Properties

Label 297.2.t.a.260.3
Level $297$
Weight $2$
Character 297.260
Analytic conductor $2.372$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [297,2,Mod(8,297)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(297, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([5, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("297.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.t (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 260.3
Character \(\chi\) \(=\) 297.260
Dual form 297.2.t.a.8.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.120408 + 1.14561i) q^{2} +(0.658378 + 0.139943i) q^{4} +(0.932459 - 0.0980053i) q^{5} +(0.644183 + 0.580025i) q^{7} +(-0.951517 + 2.92847i) q^{8} +1.08003i q^{10} +(1.72444 - 2.83308i) q^{11} +(0.479642 + 1.07729i) q^{13} +(-0.742046 + 0.668141i) q^{14} +(-2.01051 - 0.895139i) q^{16} +(-2.52191 + 1.83228i) q^{17} +(6.59786 + 2.14377i) q^{19} +(0.627625 + 0.0659661i) q^{20} +(3.03796 + 2.31665i) q^{22} +(-2.04949 - 1.18327i) q^{23} +(-4.03086 + 0.856787i) q^{25} +(-1.29191 + 0.419767i) q^{26} +(0.342946 + 0.472024i) q^{28} +(2.42248 - 2.69044i) q^{29} +(-5.80030 + 2.58246i) q^{31} +(-1.81162 + 3.13781i) q^{32} +(-1.79541 - 3.10974i) q^{34} +(0.657520 + 0.477716i) q^{35} +(-2.46847 - 7.59716i) q^{37} +(-3.25036 + 7.30042i) q^{38} +(-0.600245 + 2.82393i) q^{40} +(2.41108 + 2.67778i) q^{41} +(-3.31791 + 1.91560i) q^{43} +(1.53180 - 1.62391i) q^{44} +(1.60234 - 2.20543i) q^{46} +(-0.0333008 - 0.156668i) q^{47} +(-0.653156 - 6.21437i) q^{49} +(-0.496192 - 4.72095i) q^{50} +(0.165027 + 0.776389i) q^{52} +(5.71174 - 7.86153i) q^{53} +(1.33031 - 2.81073i) q^{55} +(-2.31154 + 1.33457i) q^{56} +(2.79050 + 3.09916i) q^{58} +(1.80800 - 8.50597i) q^{59} +(5.51908 - 12.3961i) q^{61} +(-2.26008 - 6.95581i) q^{62} +(-6.93750 - 5.04039i) q^{64} +(0.552827 + 0.957525i) q^{65} +(-3.32149 + 5.75299i) q^{67} +(-1.91678 + 0.853407i) q^{68} +(-0.626445 + 0.695738i) q^{70} +(6.53958 + 9.00097i) q^{71} +(3.29787 - 1.07154i) q^{73} +(9.00058 - 1.91313i) q^{74} +(4.04388 + 2.33473i) q^{76} +(2.75411 - 0.824803i) q^{77} +(-7.50645 - 0.788960i) q^{79} +(-1.96245 - 0.637639i) q^{80} +(-3.35800 + 2.43973i) q^{82} +(-13.1816 - 5.86883i) q^{83} +(-2.17201 + 1.95568i) q^{85} +(-1.79502 - 4.03167i) q^{86} +(6.65574 + 7.74568i) q^{88} -9.28531i q^{89} +(-0.315880 + 0.972179i) q^{91} +(-1.18375 - 1.06585i) q^{92} +(0.183489 - 0.0192855i) q^{94} +(6.36233 + 1.35236i) q^{95} +(1.27346 - 12.1162i) q^{97} +7.19787 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 15 q^{2} + 5 q^{4} + 6 q^{5} - 5 q^{7} + 3 q^{11} - 5 q^{13} + 9 q^{14} + 5 q^{16} - 50 q^{19} + 3 q^{20} - 11 q^{22} + 42 q^{23} - 2 q^{25} - 20 q^{28} - 30 q^{29} - 6 q^{31} - 10 q^{34} - 6 q^{37}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.120408 + 1.14561i −0.0851414 + 0.810066i 0.865736 + 0.500500i \(0.166851\pi\)
−0.950878 + 0.309566i \(0.899816\pi\)
\(3\) 0 0
\(4\) 0.658378 + 0.139943i 0.329189 + 0.0699713i
\(5\) 0.932459 0.0980053i 0.417008 0.0438293i 0.106299 0.994334i \(-0.466100\pi\)
0.310709 + 0.950505i \(0.399433\pi\)
\(6\) 0 0
\(7\) 0.644183 + 0.580025i 0.243478 + 0.219229i 0.781830 0.623491i \(-0.214286\pi\)
−0.538352 + 0.842720i \(0.680953\pi\)
\(8\) −0.951517 + 2.92847i −0.336412 + 1.03537i
\(9\) 0 0
\(10\) 1.08003i 0.341536i
\(11\) 1.72444 2.83308i 0.519937 0.854205i
\(12\) 0 0
\(13\) 0.479642 + 1.07729i 0.133029 + 0.298788i 0.967762 0.251867i \(-0.0810447\pi\)
−0.834733 + 0.550655i \(0.814378\pi\)
\(14\) −0.742046 + 0.668141i −0.198320 + 0.178568i
\(15\) 0 0
\(16\) −2.01051 0.895139i −0.502629 0.223785i
\(17\) −2.52191 + 1.83228i −0.611653 + 0.444392i −0.849996 0.526789i \(-0.823396\pi\)
0.238343 + 0.971181i \(0.423396\pi\)
\(18\) 0 0
\(19\) 6.59786 + 2.14377i 1.51365 + 0.491816i 0.943965 0.330046i \(-0.107064\pi\)
0.569688 + 0.821861i \(0.307064\pi\)
\(20\) 0.627625 + 0.0659661i 0.140341 + 0.0147505i
\(21\) 0 0
\(22\) 3.03796 + 2.31665i 0.647694 + 0.493912i
\(23\) −2.04949 1.18327i −0.427348 0.246730i 0.270868 0.962616i \(-0.412689\pi\)
−0.698216 + 0.715887i \(0.746023\pi\)
\(24\) 0 0
\(25\) −4.03086 + 0.856787i −0.806173 + 0.171357i
\(26\) −1.29191 + 0.419767i −0.253364 + 0.0823230i
\(27\) 0 0
\(28\) 0.342946 + 0.472024i 0.0648106 + 0.0892042i
\(29\) 2.42248 2.69044i 0.449843 0.499601i −0.474981 0.879996i \(-0.657545\pi\)
0.924824 + 0.380395i \(0.124212\pi\)
\(30\) 0 0
\(31\) −5.80030 + 2.58246i −1.04176 + 0.463823i −0.855025 0.518586i \(-0.826458\pi\)
−0.186739 + 0.982410i \(0.559792\pi\)
\(32\) −1.81162 + 3.13781i −0.320251 + 0.554692i
\(33\) 0 0
