0142074i
\(543\) 0 0
\(544\) −0.463425 4.40919i −0.0198692 0.189043i
\(545\) −2.18431 20.7823i −0.0935655 0.890216i
\(546\) 0 0
\(547\) −0.938395 4.41480i −0.0401229 0.188763i 0.953522 0.301323i \(-0.0974283\pi\)
−0.993645 + 0.112560i \(0.964095\pi\)
\(548\) 19.3375 26.6158i 0.826058 1.13697i
\(549\) 0 0
\(550\) −0.218206 0.764100i −0.00930435 0.0325813i
\(551\) −0.361535 + 0.208732i −0.0154019 + 0.00889229i
\(552\) 0 0
\(553\) −3.35703 3.72836i −0.142756 0.158546i
\(554\) 1.13947 5.36077i 0.0484113 0.227757i
\(555\) 0 0
\(556\) 10.6712 23.9680i 0.452561 1.01647i
\(557\) −8.48770 26.1225i −0.359635 1.10684i −0.953273 0.302111i \(-0.902309\pi\)
0.593637 0.804733i \(-0.297691\pi\)
\(558\) 0 0
\(559\) −42.1116 30.5959i −1.78113 1.29407i
\(560\) 5.99168 + 10.3779i 0.253195 + 0.438546i
\(561\) 0 0
\(562\) −0.339933 + 0.588781i −0.0143392 + 0.0248362i
\(563\) −9.56320 + 4.25781i −0.403041 + 0.179445i −0.598238 0.801319i \(-0.704132\pi\)
0.195197 + 0.980764i \(0.437465\pi\)
\(564\) 0 0
\(565\) −0.0737674 + 0.0819270i −0.00310342 + 0.00344670i
\(566\) 2.62486 + 3.61281i 0.110331 + 0.151858i
\(567\) 0 0
\(568\) 11.3317 3.68188i 0.475466 0.154488i
\(569\) 36.2644 7.70823i 1.52028 0.323146i 0.629292 0.777169i \(-0.283345\pi\)
0.890990 + 0.454023i \(0.150012\pi\)
\(570\) 0 0
\(571\) −5.32451 3.07411i −0.222824 0.128647i 0.384433 0.923153i \(-0.374397\pi\)
−0.607257 + 0.794505i \(0.707730\pi\)
\(572\) 14.1499 + 35.1319i 0.591639 + 1.46894i
\(573\) 0 0
\(574\) 7.05203 + 0.741198i 0.294346 + 0.0309370i
\(575\) 3.42681 + 1.11344i 0.142908 + 0.0464335i
\(576\) 0 0
\(577\) −8.59300 + 6.24318i −0.357731 + 0.259907i −0.752105 0.659043i \(-0.770961\pi\)
0.394374 + 0.918950i \(0.370961\pi\)
\(578\) −5.33918 2.37715i −0.222080 0.0988766i
\(579\) 0 0
\(580\) 2.44250 2.19923i 0.101419 0.0913182i
\(581\) 6.66022 + 14.9591i 0.276313 + 0.620608i
\(582\) 0 0
\(583\) −6.59528 + 13.4852i −0.273149 + 0.558501i
\(584\) 22.5266i 0.932155i
\(585\) 0 0
\(586\) −1.95296 + 6.01061i −0.0806762 + 0.248296i
\(587\) 4.66856 + 4.20359i 0.192692 + 0.173501i 0.759829 0.650123i \(-0.225282\pi\)
−0.567137 + 0.823623i \(0.691949\pi\)
\(588\) 0 0
\(589\) 3.53886 0.371949i 0.145816 0.0153259i
\(590\) −0.00966173 0.00205366i −0.000397767 8.45480e-5i
\(591\) 0 0
\(592\) −1.43245 + 13.6289i −0.0588735 + 0.560144i
\(593\) 13.2967 0.546030 0.273015 0.962010i \(-0.411979\pi\)
0.273015 + 0.962010i \(0.411979\pi\)
\(594\) 0 0
\(595\) −4.11127 −0.168546
\(596\) −2.77420 + 26.3948i −0.113636 + 1.08117i
\(597\) 0 0
\(598\) 12.3418 + 2.62333i 0.504694 + 0.107276i
\(599\) −34.7982 + 3.65743i −1.42181 + 0.149439i −0.784004 0.620755i \(-0.786826\pi\)
−0.637810 + 0.770194i \(0.720159\pi\)
\(600\) 0 0
\(601\) 3.92068 + 3.53019i 0.159928 + 0.144000i 0.745210 0.666830i \(-0.232349\pi\)