\(34\) −1.79541 3.10974i −0.307910 0.533316i
\(35\) 0.657520 + 0.477716i 0.111141 + 0.0807487i
\(36\) 0 0
\(37\) −2.46847 7.59716i −0.405813 1.24897i −0.920214 0.391415i \(-0.871986\pi\)
0.514401 0.857550i \(-0.328014\pi\)
\(38\) −3.25036 + 7.30042i −0.527278 + 1.18429i
\(39\) 0 0
\(40\) −0.600245 + 2.82393i −0.0949070 + 0.446503i
\(41\) 2.41108 + 2.67778i 0.376548 + 0.418199i 0.901395 0.432998i \(-0.142544\pi\)
−0.524847 + 0.851197i \(0.675878\pi\)
\(42\) 0 0
\(43\) −3.31791 + 1.91560i −0.505976 + 0.292126i −0.731178 0.682187i \(-0.761029\pi\)
0.225202 + 0.974312i \(0.427696\pi\)
\(44\) 1.53180 1.62391i 0.230927 0.244814i
\(45\) 0 0
\(46\) 1.60234 2.20543i 0.236252 0.325174i
\(47\) −0.0333008 0.156668i −0.00485741 0.0228523i 0.975652 0.219324i \(-0.0703851\pi\)
−0.980510 + 0.196471i \(0.937052\pi\)
\(48\) 0 0
\(49\) −0.653156 6.21437i −0.0933081 0.887767i
\(50\) −0.496192 4.72095i −0.0701721 0.667643i
\(51\) 0 0
\(52\) 0.165027 + 0.776389i 0.0228851 + 0.107666i
\(53\) 5.71174 7.86153i 0.784567 1.07986i −0.210196 0.977659i \(-0.567410\pi\)
0.994763 0.102205i \(-0.0325898\pi\)
\(54\) 0 0
\(55\) 1.33031 2.81073i 0.179379 0.378999i
\(56\) −2.31154 + 1.33457i −0.308892 + 0.178339i
\(57\) 0 0
\(58\) 2.79050 + 3.09916i 0.366410 + 0.406940i
\(59\) 1.80800 8.50597i 0.235382 1.10738i −0.688658 0.725086i \(-0.741800\pi\)
0.924039 0.382297i \(-0.124867\pi\)
\(60\) 0 0
\(61\) 5.51908 12.3961i 0.706646 1.58715i −0.0992283 0.995065i \(-0.531637\pi\)
0.805874 0.592087i \(-0.201696\pi\)
\(62\) −2.26008 6.95581i −0.287030 0.883389i
\(63\) 0 0
\(64\) −6.93750 5.04039i −0.867188 0.630049i
\(65\) 0.552827 + 0.957525i 0.0685698 + 0.118766i
\(66\) 0 0
\(67\) −3.32149 + 5.75299i −0.405785 + 0.702840i −0.994412 0.105565i \(-0.966335\pi\)
0.588628 + 0.808404i \(0.299668\pi\)
\(68\) −1.91678 + 0.853407i −0.232444 + 0.103491i
\(69\) 0 0
\(70\) −0.626445 + 0.695738i −0.0748745 + 0.0831566i
\(71\) 6.53958 + 9.00097i 0.776106 + 1.06822i 0.995701 + 0.0926270i \(0.0295264\pi\)
−0.219595 + 0.975591i \(0.570474\pi\)
\(72\) 0 0
\(73\) 3.29787 1.07154i 0.385987 0.125415i −0.109594 0.993976i \(-0.534955\pi\)
0.495581 + 0.868562i \(0.334955\pi\)
\(74\) 9.00058 1.91313i 1.04630 0.222397i
\(75\) 0 0
\(76\) 4.04388 + 2.33473i 0.463865 + 0.267812i
\(77\) 2.75411 0.824803i 0.313860 0.0939950i
\(78\) 0 0
\(79\) −7.50645 0.788960i −0.844542 0.0887649i −0.327633 0.944805i \(-0.606251\pi\)
−0.516909 + 0.856040i \(0.672918\pi\)
\(80\) −1.96245 0.637639i −0.219409 0.0712902i
\(81\) 0 0
\(82\) −3.35800 + 2.43973i −0.370829 + 0.269423i
\(83\) −13.1816 5.86883i −1.44687 0.644188i −0.475060 0.879953i \(-0.657574\pi\)
−0.971810 + 0.235765i \(0.924240\pi\)
\(84\) 0 0
\(85\) −2.17201 + 1.95568i −0.235587 + 0.212124i
\(86\) −1.79502 4.03167i −0.193562 0.434747i
\(87\) 0 0
\(88\) 6.65574 + 7.74568i 0.709505 + 0.825692i
\(89\) 9.28531i 0.984241i −0.870527 0.492120i \(-0.836222\pi\)
0.870527 0.492120i \(-0.163778\pi\)
\(90\) 0 0
\(91\) −0.315880 + 0.972179i −0.0331132 + 0.101912i
\(92\) −1.18375 1.06585i −0.123414 0.111123i
\(93\) 0 0
\(94\) 0.183489 0.0192855i 0.0189255 0.00198915i
\(95\) 6.36233 + 1.35236i 0.652761 + 0.138749i
\(96\) 0 0
\(97\) 1.27346 12.1162i 0.129300 1.23021i −0.716835 0.697243i \(-0.754410\pi\)
0.846136 0.532968i \(-0.178923\pi\)
\(98\) 7.19787 0.727095
\(99\) 0 0
\(100\) −2.77373 −0.277373
\(101\) 0.633258 6.02504i 0.0630115 0.599514i −0.916766 0.399425i \(-0.869210\pi\)
0.979778 0.200090i \(-0.0641234\pi\)
\(102\) 0 0
\(103\) 3.90142 + 0.829273i 0.384419 + 0.0817107i 0.396067 0.918221i \(-0.370375\pi\)
−0.0116487 + 0.999932i \(0.503708\pi\)
\(104\) −3.61121 + 0.379554i −0.354108 + 0.0372183i
\(105\) 0 0
\(106\) 8.31848 + 7.49000i 0.807963 + 0.727493i
\(107\) −1.90097 + 5.85057i −0.183773 + 0.565596i −0.999925 0.0122414i \(-0.996103\pi\)
0.816152 + 0.577838i \(0.196103\pi\)
\(108\) 0 0
\(109\) 16.9364i 1.62221i 0.584897 + 0.811107i \(0.301135\pi\)
−0.584897 + 0.811107i \(0.698865\pi\)
\(110\) 3.05981 + 1.86245i 0.291742 + 0.177577i
\(111\) 0 0
\(112\) −0.775936 1.74278i −0.0733191 0.164677i
\(113\) −5.94960 + 5.35705i −0.559691 + 0.503948i −0.899721 0.436466i \(-0.856230\pi\)
0.340029 + 0.940415i \(0.389563\pi\)
\(114\) 0 0
\(115\) −2.02703 0.902493i −0.189022 0.0841579i
\(116\) 1.97141 1.43232i 0.183041 0.132987i
\(117\) 0 0
\(118\) 9.52681 + 3.09545i 0.877014 + 0.284959i
\(119\) −2.68734 0.282451i −0.246348 0.0258922i
\(120\) 0 0
\(121\) −5.05264 9.77092i −0.459331 0.888265i
\(122\) 13.5365 + 7.81528i 1.22553 + 0.707562i
\(123\) 0 0
\(124\) −4.18018 + 0.888525i −0.375392 + 0.0797919i
\(125\) −8.13317 + 2.64263i −0.727453 + 0.236364i
\(126\) 0 0
\(127\) −3.73492 5.14068i −0.331421 0.456161i 0.610490 0.792024i \(-0.290972\pi\)
−0.941911 + 0.335862i \(0.890972\pi\)
\(128\) 1.76081 1.95558i 0.155635 0.172850i
\(129\) 0 0
\(130\) −1.16351 + 0.518029i −0.102047 + 0.0454341i
\(131\) −8.68698 + 15.0463i −0.758985 + 1.31460i 0.184384 + 0.982854i \(0.440971\pi\)
−0.943369 + 0.331746i \(0.892362\pi\)
\(132\) 0 0
\(133\) 3.00679 + 5.20791i 0.260721 + 0.451583i
\(134\) −6.19073 4.49783i −0.534798 0.388553i
\(135\) 0 0
\(136\) −2.96612 9.12878i −0.254343 0.782787i
\(137\) −7.19951 + 16.1704i −0.615096 + 1.38153i 0.290290 + 0.956939i \(0.406248\pi\)
−0.905386 + 0.424589i \(0.860419\pi\)
\(138\) 0 0
\(139\) 1.28467 6.04390i 0.108964 0.512637i −0.889485 0.456965i \(-0.848936\pi\)
0.998449 0.0556722i \(-0.0177302\pi\)
\(140\) 0.366044 + 0.406533i 0.0309363 + 0.0343583i
\(141\) 0 0
\(142\) −11.0990 + 6.40800i −0.931407 + 0.537748i
\(143\) 3.87917 + 0.498862i 0.324392 + 0.0417170i
\(144\) 0 0
\(145\) 1.99518 2.74614i 0.165691 0.228054i
\(146\) 0.830477 + 3.90709i 0.0687308 + 0.323353i
\(147\) 0 0
\(148\) −0.562018 5.34724i −0.0461976 0.439541i
\(149\) 0.771598 + 7.34127i 0.0632118 + 0.601420i 0.979576 + 0.201074i \(0.0644433\pi\)
−0.916364 + 0.400346i \(0.868890\pi\)
\(150\) 0 0
\(151\) 2.80349 + 13.1894i 0.228145 + 1.07334i 0.931849 + 0.362845i \(0.118195\pi\)
−0.703704 + 0.710493i \(0.748472\pi\)
\(152\) −12.5560 + 17.2818i −1.01842 + 1.40174i
\(153\) 0 0
\(154\) 0.613283 + 3.25444i 0.0494198 + 0.262250i
\(155\) −5.15544 + 2.97650i −0.414095 + 0.239078i
\(156\) 0 0
\(157\) −1.96206 2.17909i −0.156590 0.173910i 0.659745 0.751489i \(-0.270664\pi\)
−0.816335 + 0.577579i \(0.803998\pi\)
\(158\) 1.80768 8.50445i 0.143811 0.676578i
\(159\) 0 0
\(160\) −1.38173 + 3.10343i −0.109236 + 0.245347i
\(161\) −0.633918 1.95100i −0.0499598 0.153760i
\(162\) 0 0
\(163\) 17.8134 + 12.9422i 1.39525 + 1.01371i 0.995266 + 0.0971873i \(0.0309846\pi\)
0.399985 + 0.916522i \(0.369015\pi\)
\(164\) 1.21267 + 2.10040i 0.0946935 + 0.164014i
\(165\) 0 0
\(166\) 8.31055 14.3943i 0.645024 1.11721i
\(167\) 0.588990 0.262235i 0.0455774 0.0202924i −0.383821 0.923407i \(-0.625392\pi\)
0.429399 + 0.903115i \(0.358725\pi\)
\(168\) 0 0
\(169\) 7.76819 8.62745i 0.597553 0.663650i
\(170\) −1.97892 2.72374i −0.151776 0.208902i
\(171\) 0 0
\(172\) −2.45251 + 0.796869i −0.187002 + 0.0607607i
\(173\) 13.1988 2.80550i 1.00349 0.213298i 0.323269 0.946307i \(-0.395218\pi\)
0.680219 + 0.733009i \(0.261885\pi\)
\(174\) 0 0
\(175\) −3.09357 1.78607i −0.233852 0.135015i
\(176\) −6.00300 + 4.15233i −0.452493 + 0.312994i
\(177\) 0 0
\(178\) 10.6373 + 1.11803i 0.797301 + 0.0837997i
\(179\) −1.06341 0.345524i −0.0794832 0.0258256i 0.269005 0.963139i \(-0.413305\pi\)
−0.348489 + 0.937313i \(0.613305\pi\)
\(180\) 0 0
\(181\) −18.7897 + 13.6515i −1.39663 + 1.01471i −0.401530 + 0.915846i \(0.631521\pi\)
−0.995101 + 0.0988656i \(0.968479\pi\)
\(182\) −1.07570 0.478933i −0.0797362 0.0355009i
\(183\) 0 0
\(184\) 5.41530 4.87596i 0.399222 0.359461i
\(185\) −3.04630 6.84211i −0.223969 0.503042i
\(186\) 0 0
\(187\) 0.842101 + 10.3044i 0.0615805 + 0.753533i
\(188\) 0.107807i 0.00786262i
\(189\) 0 0
\(190\) −2.31534 + 7.12590i −0.167973 + 0.516967i
\(191\) 2.22298 + 2.00158i 0.160849 + 0.144829i 0.745625 0.666365i \(-0.232151\pi\)
−0.584776 + 0.811195i \(0.698818\pi\)
\(192\) 0 0
\(193\) −9.83585 + 1.03379i −0.708000 + 0.0744138i −0.451682 0.892179i \(-0.649176\pi\)
−0.256318 + 0.966593i \(0.582509\pi\)
\(194\) 13.7270 + 2.91777i 0.985543 + 0.209484i
\(195\) 0 0
\(196\) 0.439631 4.18281i 0.0314022 0.298772i
\(197\) 4.94568 0.352365 0.176183 0.984357i \(-0.443625\pi\)
0.176183 + 0.984357i \(0.443625\pi\)
\(198\) 0 0
\(199\) −7.64868 −0.542200 −0.271100 0.962551i \(-0.587387\pi\)
−0.271100 + 0.962551i \(0.587387\pi\)
\(200\) 1.32636 12.6195i 0.0937881 0.892334i
\(201\) 0 0
\(202\) 6.82608 + 1.45093i 0.480282 + 0.102087i
\(203\) 3.12104 0.328035i 0.219054 0.0230235i
\(204\) 0 0
\(205\) 2.51067 + 2.26062i 0.175353 + 0.157888i
\(206\) −1.41978 + 4.36965i −0.0989211 + 0.304448i
\(207\) 0 0
\(208\) 2.59526i 0.179949i
\(209\) 17.4511 14.9954i 1.20712 1.03726i
\(210\) 0 0
\(211\) 9.56038 + 21.4730i 0.658163 + 1.47826i 0.865973 + 0.500090i \(0.166700\pi\)
−0.207810 + 0.978169i \(0.566634\pi\)
\(212\) 4.86064 4.37654i 0.333830 0.300582i
\(213\) 0 0
\(214\) −6.47357 2.88222i −0.442524 0.197024i
\(215\) −2.90607 + 2.11139i −0.198193 + 0.143995i
\(216\) 0 0
\(217\) −5.23434 1.70074i −0.355330 0.115454i
\(218\) −19.4025 2.03928i −1.31410 0.138118i
\(219\) 0 0
\(220\) 1.26919 1.66436i 0.0855686 0.112211i