−0.585282 + 0.810830i \(0.699016\pi\)
\(602\) −1.53124 + 4.71268i −0.0624087 + 0.192074i
\(603\) 0 0
\(604\) 4.79981i 0.195301i
\(605\) 23.5203 11.4086i 0.956235 0.463824i
\(606\) 0 0
\(607\) −8.45971 19.0008i −0.343369 0.771220i −0.999857 0.0168835i \(-0.994626\pi\)
0.656488 0.754336i \(-0.272041\pi\)
\(608\) 1.68908 1.52085i 0.0685012 0.0616788i
\(609\) 0 0
\(610\) −4.60323 2.04949i −0.186379 0.0829814i
\(611\) 3.81618 2.77262i 0.154386 0.112168i
\(612\) 0 0
\(613\) −25.6016 8.31845i −1.03404 0.335979i −0.257652 0.966238i \(-0.582949\pi\)
−0.776385 + 0.630259i \(0.782949\pi\)
\(614\) −6.14139 0.645486i −0.247846 0.0260497i
\(615\) 0 0
\(616\) 5.73204 4.79918i 0.230950 0.193364i
\(617\) −29.0656 16.7811i −1.17014 0.675580i −0.216426 0.976299i \(-0.569440\pi\)
−0.953713 + 0.300719i \(0.902773\pi\)
\(618\) 0 0
\(619\) −36.4959 + 7.75745i −1.46689 + 0.311798i −0.871007 0.491270i \(-0.836533\pi\)
−0.595887 + 0.803068i \(0.703200\pi\)
\(620\) −26.6438 + 8.65710i −1.07004 + 0.347678i
\(621\) 0 0
\(622\) −6.42524 8.84358i −0.257629 0.354595i
\(623\) 9.50908 10.5609i 0.380973 0.423113i
\(624\) 0 0
\(625\) −25.4135 + 11.3148i −1.01654 + 0.452593i
\(626\) −2.98639 + 5.17258i −0.119360 + 0.206738i
\(627\) 0 0
\(628\) 5.30401 + 9.18682i 0.211653 + 0.366594i
\(629\) −3.80365 2.76352i −0.151662 0.110189i
\(630\) 0 0
\(631\) −5.33541 16.4207i −0.212399 0.653698i −0.999328 0.0366537i \(-0.988330\pi\)
0.786929 0.617044i \(-0.211670\pi\)
\(632\) 1.84939 4.15379i 0.0735646 0.165229i
\(633\) 0 0
\(634\) 0.644950 3.03425i 0.0256142 0.120506i
\(635\) 10.4971 + 11.6583i 0.416566 + 0.462644i
\(636\) 0 0
\(637\) −23.9550 + 13.8304i −0.949130 + 0.547980i
\(638\) −0.717182 0.561577i −0.0283935 0.0222330i
\(639\) 0 0
\(640\) −13.8230 + 19.0257i −0.546402 + 0.752058i
\(641\) −1.96169 9.22901i −0.0774819 0.364524i 0.922276 0.386532i \(-0.126327\pi\)
−0.999758 + 0.0220085i \(0.992994\pi\)
\(642\) 0 0
\(643\) −0.853865 8.12398i −0.0336732 0.320379i −0.998373 0.0570257i \(-0.981838\pi\)
0.964700 0.263353i \(-0.0848284\pi\)
\(644\) 1.70886 + 16.2587i 0.0673385 + 0.640683i
\(645\) 0 0
\(646\) 0.0474554 + 0.223260i 0.00186711 + 0.00878404i
\(647\) 12.6621 17.4279i 0.497799 0.685162i −0.484003 0.875066i \(-0.660818\pi\)
0.981803 + 0.189904i \(0.0608178\pi\)
\(648\) 0 0
\(649\) 0.00134068 0.0372353i 5.26264e−5 0.00146161i
\(650\) 1.27180 0.734273i 0.0498840 0.0288005i
\(651\) 0 0
\(652\) 10.6712 + 11.8516i 0.417916 + 0.464143i
\(653\) 9.50514 44.7182i 0.371965 1.74996i −0.251264 0.967919i \(-0.580846\pi\)
0.623229 0.782039i \(-0.285820\pi\)
\(654\) 0 0
\(655\) 7.62003 17.1149i 0.297739 0.668733i
\(656\) −12.0076 36.9555i −0.468817 1.44287i
\(657\) 0 0
\(658\) −0.363284 0.263941i −0.0141623 0.0102895i
\(659\) 2.87636 + 4.98200i 0.112047 + 0.194071i 0.916595 0.399816i \(-0.130926\pi\)
−0.804548 + 0.593887i \(0.797593\pi\)
\(660\) 0 0
\(661\) −14.9630 + 25.9166i −0.581991 + 1.00804i 0.413252 + 0.910617i \(0.364393\pi\)
−0.995243 + 0.0974218i \(0.968940\pi\)
\(662\) −0.340388 + 0.151550i −0.0132296 + 0.00589018i
\(663\) 0 0
\(664\) −9.93016 + 11.0286i −0.385365 + 0.427991i
\(665\) −1.23887 1.70516i −0.0480415 0.0661234i
\(666\) 0 0
\(667\) 3.92809 1.27631i 0.152096 0.0494190i
\(668\) 5.55894 1.18159i 0.215082 0.0457170i
\(669\) 0 0
\(670\) −1.12441 0.649177i −0.0434396 0.0250799i
\(671\) 4.61824 18.4376i 0.178285 0.711776i
\(672\) 0 0
\(673\) 1.28805 + 0.135380i 0.0496507 + 0.00521850i 0.129321 0.991603i \(-0.458720\pi\)
−0.0796705 + 0.996821i \(0.525387\pi\)
\(674\) −7.81821 2.54029i −0.301146 0.0978484i
\(675\) 0 0
\(676\) −37.0313 + 26.9048i −1.42428 + 1.03480i
\(677\) −19.1385 8.52100i −0.735551 0.327489i 0.00454475 0.999990i \(-0.498553\pi\)
−0.740096 + 0.672501i \(0.765220\pi\)
\(678\) 0 0
\(679\) −6.49251 + 5.84588i −0.249160 + 0.224344i
\(680\) −1.51551 3.40389i −0.0581172 0.130533i
\(681\) 0 0
\(682\) 3.63763 + 6.85930i 0.139292 + 0.262656i
\(683\) 12.7750i 0.488822i 0.969672 + 0.244411i \(0.0785945\pi\)
−0.969672 + 0.244411i \(0.921405\pi\)
\(684\) 0 0
\(685\) 12.9675 39.9099i 0.495463 1.52488i
\(686\) 4.99212 + 4.49492i 0.190600 + 0.171617i
\(687\) 0 0
\(688\) 27.0053 2.83837i 1.02957 0.108212i
\(689\) −27.1360 5.76793i −1.03380 0.219741i
\(690\) 0 0
\(691\) 3.01553 28.6908i 0.114716 1.09145i −0.774061 0.633111i \(-0.781778\pi\)
0.888777 0.458340i \(-0.151556\pi\)
\(692\) 21.1929 0.805633
\(693\) 0 0
\(694\) −4.43747 −0.168444
\(695\) 3.49807 33.2819i 0.132689 1.26245i
\(696\) 0 0
\(697\) 13.0399 + 2.77172i 0.493922 + 0.104986i
\(698\) −3.74117 + 0.393213i −0.141605 + 0.0148833i
\(699\) 0 0
\(700\) 1.41403 + 1.27320i 0.0534453 + 0.0481223i
\(701\) −1.64023 + 5.04812i −0.0619507 + 0.190665i −0.977242 0.212128i \(-0.931961\pi\)
0.915291 + 0.402793i \(0.131961\pi\)
\(702\) 0 0
\(703\) 2.41032i 0.0909071i
\(704\) −14.5976 7.13934i −0.550170 0.269074i
\(705\) 0 0
\(706\) 0.694504 + 1.55988i 0.0261380 + 0.0587069i
\(707\) −11.4093 + 10.2729i −0.429089 + 0.386353i
\(708\) 0 0
\(709\) −26.3752 11.7430i −0.990543 0.441018i −0.153496 0.988149i \(-0.549053\pi\)
−0.837047 + 0.547131i \(0.815720\pi\)
\(710\) 5.92979 4.30824i 0.222541 0.161685i
\(711\) 0 0
\(712\) 12.2491 + 3.97997i 0.459054 + 0.149156i
\(713\) −35.0121 3.67992i −1.31122 0.137814i
\(714\) 0 0
\(715\) 31.0130 + 37.0413i 1.15982 + 1.38527i
\(716\) −17.2965 9.98615i −0.646401 0.373200i
\(717\) 0 0
\(718\) −2.94136 + 0.625206i −0.109771 + 0.0233325i
\(719\) −35.5978 + 11.5664i −1.32757 + 0.431355i −0.885089 0.465422i \(-0.845903\pi\)