\(221\) −3.18352 1.83800i −0.214146 0.123638i
\(222\) 0 0
\(223\) 20.4423 4.34515i 1.36892 0.290973i 0.535930 0.844263i \(-0.319961\pi\)
0.832989 + 0.553290i \(0.186628\pi\)
\(224\) −2.98702 + 0.970542i −0.199579 + 0.0648470i
\(225\) 0 0
\(226\) −5.42069 7.46094i −0.360579 0.496294i
\(227\) −7.94758 + 8.82668i −0.527499 + 0.585847i −0.946728 0.322033i \(-0.895634\pi\)
0.419229 + 0.907881i \(0.362300\pi\)
\(228\) 0 0
\(229\) 8.95362 3.98641i 0.591672 0.263429i −0.0889834 0.996033i \(-0.528362\pi\)
0.680655 + 0.732604i \(0.261695\pi\)
\(230\) 1.27797 2.21351i 0.0842670 0.145955i
\(231\) 0 0
\(232\) 5.57383 + 9.65415i 0.365940 + 0.633826i
\(233\) 12.6222 + 9.17056i 0.826907 + 0.600783i 0.918683 0.394997i \(-0.129254\pi\)
−0.0917755 + 0.995780i \(0.529254\pi\)
\(234\) 0 0
\(235\) −0.0464058 0.142823i −0.00302718 0.00931671i
\(236\) 2.38070 5.34713i 0.154970 0.348068i
\(237\) 0 0
\(238\) 0.647155 3.04462i 0.0419488 0.197354i
\(239\) −20.0566 22.2751i −1.29736 1.44086i −0.831012 0.556255i \(-0.812238\pi\)
−0.466343 0.884604i \(-0.654429\pi\)
\(240\) 0 0
\(241\) 1.64353 0.948892i 0.105869 0.0611235i −0.446131 0.894968i \(-0.647198\pi\)
0.552000 + 0.833844i \(0.313865\pi\)
\(242\) 11.8020 4.61184i 0.758662 0.296460i
\(243\) 0 0
\(244\) 5.36837 7.38893i 0.343675 0.473028i
\(245\) −1.21808 5.73063i −0.0778205 0.366116i
\(246\) 0 0
\(247\) 0.855136 + 8.13608i 0.0544110 + 0.517686i
\(248\) −2.04357 19.4432i −0.129767 1.23465i
\(249\) 0 0
\(250\) −2.04811 9.63561i −0.129534 0.609410i
\(251\) −1.59530 + 2.19574i −0.100694 + 0.138594i −0.856391 0.516328i \(-0.827299\pi\)
0.755696 + 0.654922i \(0.227299\pi\)
\(252\) 0 0
\(253\) −6.88652 + 3.76588i −0.432952 + 0.236759i
\(254\) 6.33891 3.65977i 0.397739 0.229635i
\(255\) 0 0
\(256\) −9.44758 10.4926i −0.590474 0.655788i
\(257\) 1.77181 8.33571i 0.110522 0.519967i −0.887703 0.460417i \(-0.847700\pi\)
0.998225 0.0595505i \(-0.0189667\pi\)
\(258\) 0 0
\(259\) 2.81640 6.32573i 0.175002 0.393062i
\(260\) 0.229971 + 0.707777i 0.0142622 + 0.0438945i
\(261\) 0 0
\(262\) −16.1911 11.7636i −1.00029 0.726755i
\(263\) 11.9263 + 20.6569i 0.735407 + 1.27376i 0.954545 + 0.298068i \(0.0963422\pi\)
−0.219138 + 0.975694i \(0.570324\pi\)
\(264\) 0 0
\(265\) 4.55549 7.89033i 0.279841 0.484699i
\(266\) −6.32825 + 2.81752i −0.388010 + 0.172753i
\(267\) 0 0
\(268\) −2.99188 + 3.32282i −0.182758 + 0.202974i
\(269\) −14.1414 19.4640i −0.862219 1.18674i −0.981036 0.193826i \(-0.937910\pi\)
0.118817 0.992916i \(-0.462090\pi\)
\(270\) 0 0
\(271\) 12.2868 3.99222i 0.746370 0.242510i 0.0889514 0.996036i \(-0.471648\pi\)
0.657418 + 0.753526i \(0.271648\pi\)
\(272\) 6.71048 1.42636i 0.406883 0.0864856i
\(273\) 0 0
\(274\) −17.6580 10.1949i −1.06676 0.615894i
\(275\) −4.52363 + 12.8972i −0.272785 + 0.777731i
\(276\) 0 0
\(277\) −6.63747 0.697626i −0.398807 0.0419163i −0.0969976 0.995285i \(-0.530924\pi\)
−0.301809 + 0.953368i \(0.597591\pi\)
\(278\) 6.76925 + 2.19946i 0.405993 + 0.131915i
\(279\) 0 0
\(280\) −2.02462 + 1.47097i −0.120994 + 0.0879073i
\(281\) −0.560682 0.249632i −0.0334475 0.0148918i 0.389945 0.920838i \(-0.372494\pi\)
−0.423392 + 0.905946i \(0.639161\pi\)
\(282\) 0 0
\(283\) −14.0498 + 12.6505i −0.835176 + 0.751995i −0.971087 0.238726i \(-0.923270\pi\)
0.135912 + 0.990721i \(0.456604\pi\)
\(284\) 3.04590 + 6.84120i 0.180741 + 0.405951i
\(285\) 0 0
\(286\) −1.03858 + 4.38394i −0.0614128 + 0.259228i
\(287\) 3.12347i 0.184372i
\(288\) 0 0
\(289\) −2.25049 + 6.92628i −0.132381 + 0.407428i
\(290\) 2.90576 + 2.61635i 0.170632 + 0.153638i
\(291\) 0 0
\(292\) 2.32120 0.243968i 0.135838 0.0142771i
\(293\) 2.05683 + 0.437193i 0.120161 + 0.0255411i 0.267600 0.963530i \(-0.413769\pi\)
−0.147438 + 0.989071i \(0.547103\pi\)
\(294\) 0 0
\(295\) 0.852255 8.10866i 0.0496202 0.472105i
\(296\) 24.5968 1.42966
\(297\) 0 0
\(298\) −8.50312 −0.492572
\(299\) 0.291712 2.77545i 0.0168701 0.160509i
\(300\) 0 0
\(301\) −3.24843 0.690476i −0.187237 0.0397984i
\(302\) −15.4474 + 1.62359i −0.888900 + 0.0934272i
\(303\) 0 0
\(304\) −11.3461 10.2161i −0.650744 0.585933i
\(305\) 3.93143 12.0997i 0.225113 0.692827i
\(306\) 0 0
\(307\) 17.6110i 1.00511i −0.864545 0.502556i \(-0.832393\pi\)
0.864545 0.502556i \(-0.167607\pi\)
\(308\) 1.92867 0.157615i 0.109896 0.00898096i
\(309\) 0 0
\(310\) −2.78914 6.26450i −0.158412 0.355800i
\(311\) 8.17812 7.36361i 0.463739 0.417552i −0.403857 0.914822i \(-0.632331\pi\)
0.867596 + 0.497270i \(0.165664\pi\)
\(312\) 0 0
\(313\) −3.56418 1.58687i −0.201459 0.0896954i 0.303527 0.952823i \(-0.401836\pi\)
−0.504986 + 0.863127i \(0.668502\pi\)