−0.442484 + 0.896776i \(0.645903\pi\)
\(720\) 0 0
\(721\) −1.75471 2.41515i −0.0653488 0.0899449i
\(722\) 4.62545 5.13708i 0.172141 0.191182i
\(723\) 0 0
\(724\) 30.2652 13.4749i 1.12480 0.500792i
\(725\) 0.240358 0.416312i 0.00892666 0.0154614i
\(726\) 0 0
\(727\) −21.8970 37.9268i −0.812116 1.40663i −0.911380 0.411565i \(-0.864982\pi\)
0.0992641 0.995061i \(-0.468351\pi\)
\(728\) 11.1772 + 8.12069i 0.414253 + 0.300973i
\(729\) 0 0
\(730\) −4.28224 13.1794i −0.158493 0.487791i
\(731\) −3.78918 + 8.51064i −0.140148 + 0.314777i
\(732\) 0 0
\(733\) 1.10458 5.19663i 0.0407985 0.191942i −0.953029 0.302880i \(-0.902052\pi\)
0.993827 + 0.110938i \(0.0353854\pi\)
\(734\) 9.39607 + 10.4354i 0.346815 + 0.385177i
\(735\) 0 0
\(736\) −19.4744 + 11.2435i −0.717834 + 0.414442i
\(737\) 1.68004 4.60037i 0.0618852 0.169457i
\(738\) 0 0
\(739\) 3.62411 4.98816i 0.133315 0.183492i −0.737140 0.675740i \(-0.763824\pi\)
0.870455 + 0.492247i \(0.163824\pi\)
\(740\) 3.94544 + 18.5619i 0.145037 + 0.682347i
\(741\) 0 0
\(742\) 0.276053 + 2.62647i 0.0101342 + 0.0964208i
\(743\) −0.698365 6.64450i −0.0256205 0.243763i −0.999835 0.0181411i \(-0.994225\pi\)
0.974215 0.225622i \(-0.0724415\pi\)
\(744\) 0 0
\(745\) 7.03841 + 33.1131i 0.257867 + 1.21317i
\(746\) 1.40998 1.94067i 0.0516231 0.0710531i
\(747\) 0 0
\(748\) 5.62373 3.78439i 0.205624 0.138371i
\(749\) −16.7598 + 9.67625i −0.612388 + 0.353563i
\(750\) 0 0
\(751\) −18.9643 21.0620i −0.692017 0.768563i 0.290067 0.957006i \(-0.406323\pi\)
−0.982084 + 0.188443i \(0.939656\pi\)
\(752\) −0.511611 + 2.40694i −0.0186566 + 0.0877722i
\(753\) 0 0
\(754\) 0.684687 1.53783i 0.0249348 0.0560046i
\(755\) 1.89190 + 5.82267i 0.0688533 + 0.211909i
\(756\) 0 0
\(757\) 10.7918 + 7.84073i 0.392236 + 0.284976i 0.766371 0.642398i \(-0.222060\pi\)
−0.374135 + 0.927374i \(0.622060\pi\)
\(758\) −2.29786 3.98002i −0.0834621 0.144561i
\(759\) 0 0
\(760\) 0.955098 1.65428i 0.0346450 0.0600070i
\(761\) 0.507993 0.226173i 0.0184147 0.00819877i −0.397509 0.917598i \(-0.630125\pi\)
0.415923 + 0.909400i \(0.363458\pi\)
\(762\) 0 0
\(763\) 9.27911 10.3055i 0.335926 0.373084i
\(764\) 22.3907 + 30.8181i 0.810066 + 1.11496i
\(765\) 0 0
\(766\) 5.02143 1.63156i 0.181432 0.0589507i
\(767\) 0.0673525 0.0143162i 0.00243196 0.000516929i
\(768\) 0 0
\(769\) 28.3158 + 16.3481i 1.02109 + 0.589528i 0.914420 0.404766i \(-0.132647\pi\)
0.106672 + 0.994294i \(0.465980\pi\)
\(770\) 2.44127 3.89745i 0.0879774 0.140454i
\(771\) 0 0
\(772\) 28.3108 + 2.97558i 1.01893 + 0.107093i
\(773\) 1.30242 + 0.423182i 0.0468448 + 0.0152208i 0.332346 0.943158i \(-0.392160\pi\)
−0.285501 + 0.958378i \(0.592160\pi\)
\(774\) 0 0
\(775\) −3.31493 + 2.40844i −0.119076 + 0.0865138i
\(776\) −7.23334 3.22049i −0.259662 0.115609i