\(314\) 2.73263 1.98537i 0.154211 0.112041i
\(315\) 0 0
\(316\) −4.83167 1.56991i −0.271803 0.0883141i
\(317\) 21.4837 + 2.25803i 1.20665 + 0.126824i 0.686421 0.727204i \(-0.259181\pi\)
0.520227 + 0.854028i \(0.325847\pi\)
\(318\) 0 0
\(319\) −3.44480 11.5026i −0.192872 0.644019i
\(320\) −6.96292 4.02004i −0.389239 0.224727i
\(321\) 0 0
\(322\) 2.31141 0.491305i 0.128810 0.0273794i
\(323\) −20.5672 + 6.68269i −1.14439 + 0.371835i
\(324\) 0 0
\(325\) −2.85638 3.93148i −0.158444 0.218079i
\(326\) −16.9715 + 18.8488i −0.939965 + 1.04394i
\(327\) 0 0
\(328\) −10.1360 + 4.51283i −0.559666 + 0.249179i
\(329\) 0.0694194 0.120238i 0.00382722 0.00662893i
\(330\) 0 0
\(331\) 3.42603 + 5.93405i 0.188311 + 0.326165i 0.944687 0.327972i \(-0.106365\pi\)
−0.756376 + 0.654137i \(0.773032\pi\)
\(332\) −7.85719 5.70858i −0.431219 0.313299i
\(333\) 0 0
\(334\) 0.229499 + 0.706326i 0.0125576 + 0.0386485i
\(335\) −2.53333 + 5.68995i −0.138411 + 0.310875i
\(336\) 0 0
\(337\) −0.153680 + 0.723009i −0.00837150 + 0.0393848i −0.982135 0.188177i \(-0.939742\pi\)
0.973764 + 0.227562i \(0.0730754\pi\)
\(338\) 8.94831 + 9.93811i 0.486724 + 0.540562i
\(339\) 0 0
\(340\) −1.70368 + 0.983622i −0.0923952 + 0.0533444i
\(341\) −2.68594 + 20.8860i −0.145452 + 1.13104i
\(342\) 0 0
\(343\) 6.75032 9.29102i 0.364483 0.501668i
\(344\) −2.45272 11.5391i −0.132242 0.622147i
\(345\) 0 0
\(346\) 1.62475 + 15.4585i 0.0873472 + 0.831053i
\(347\) 1.24436 + 11.8393i 0.0668008 + 0.635567i 0.975784 + 0.218735i \(0.0701930\pi\)
−0.908984 + 0.416832i \(0.863140\pi\)
\(348\) 0 0
\(349\) −2.11800 9.96440i −0.113374 0.533382i −0.997776 0.0666564i \(-0.978767\pi\)
0.884402 0.466726i \(-0.154566\pi\)
\(350\) 2.41863 3.32896i 0.129281 0.177940i
\(351\) 0 0
\(352\) 5.76564 + 10.5434i 0.307310 + 0.561965i
\(353\) −27.2712 + 15.7451i −1.45150 + 0.838025i −0.998567 0.0535191i \(-0.982956\pi\)
−0.452935 + 0.891544i \(0.649623\pi\)
\(354\) 0 0
\(355\) 6.98003 + 7.75211i 0.370462 + 0.411439i
\(356\) 1.29941 6.11324i 0.0688686 0.324001i
\(357\) 0 0
\(358\) 0.523878 1.17665i 0.0276878 0.0621878i
\(359\) −8.57599 26.3942i −0.452624 1.39303i −0.873903 0.486101i \(-0.838419\pi\)
0.421279 0.906931i \(-0.361581\pi\)
\(360\) 0 0
\(361\) 23.5646 + 17.1207i 1.24024 + 0.901090i
\(362\) −13.3769 23.1694i −0.703073 1.21776i
\(363\) 0 0
\(364\) −0.344018 + 0.595856i −0.0180314 + 0.0312313i
\(365\) 2.97011 1.32238i 0.155463 0.0692165i
\(366\) 0 0
\(367\) −11.2990 + 12.5488i −0.589800 + 0.655040i −0.961980 0.273121i \(-0.911944\pi\)
0.372179 + 0.928161i \(0.378611\pi\)
\(368\) 3.06133 + 4.21357i 0.159583 + 0.219647i
\(369\) 0 0
\(370\) 8.20517 2.66602i 0.426567 0.138600i
\(371\) 8.23929 1.75131i 0.427762 0.0909237i
\(372\) 0 0
\(373\) 5.20412 + 3.00460i 0.269459 + 0.155572i 0.628642 0.777695i \(-0.283611\pi\)
−0.359183 + 0.933267i \(0.616944\pi\)
\(374\) −11.9062 0.276019i −0.615655 0.0142726i
\(375\) 0 0
\(376\) 0.490483 + 0.0515518i 0.0252947 + 0.00265858i
\(377\) 4.06031 + 1.31928i 0.209117 + 0.0679462i
\(378\) 0 0
\(379\) −6.88315 + 5.00090i −0.353563 + 0.256879i −0.750362 0.661027i \(-0.770121\pi\)
0.396799 + 0.917906i \(0.370121\pi\)
\(380\) 3.99957 + 1.78072i 0.205173 + 0.0913491i
\(381\) 0 0
\(382\) −2.56069 + 2.30566i −0.131016 + 0.117968i
\(383\) 4.11794 + 9.24903i 0.210417 + 0.472604i 0.987663 0.156592i \(-0.0500509\pi\)
−0.777247 + 0.629196i \(0.783384\pi\)
\(384\) 0 0
\(385\) 2.48726 1.03901i 0.126762 0.0529530i
\(386\) 11.3925i 0.579863i
\(387\) 0 0
\(388\) 2.53398 7.79880i 0.128644 0.395924i
\(389\) 6.93488 + 6.24419i 0.351612 + 0.316593i 0.825943 0.563754i \(-0.190643\pi\)
−0.474331 + 0.880347i \(0.657310\pi\)
\(390\) 0 0
\(391\) 7.33672 0.771120i 0.371034 0.0389972i
\(392\) 18.8201 + 4.00033i 0.950557 + 0.202047i
\(393\) 0 0
\(394\) −0.595501 + 5.66581i −0.0300009 + 0.285439i
\(395\) −7.07678 −0.356071
\(396\) 0 0
\(397\) 10.3328 0.518587 0.259294 0.965799i \(-0.416510\pi\)
0.259294 + 0.965799i \(0.416510\pi\)
\(398\) 0.920963 8.76238i 0.0461637 0.439218i
\(399\) 0 0
\(400\) 8.87105 + 1.88560i 0.443553 + 0.0942800i
\(401\) 14.7518 1.55048i 0.736671 0.0774273i 0.271241 0.962512i \(-0.412566\pi\)
0.465431 + 0.885084i \(0.345899\pi\)
\(402\) 0 0
\(403\) −5.56414 5.00997i −0.277169 0.249564i
\(404\) 1.26008 3.87814i 0.0626915 0.192944i
\(405\) 0 0
\(406\) 3.61498i 0.179409i
\(407\) −25.7800 6.10747i −1.27787 0.302736i
\(408\) 0 0
\(409\) 3.55322 + 7.98066i 0.175695 + 0.394618i 0.979831 0.199827i \(-0.0640381\pi\)
−0.804136 + 0.594446i \(0.797371\pi\)
\(410\) −2.89209 + 2.60405i −0.142830 + 0.128605i
\(411\) 0 0
\(412\) 2.45256 + 1.09195i 0.120829 + 0.0537965i
\(413\) 6.09836 4.43072i 0.300081 0.218021i
\(414\) 0 0
\(415\) −12.8665 4.18058i −0.631591 0.205216i
\(416\) −4.24927 0.446616i −0.208338 0.0218972i
\(417\) 0 0
\(418\) 15.0776 + 21.7976i 0.737471 + 1.06616i
\(419\) 30.4601 + 17.5861i 1.48807 + 0.859139i 0.999907 0.0136128i \(-0.00433321\pi\)
0.488165 + 0.872752i \(0.337667\pi\)
\(420\) 0 0
\(421\) 1.56053 0.331701i 0.0760557 0.0161661i −0.169727 0.985491i \(-0.554288\pi\)
0.245782 + 0.969325i \(0.420955\pi\)
\(422\) −25.7507 + 8.36692i −1.25353 + 0.407295i
\(423\) 0 0
\(424\) 17.5874 + 24.2070i 0.854121 + 1.17560i
\(425\) 8.59561 9.54640i 0.416949 0.463068i
\(426\) 0 0
\(427\) 10.7453 4.78412i 0.520002 0.231520i
\(428\) −2.07030 + 3.58586i −0.100072 + 0.173329i
\(429\) 0 0
\(430\) −2.06890 3.58345i −0.0997714 0.172809i
\(431\) 23.8660 + 17.3397i 1.14959 + 0.835223i 0.988426 0.151706i \(-0.0484766\pi\)
0.161160 + 0.986928i \(0.448477\pi\)
\(432\) 0 0
\(433\) 3.54190 + 10.9008i 0.170213 + 0.523861i 0.999383 0.0351356i \(-0.0111863\pi\)
−0.829170 + 0.558997i \(0.811186\pi\)
\(434\) 2.57864 5.79172i 0.123779 0.278011i
\(435\) 0 0
\(436\) −2.37013 + 11.1506i −0.113508 + 0.534015i
\(437\) −10.9856 12.2007i −0.525511 0.583639i
\(438\) 0 0
\(439\) 2.63084 1.51891i 0.125563 0.0724938i −0.435903 0.899994i \(-0.643571\pi\)
0.561466 + 0.827500i \(0.310238\pi\)
\(440\) 6.96532 + 6.57023i 0.332059 + 0.313223i
\(441\) 0 0
\(442\) 2.48895 3.42575i 0.118387 0.162946i
\(443\) 3.44135 + 16.1903i 0.163503 + 0.769223i 0.981111 + 0.193447i \(0.0619667\pi\)
−0.817607 + 0.575776i \(0.804700\pi\)
\(444\) 0 0
\(445\) −0.910010 8.65817i −0.0431386 0.410436i
\(446\) 2.51641 + 23.9420i 0.119155 + 1.13369i
\(447\) 0 0
\(448\) −1.54547 7.27086i −0.0730165 0.343516i
\(449\) 0.152765 0.210263i 0.00720943 0.00992293i −0.805397 0.592736i \(-0.798048\pi\)
0.812606 + 0.582813i \(0.198048\pi\)
\(450\) 0 0
\(451\) 11.7441 2.21312i 0.553009 0.104212i
\(452\) −4.66676 + 2.69436i −0.219506 + 0.126732i
\(453\) 0 0
\(454\) −9.15496 10.1676i −0.429663 0.477190i
\(455\) −0.199266 + 0.937475i −0.00934175 + 0.0439495i
\(456\) 0 0
\(457\) −2.21261 + 4.96960i −0.103501 + 0.232468i −0.957872 0.287197i \(-0.907277\pi\)
0.854370 + 0.519665i \(0.173943\pi\)
\(458\) 3.48877 + 10.7373i 0.163019 + 0.501722i
\(459\) 0 0
\(460\) −1.20826 0.877849i −0.0563352 0.0409299i
\(461\) −14.6816 25.4292i −0.683789 1.18436i −0.973816 0.227339i \(-0.926997\pi\)
0.290026 0.957019i \(-0.406336\pi\)
\(462\) 0 0
\(463\) −10.1913 + 17.6519i −0.473632 + 0.820354i −0.999544 0.0301843i \(-0.990391\pi\)
0.525913 + 0.850539i \(0.323724\pi\)
\(464\) −7.27874 + 3.24070i −0.337907 + 0.150446i
\(465\) 0 0
\(466\) −12.0257 + 13.3559i −0.557078 + 0.618698i
\(467\) −0.293731 0.404285i −0.0135922 0.0187081i 0.802167 0.597100i \(-0.203680\pi\)
−0.815759 + 0.578392i \(0.803680\pi\)
\(468\) 0 0
\(469\) −5.47653 + 1.77943i −0.252882 + 0.0821665i
\(470\) 0.169206 0.0359659i 0.00780490 0.00165898i
\(471\) 0 0
\(472\) 23.1891 + 13.3883i 1.06737 + 0.616244i
\(473\) −0.294496 + 12.7032i −0.0135409 + 0.584094i
\(474\) 0 0
\(475\) −28.4318 2.98831i −1.30454 0.137113i
\(476\) −1.72976 0.562032i −0.0792833 0.0257607i
\(477\) 0 0
\(478\) 27.9335 20.2949i 1.27765 0.928267i
\(479\) −9.81779 4.37116i −0.448586 0.199724i 0.169994 0.985445i \(-0.445625\pi\)
−0.618580 + 0.785722i \(0.712292\pi\)
\(480\) 0 0
\(481\) 7.00039 6.30318i 0.319190 0.287400i
\(482\) 0.889163 + 1.99709i 0.0405003 + 0.0909651i
\(483\) 0 0
\(484\) −1.95918 7.14004i −0.0890535 0.324547i
\(485\) 11.4226i 0.518675i
\(486\) 0 0
\(487\) 9.43244 29.0301i 0.427425 1.31548i −0.473228 0.880940i \(-0.656911\pi\)
0.900653 0.434539i \(-0.143089\pi\)
\(488\) 31.0500 + 27.9575i 1.40557 + 1.26558i
\(489\) 0 0
\(490\) 6.71172 0.705430i 0.303204 0.0318681i
\(491\) −24.5241 5.21275i −1.10676 0.235248i −0.381937 0.924188i \(-0.624743\pi\)
−0.724818 + 0.688940i \(0.758076\pi\)
\(492\) 0 0
\(493\) −1.17966 + 11.2237i −0.0531291 + 0.505490i
\(494\) −9.42371 −0.423993
\(495\) 0 0
\(496\) 13.9732 0.627417
\(497\) −1.00810 + 9.59139i −0.0452193 + 0.430233i
\(498\) 0 0
\(499\) −4.86170 1.03339i −0.217640 0.0462607i 0.0978013 0.995206i \(-0.468819\pi\)
−0.315441 + 0.948945i \(0.602152\pi\)
\(500\) −5.72452 + 0.601671i −0.256008 + 0.0269075i
\(501\) 0 0
\(502\) −2.32337 2.09197i −0.103697 0.0933693i
\(503\) −11.3085 + 34.8039i −0.504219 + 1.55183i 0.297860 + 0.954610i \(0.403727\pi\)
−0.802079 + 0.597218i \(0.796273\pi\)
\(504\) 0 0
\(505\) 5.68017i 0.252764i
\(506\) −3.48503 8.34269i −0.154928 0.370878i
\(507\) 0 0
\(508\) −1.73959 3.90718i −0.0771818 0.173353i