\(777\) 0 0
\(778\) −2.96101 + 2.66610i −0.106157 + 0.0955844i
\(779\) 2.77982 + 6.24357i 0.0995972 + 0.223699i
\(780\) 0 0
\(781\) 19.8676 + 19.2276i 0.710920 + 0.688018i
\(782\) 2.25820i 0.0807530i
\(783\) 0 0
\(784\) 4.45900 13.7234i 0.159250 0.490121i
\(785\) 10.0554 + 9.05393i 0.358893 + 0.323149i
\(786\) 0 0
\(787\) −8.61816 + 0.905805i −0.307204 + 0.0322885i −0.256876 0.966444i \(-0.582693\pi\)
−0.0503279 + 0.998733i \(0.516027\pi\)
\(788\) 23.8778 + 5.07539i 0.850612 + 0.180803i
\(789\) 0 0
\(790\) 0.292377 2.78178i 0.0104023 0.0989712i
\(791\) −0.0731593 −0.00260125
\(792\) 0 0
\(793\) 35.1262 1.24737
\(794\) −0.535070 + 5.09085i −0.0189889 + 0.180668i
\(795\) 0 0
\(796\) −8.60740 1.82956i −0.305081 0.0648470i
\(797\) 13.4164 1.41012i 0.475233 0.0499490i 0.136116 0.990693i \(-0.456538\pi\)
0.339118 + 0.940744i \(0.389871\pi\)
\(798\) 0 0
\(799\) −0.627382 0.564898i −0.0221952 0.0199846i
\(800\) −0.808775 + 2.48915i −0.0285945 + 0.0880049i
\(801\) 0 0
\(802\) 13.2659i 0.468435i
\(803\) 46.1805 24.4905i 1.62968 0.864250i
\(804\) 0 0
\(805\) 8.48159 + 19.0500i 0.298937 + 0.671423i
\(806\) −10.6631 + 9.60106i −0.375590 + 0.338183i
\(807\) 0 0
\(808\) −12.7111 5.65935i −0.447175 0.199095i
\(809\) 35.6994 25.9371i 1.25512 0.911900i 0.256615 0.966514i \(-0.417393\pi\)
0.998508 + 0.0546139i \(0.0173928\pi\)
\(810\) 0 0
\(811\) 39.0505 + 12.6883i 1.37125 + 0.445546i 0.899782 0.436339i \(-0.143725\pi\)
0.471466 + 0.881884i \(0.343725\pi\)
\(812\) 2.16916 + 0.227988i 0.0761225 + 0.00800079i
\(813\) 0 0
\(814\) 4.87840 1.96486i 0.170988 0.0688681i
\(815\) 17.6167 + 10.1710i 0.617086 + 0.356275i
\(816\) 0 0
\(817\) −4.67163 + 0.992986i −0.163440 + 0.0347402i
\(818\) 5.52974 1.79672i 0.193343 0.0628209i
\(819\) 0 0
\(820\) −31.6274 43.5313i −1.10447 1.52018i
\(821\) −10.5169 + 11.6802i −0.367042 + 0.407641i −0.898169 0.439651i \(-0.855102\pi\)
0.531127 + 0.847292i \(0.321769\pi\)
\(822\) 0 0
\(823\) −5.19304 + 2.31209i −0.181018 + 0.0805944i −0.495245 0.868754i \(-0.664922\pi\)
0.314226 + 0.949348i \(0.398255\pi\)
\(824\) 1.35278 2.34308i 0.0471262 0.0816250i
\(825\) 0 0
\(826\) −0.00327745 0.00567671i −0.000114037 0.000197518i
\(827\) −11.5227 8.37170i −0.400682 0.291113i 0.369137 0.929375i \(-0.379653\pi\)
−0.769819 + 0.638263i \(0.779653\pi\)
\(828\) 0 0
\(829\) −1.17567 3.61833i −0.0408326 0.125670i 0.928562 0.371177i \(-0.121046\pi\)
−0.969395 + 0.245507i \(0.921046\pi\)
\(830\) −3.71323 + 8.34006i −0.128888 + 0.289488i
\(831\) 0 0
\(832\) 6.24374 29.3745i 0.216463 1.01838i
\(833\) 3.31256 + 3.67897i 0.114773 + 0.127469i
\(834\) 0 0
\(835\) 6.27784 3.62451i 0.217254 0.125431i
\(836\) 3.26422 + 1.19209i 0.112895 + 0.0412292i
\(837\) 0 0
\(838\) −3.30773 + 4.55270i −0.114264 + 0.157270i