\(509\) 10.3681 9.33549i 0.459559 0.413788i −0.406562 0.913623i \(-0.633273\pi\)
0.866121 + 0.499835i \(0.166606\pi\)
\(510\) 0 0
\(511\) 2.74595 + 1.22258i 0.121474 + 0.0540836i
\(512\) 17.4158 12.6533i 0.769677 0.559203i
\(513\) 0 0
\(514\) 9.33611 + 3.03349i 0.411798 + 0.133801i
\(515\) 3.71919 + 0.390903i 0.163887 + 0.0172252i
\(516\) 0 0
\(517\) −0.501277 0.175820i −0.0220461 0.00773255i
\(518\) 6.90769 + 3.98815i 0.303506 + 0.175229i
\(519\) 0 0
\(520\) −3.33011 + 0.707836i −0.146035 + 0.0310407i
\(521\) 6.74242 2.19075i 0.295391 0.0959783i −0.157573 0.987507i \(-0.550367\pi\)
0.452963 + 0.891529i \(0.350367\pi\)
\(522\) 0 0
\(523\) 7.47929 + 10.2944i 0.327047 + 0.450141i 0.940602 0.339510i \(-0.110261\pi\)
−0.613556 + 0.789651i \(0.710261\pi\)
\(524\) −7.82493 + 8.69046i −0.341834 + 0.379645i
\(525\) 0 0
\(526\) −25.1008 + 11.1756i −1.09445 + 0.487278i
\(527\) 9.89606 17.1405i 0.431079 0.746651i
\(528\) 0 0
\(529\) −8.69973 15.0684i −0.378249 0.655147i
\(530\) 8.49070 + 6.16886i 0.368813 + 0.267958i
\(531\) 0 0
\(532\) 1.25079 + 3.84955i 0.0542288 + 0.166899i
\(533\) −1.72830 + 3.88182i −0.0748609 + 0.168140i
\(534\) 0 0
\(535\) −1.19918 + 5.64172i −0.0518453 + 0.243913i
\(536\) −13.6870 15.2010i −0.591188 0.656581i
\(537\) 0 0
\(538\) 24.0009 13.8569i 1.03475 0.597414i
\(539\) −18.7321 8.86584i −0.806849 0.381879i
\(540\) 0 0
\(541\) 2.30481 3.17230i 0.0990915 0.136388i −0.756592 0.653887i \(-0.773137\pi\)
0.855684 + 0.517499i \(0.173137\pi\)
\(542\) 3.09409 + 14.5565i 0.132902 + 0.625257i
\(543\) 0 0
\(544\) −1.18060 11.2327i −0.0506178 0.481596i
\(545\) 1.65986 + 15.7925i 0.0711006 + 0.676477i
\(546\) 0 0
\(547\) 2.24588 + 10.5660i 0.0960269 + 0.451771i 0.999722 + 0.0235938i \(0.00751083\pi\)
−0.903695 + 0.428177i \(0.859156\pi\)
\(548\) −7.00292 + 9.63869i −0.299150 + 0.411745i
\(549\) 0 0
\(550\) −14.2305 6.73523i −0.606789 0.287191i
\(551\) 21.7509 12.5579i 0.926618 0.534983i
\(552\) 0 0
\(553\) −4.37791 4.86217i −0.186168 0.206760i
\(554\) 1.59841 7.51993i 0.0679100 0.319491i
\(555\) 0 0
\(556\) 1.69160 3.79939i 0.0717397 0.161130i
\(557\) −7.06108 21.7318i −0.299188 0.920805i −0.981783 0.190008i \(-0.939149\pi\)
0.682595 0.730797i \(-0.260851\pi\)
\(558\) 0 0
\(559\) −3.65507 2.65556i −0.154593 0.112318i
\(560\) −0.894330 1.54903i −0.0377924 0.0654583i
\(561\) 0 0
\(562\) 0.353491 0.612264i 0.0149111 0.0258268i
\(563\) −9.90656 + 4.41068i −0.417512 + 0.185888i −0.604731 0.796430i \(-0.706719\pi\)
0.187219 + 0.982318i \(0.440053\pi\)
\(564\) 0 0
\(565\) −5.02274 + 5.57832i −0.211308 + 0.234682i
\(566\) −12.8008 17.6188i −0.538058 0.740574i
\(567\) 0 0
\(568\) −32.5816 + 10.5864i −1.36709 + 0.444195i
\(569\) −16.4533 + 3.49726i −0.689758 + 0.146613i −0.539439 0.842025i \(-0.681364\pi\)
−0.150320 + 0.988637i \(0.548030\pi\)
\(570\) 0 0
\(571\) 14.1246 + 8.15487i 0.591098 + 0.341271i 0.765532 0.643398i \(-0.222476\pi\)
−0.174434 + 0.984669i \(0.555809\pi\)
\(572\) 2.48415 + 0.871301i 0.103867 + 0.0364309i
\(573\) 0 0
\(574\) −3.57827 0.376091i −0.149354 0.0156977i
\(575\) 9.27503 + 3.01364i 0.386795 + 0.125677i
\(576\) 0 0
\(577\) 6.51886 4.73623i 0.271384 0.197172i −0.443767 0.896142i \(-0.646358\pi\)
0.715150 + 0.698971i \(0.246358\pi\)
\(578\) −7.66382 3.41215i −0.318773 0.141927i
\(579\) 0 0
\(580\) 1.69789 1.52878i 0.0705009 0.0634793i
\(581\) −5.08730 11.4263i −0.211057 0.474042i
\(582\) 0 0
\(583\) −12.4228 29.7385i −0.514499 1.23164i
\(584\) 10.6773i 0.441830i
\(585\) 0 0
\(586\) −0.748511 + 2.30368i −0.0309207 + 0.0951642i
\(587\) 11.6957 + 10.5309i 0.482733 + 0.434655i 0.874221 0.485528i \(-0.161373\pi\)
−0.391488 + 0.920183i \(0.628039\pi\)
\(588\) 0 0
\(589\) −43.8057 + 4.60417i −1.80498 + 0.189711i
\(590\) 9.18672 + 1.95270i 0.378211 + 0.0803913i
\(591\) 0 0
\(592\) −1.83762 + 17.4838i −0.0755258 + 0.718580i
\(593\) −22.2880 −0.915258 −0.457629 0.889143i \(-0.651301\pi\)
−0.457629 + 0.889143i \(0.651301\pi\)
\(594\) 0 0
\(595\) −2.53351 −0.103864
\(596\) −0.519352 + 4.94131i −0.0212735 + 0.202404i
\(597\) 0 0
\(598\) 3.14445 + 0.668374i 0.128586 + 0.0273318i
\(599\) 28.4493 2.99015i 1.16241 0.122174i 0.496383 0.868104i \(-0.334661\pi\)
0.666025 + 0.745930i \(0.267994\pi\)
\(600\) 0 0
\(601\) 5.29836 + 4.77067i 0.216125 + 0.194600i 0.770081 0.637946i \(-0.220216\pi\)
−0.553956 + 0.832546i \(0.686882\pi\)
\(602\) 1.18215 3.63829i 0.0481809 0.148286i
\(603\) 0 0
\(604\) 9.07594i 0.369295i
\(605\) −5.66898 8.61579i −0.230477 0.350282i
\(606\) 0 0
\(607\) −1.85819 4.17355i −0.0754215 0.169399i 0.871900 0.489684i \(-0.162888\pi\)
−0.947321 + 0.320285i \(0.896221\pi\)
\(608\) −18.6795 + 16.8191i −0.757555 + 0.682106i