\(839\) −0.810360 3.81245i −0.0279768 0.131620i 0.961943 0.273251i \(-0.0880989\pi\)
−0.989920 + 0.141630i \(0.954766\pi\)
\(840\) 0 0
\(841\) 2.97373 + 28.2931i 0.102542 + 0.975625i
\(842\) 0.469552 + 4.46749i 0.0161818 + 0.153960i
\(843\) 0 0
\(844\) 7.56785 + 35.6039i 0.260496 + 1.22554i
\(845\) −34.3180 + 47.2347i −1.18058 + 1.62492i
\(846\) 0 0
\(847\) 16.0703 + 6.53338i 0.552183 + 0.224489i
\(848\) 12.5332 7.23605i 0.430392 0.248487i
\(849\) 0 0
\(850\) −0.175868 0.195321i −0.00603221 0.00669945i
\(851\) −4.95804 + 23.3257i −0.169959 + 0.799596i
\(852\) 0 0
\(853\) −12.8962 + 28.9653i −0.441556 + 0.991752i 0.546472 + 0.837478i \(0.315971\pi\)
−0.988028 + 0.154274i \(0.950696\pi\)
\(854\) −1.03331 3.18020i −0.0353592 0.108824i
\(855\) 0 0
\(856\) −14.1894 10.3092i −0.484984 0.352362i
\(857\) 19.7818 + 34.2630i 0.675733 + 1.17040i 0.976254 + 0.216628i \(0.0695059\pi\)
−0.300522 + 0.953775i \(0.597161\pi\)
\(858\) 0 0
\(859\) 19.1591 33.1846i 0.653701 1.13224i −0.328516 0.944498i \(-0.606549\pi\)
0.982218 0.187746i \(-0.0601181\pi\)
\(860\) 34.3507 15.2939i 1.17135 0.521518i
\(861\) 0 0
\(862\) −6.34867 + 7.05092i −0.216237 + 0.240155i
\(863\) −27.4819 37.8256i −0.935495 1.28760i −0.957677 0.287844i \(-0.907061\pi\)
0.0221825 0.999754i \(-0.492939\pi\)
\(864\) 0 0
\(865\) 25.7092 8.35343i 0.874139 0.284025i
\(866\) 0.467362 0.0993409i 0.0158816 0.00337574i
\(867\) 0 0
\(868\) −16.1004 9.29557i −0.546483 0.315512i
\(869\) 10.5261 0.724595i 0.357073 0.0245802i
\(870\) 0 0
\(871\) 9.00132 + 0.946077i 0.304998 + 0.0320566i
\(872\) 11.9528 + 3.88371i 0.404774 + 0.131519i
\(873\) 0 0
\(874\) 0.936595 0.680476i 0.0316808 0.0230174i
\(875\) −14.9018 6.63471i −0.503773 0.224294i
\(876\) 0 0
\(877\) −23.4231 + 21.0902i −0.790941 + 0.712166i −0.961987 0.273097i \(-0.911952\pi\)
0.171046 + 0.985263i \(0.445285\pi\)
\(878\) −1.35267 3.03815i −0.0456505 0.102533i
\(879\) 0 0
\(880\) −24.9525 3.53442i −0.841149 0.119145i
\(881\) 42.0051i 1.41519i 0.706619 + 0.707595i \(0.250220\pi\)
−0.706619 + 0.707595i \(0.749780\pi\)
\(882\) 0 0
\(883\) 0.787007 2.42216i 0.0264849 0.0815122i −0.936940 0.349489i \(-0.886355\pi\)
0.963425 + 0.267977i \(0.0863551\pi\)
\(884\) 9.30937 + 8.38219i 0.313108 + 0.281924i
\(885\) 0 0
\(886\) −5.27795 + 0.554735i −0.177316 + 0.0186367i
\(887\) 13.6187 + 2.89475i 0.457272 + 0.0971962i 0.430788 0.902453i \(-0.358236\pi\)
0.0264838 + 0.999649i \(0.491569\pi\)
\(888\) 0 0
\(889\) −1.08820 + 10.3536i −0.0364972 + 0.347248i
\(890\) 7.92302 0.265580
\(891\) 0 0
\(892\) 30.6104 1.02491
\(893\) 0.0452403 0.430433i 0.00151391 0.0144039i
\(894\) 0 0
\(895\) −24.9186 5.29662i −0.832938 0.177047i
\(896\) −15.5208 + 1.63130i −0.518513 + 0.0544979i
\(897\) 0 0
\(898\) −3.91766 3.52748i −0.130734 0.117713i
\(899\) −1.45141 + 4.46699i −0.0484074 + 0.148983i
\(900\) 0 0
\(901\) 4.96511i 0.165412i
\(902\) −10.3707 + 10.7159i −0.345306 + 0.356800i
\(903\) 0 0
\(904\) −0.0269682 0.0605716i −0.000896950 0.00201458i
\(905\) 31.4035 28.2759i 1.04389 0.939922i
\(906\) 0 0
\(907\) −30.4352 13.5506i −1.01059 0.449941i −0.166437 0.986052i \(-0.553226\pi\)
−0.844148 + 0.536111i \(0.819893\pi\)
\(908\) −40.9456 + 29.7487i −1.35883 + 0.987246i
\(909\) 0 0
\(910\) 8.08303 + 2.62634i 0.267950 + 0.0870622i
\(911\) −6.55267 0.688713i −0.217100 0.0228181i −0.00464588 0.999989i \(-0.501479\pi\)
−0.212454 + 0.977171i \(0.568146\pi\)
\(912\) 0 0
\(913\) −33.4050 8.36725i −1.10554 0.276916i
\(914\) 8.32303 + 4.80530i 0.275301 + 0.158945i
\(915\) 0 0
\(916\) −7.90076 + 1.67936i −0.261049 + 0.0554876i
\(917\) 11.8240 3.84186i 0.390464 0.126869i
\(918\) 0 0
\(919\) −19.1361 26.3386i −0.631241 0.868829i 0.366869 0.930273i \(-0.380430\pi\)
−0.998111 + 0.0614433i \(0.980430\pi\)
\(920\) −12.6457 + 14.0445i −0.416918 + 0.463034i
\(921\) 0 0
\(922\) 3.93921 1.75385i 0.129731 0.0577600i
\(923\) −25.5476 + 44.2498i −0.840910 + 1.45650i
\(924\) 0 0
\(925\) 1.38776 + 2.40367i 0.0456292 + 0.0790322i
\(926\) −5.58674 4.05901i −0.183592 0.133387i
\(927\) 0 0
\(928\) 0.927084 + 2.85327i 0.0304330 + 0.0936633i
\(929\) −5.70632 + 12.8166i −0.187218 + 0.420499i −0.982631 0.185568i \(-0.940587\pi\)
0.795413 + 0.606068i \(0.207254\pi\)
\(930\) 0 0
\(931\) −0.527671 + 2.48250i −0.0172937 + 0.0813606i
\(932\) −14.6191 16.2361i −0.478864 0.531832i
\(933\) 0 0
\(934\) −0.967583 + 0.558634i −0.0316603 + 0.0182791i
\(935\) 5.33051 6.80753i 0.174326 0.222630i
\(936\) 0 0
\(937\) 31.0358 42.7172i 1.01390 1.39551i 0.0975008 0.995235i \(-0.468915\pi\)
0.916396 0.400273i \(-0.131085\pi\)
\(938\) −0.179138 0.842778i −0.00584906 0.0275177i
\(939\) 0 0
\(940\) 0.356178 + 3.38881i 0.0116172 + 0.110531i
\(941\) 0.232464 + 2.21175i 0.00757812 + 0.0721010i 0.997657 0.0684093i \(-0.0217924\pi\)
−0.990079 + 0.140510i \(0.955126\pi\)
\(942\) 0 0
\(943\) −14.0584 66.1398i −0.457806 2.15381i
\(944\) −0.0211134 + 0.0290601i −0.000687183 + 0.000945826i
\(945\) 0 0
\(946\) −5.81800 8.64573i −0.189159 0.281097i
\(947\) 18.9816 10.9590i 0.616819 0.356121i −0.158811 0.987309i \(-0.550766\pi\)
0.775629 + 0.631189i \(0.217433\pi\)
\(948\) 0 0
\(949\) 64.6396 + 71.7895i 2.09829 + 2.33039i
\(950\) 0.0280147 0.131799i 0.000908917 0.00427612i
\(951\) 0 0
\(952\) 1.00572 2.25887i 0.0325954 0.0732105i
\(953\) 6.64425 + 20.4489i 0.215228 + 0.662404i 0.999137 + 0.0415288i \(0.0132228\pi\)
−0.783909 + 0.620876i \(0.786777\pi\)
\(954\) 0 0
\(955\) 39.3095 + 28.5601i 1.27203 + 0.924182i
\(956\) −16.7138 28.9492i −0.540564 0.936284i
\(957\) 0 0
\(958\) 7.15620 12.3949i 0.231206 0.400461i
\(959\) 25.4402 11.3267i 0.821506 0.365758i
\(960\) 0 0
\(961\) 6.04551 6.71422i 0.195016 0.216588i
\(962\) 5.71286 + 7.86308i 0.184190 + 0.253516i
\(963\) 0 0
\(964\) 4.73430 1.53827i 0.152482 0.0495443i
\(965\) 35.5168 7.54932i 1.14333 0.243021i
\(966\) 0 0
\(967\) 13.6754 + 7.89548i 0.439770 + 0.253901i 0.703500 0.710695i \(-0.251619\pi\)
−0.263730 + 0.964597i \(0.584953\pi\)
\(968\) 0.514639 + 15.7136i 0.0165411 + 0.505056i
\(969\) 0 0
\(970\) −4.84414 0.509140i −0.155536 0.0163475i
\(971\) 7.29530 + 2.37039i 0.234117 + 0.0760693i 0.423726 0.905790i \(-0.360722\pi\)
−0.189609 + 0.981860i \(0.560722\pi\)
\(972\) 0 0
\(973\) 17.9667 13.0535i 0.575984 0.418477i
\(974\) −4.15002 1.84771i −0.132975 0.0592043i
\(975\) 0 0
\(976\) −13.6174 + 12.2612i −0.435883 + 0.392471i
\(977\) 3.03997 + 6.82789i 0.0972573 + 0.218444i 0.955621 0.294597i \(-0.0951855\pi\)
−0.858364 + 0.513041i \(0.828519\pi\)
\(978\) 0 0
\(979\) 5.15786 + 29.4382i 0.164846 + 0.940848i
\(980\) 19.9814i 0.638282i
\(981\) 0 0
\(982\) −4.16946 + 12.8323i −0.133053 + 0.409494i
\(983\) −37.1304 33.4323i −1.18427 1.06633i −0.996455 0.0841219i \(-0.973191\pi\)
−0.187819 0.982204i \(-0.560142\pi\)
\(984\) 0 0
\(985\) 30.9668 3.25474i 0.986685 0.103705i
\(986\) −0.294694 0.0626391i −0.00938496 0.00199484i
\(987\) 0 0
\(988\) −0.671295 + 6.38694i −0.0213567 + 0.203196i
\(989\) 47.2520 1.50252
\(990\) 0 0
\(991\) −32.0166 −1.01704 −0.508520 0.861050i \(-0.669807\pi\)
−0.508520 + 0.861050i \(0.669807\pi\)
\(992\) 2.67301 25.4320i 0.0848682 0.807467i
\(993\) 0 0
\(994\) 4.75775 + 1.01129i 0.150907 + 0.0320762i
\(995\) −11.1628 + 1.17326i −0.353885 + 0.0371948i
\(996\) 0 0
\(997\) 14.0664 + 12.6655i 0.445488 + 0.401119i 0.861110 0.508418i \(-0.169770\pi\)
−0.415623 + 0.909537i \(0.636436\pi\)
\(998\) 2.77608 8.54390i 0.0878753 0.270452i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.t.a.260.5 80
3.2 odd 2 99.2.p.a.95.6 yes 80
9.2 odd 6 inner 297.2.t.a.62.5 80
9.4 even 3 891.2.k.a.161.10 80
9.5 odd 6 891.2.k.a.161.11 80
9.7 even 3 99.2.p.a.29.6 80
11.8 odd 10 inner 297.2.t.a.206.5 80
33.8 even 10 99.2.p.a.41.6 yes 80
99.41 even 30 891.2.k.a.404.10 80
99.52 odd 30 99.2.p.a.74.6 yes 80
99.74 even 30 inner 297.2.t.a.8.5 80
99.85 odd 30 891.2.k.a.404.11 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.6 80 9.7 even 3
99.2.p.a.41.6 yes 80 33.8 even 10
99.2.p.a.74.6 yes 80 99.52 odd 30
99.2.p.a.95.6 yes 80 3.2 odd 2
297.2.t.a.8.5 80 99.74 even 30 inner
297.2.t.a.62.5 80 9.2 odd 6 inner
297.2.t.a.206.5 80 11.8 odd 10 inner
297.2.t.a.260.5 80 1.1 even 1 trivial
891.2.k.a.161.10 80 9.4 even 3
891.2.k.a.161.11 80 9.5 odd 6
891.2.k.a.404.10 80 99.41 even 30
891.2.k.a.404.11 80 99.85 odd 30