\(609\) 0 0
\(610\) 13.3881 + 5.96078i 0.542070 + 0.241345i
\(611\) 0.152805 0.111019i 0.00618182 0.00449135i
\(612\) 0 0
\(613\) −37.1400 12.0675i −1.50007 0.487402i −0.560032 0.828471i \(-0.689211\pi\)
−0.940038 + 0.341069i \(0.889211\pi\)
\(614\) 20.1753 + 2.12051i 0.814208 + 0.0855767i
\(615\) 0 0
\(616\) −0.205171 + 8.85013i −0.00826656 + 0.356582i
\(617\) −27.0174 15.5985i −1.08768 0.627972i −0.154722 0.987958i \(-0.549448\pi\)
−0.932958 + 0.359986i \(0.882782\pi\)
\(618\) 0 0
\(619\) −31.5210 + 6.69999i −1.26693 + 0.269295i −0.791889 0.610665i \(-0.790902\pi\)
−0.475046 + 0.879961i \(0.657569\pi\)
\(620\) −3.81077 + 1.23819i −0.153044 + 0.0497270i
\(621\) 0 0
\(622\) 7.45109 + 10.2556i 0.298762 + 0.411210i
\(623\) 5.38571 5.98144i 0.215774 0.239641i
\(624\) 0 0
\(625\) 11.4984 5.11940i 0.459935 0.204776i
\(626\) 2.24709 3.89207i 0.0898117 0.155558i
\(627\) 0 0
\(628\) −0.986830 1.70924i −0.0393788 0.0682061i
\(629\) 20.1453 + 14.6365i 0.803248 + 0.583594i
\(630\) 0 0
\(631\) −0.555911 1.71092i −0.0221305 0.0681105i 0.939381 0.342874i \(-0.111400\pi\)
−0.961512 + 0.274764i \(0.911400\pi\)
\(632\) 9.45297 21.2317i 0.376019 0.844552i
\(633\) 0 0
\(634\) −5.17364 + 24.3400i −0.205471 + 0.966667i
\(635\) −3.98647 4.42743i −0.158198 0.175697i
\(636\) 0 0
\(637\) 6.38142 3.68432i 0.252841 0.145978i
\(638\) 13.5922 2.56138i 0.538120 0.101406i
\(639\) 0 0
\(640\) 1.45023 1.99606i 0.0573252 0.0789014i
\(641\) −1.60208 7.53719i −0.0632783 0.297701i 0.935116 0.354341i \(-0.115295\pi\)
−0.998395 + 0.0566398i \(0.981961\pi\)
\(642\) 0 0
\(643\) −2.21750 21.0981i −0.0874496 0.832028i −0.947056 0.321070i \(-0.895958\pi\)
0.859606 0.510958i \(-0.170709\pi\)
\(644\) −0.144330 1.37321i −0.00568740 0.0541120i
\(645\) 0 0
\(646\) −5.17928 24.3666i −0.203776 0.958690i
\(647\) 29.4465 40.5296i 1.15766 1.59338i 0.438150 0.898902i \(-0.355634\pi\)
0.719511 0.694482i \(-0.244366\pi\)
\(648\) 0 0
\(649\) −20.9803 19.7902i −0.823548 0.776834i
\(650\) 4.84786 2.79891i 0.190149 0.109782i
\(651\) 0 0
\(652\) 9.91677 + 11.0137i 0.388371 + 0.431329i
\(653\) 3.66275 17.2319i 0.143334 0.674335i −0.846533 0.532337i \(-0.821314\pi\)
0.989867 0.141998i \(-0.0453527\pi\)
\(654\) 0 0
\(655\) −6.62563 + 14.8814i −0.258885 + 0.581465i
\(656\) −2.45053 7.54197i −0.0956772 0.294464i
\(657\) 0 0
\(658\) 0.129387 + 0.0940050i 0.00504402 + 0.00366470i
\(659\) −10.5664 18.3016i −0.411609 0.712928i 0.583457 0.812144i \(-0.301700\pi\)
−0.995066 + 0.0992163i \(0.968366\pi\)
\(660\) 0 0
\(661\) 5.51647 9.55480i 0.214566 0.371639i −0.738572 0.674174i \(-0.764500\pi\)
0.953138 + 0.302535i \(0.0978331\pi\)
\(662\) −7.21061 + 3.21037i −0.280248 + 0.124775i
\(663\) 0 0
\(664\) 29.7292 33.0177i 1.15372 1.28133i
\(665\) 3.31411 + 4.56147i 0.128515 + 0.176886i
\(666\) 0 0
\(667\) −8.14837 + 2.64757i −0.315506 + 0.102514i
\(668\) 0.424476 0.0902251i 0.0164235 0.00349091i
\(669\) 0 0
\(670\) −6.21341 3.58731i −0.240045 0.138590i
\(671\) −25.6017 37.0122i −0.988341 1.42884i
\(672\) 0 0
\(673\) 30.9325 + 3.25113i 1.19236 + 0.125322i 0.679844 0.733356i \(-0.262047\pi\)
0.512515 + 0.858678i \(0.328714\pi\)
\(674\) −0.809780 0.263113i −0.0311915 0.0101347i
\(675\) 0 0
\(676\) 6.32175 4.59302i 0.243144 0.176655i
\(677\) 19.5106 + 8.68666i 0.749852 + 0.333856i 0.745830 0.666136i \(-0.232053\pi\)
0.00402196 + 0.999992i \(0.498720\pi\)
\(678\) 0 0
\(679\) 7.84802 7.06639i 0.301179 0.271183i
\(680\) −3.66046 8.22152i −0.140372 0.315281i
\(681\) 0 0
\(682\) −23.6037 5.59188i −0.903832 0.214124i
\(683\) 17.2570i 0.660321i −0.943925 0.330161i \(-0.892897\pi\)
0.943925 0.330161i \(-0.107103\pi\)
\(684\) 0 0
\(685\) −5.12846 + 15.7838i −0.195949 + 0.603068i
\(686\) 9.83106 + 8.85193i 0.375352 + 0.337968i
\(687\) 0 0
\(688\) 8.38543 0.881344i 0.319691 0.0336009i
\(689\) 11.2088 + 2.38250i 0.427020 + 0.0907659i
\(690\) 0 0
\(691\) −2.19032 + 20.8395i −0.0833236 + 0.792771i 0.870452 + 0.492253i \(0.163826\pi\)
−0.953776 + 0.300518i \(0.902840\pi\)
\(692\) 9.08243 0.345262
\(693\) 0 0
\(694\) −13.7130 −0.520539
\(695\) 0.605568 5.76159i 0.0229705 0.218550i
\(696\) 0 0
\(697\) −10.9870 2.33535i −0.416161 0.0884578i
\(698\) 11.6703 1.22660i 0.441728 0.0464275i
\(699\) 0 0
\(700\) −1.78679 1.60883i −0.0675344 0.0608082i
\(701\) −15.1348 + 46.5802i −0.571634 + 1.75931i 0.0757293 + 0.997128i \(0.475872\pi\)
−0.647364 + 0.762181i \(0.724128\pi\)
\(702\) 0 0
\(703\) 55.4168i 2.09008i
\(704\) −26.2431 + 10.9626i −0.989074 + 0.413170i
\(705\) 0 0
\(706\) −14.7540 33.1380i −0.555273 1.24716i
\(707\) 3.90261 3.51393i 0.146773 0.132155i
\(708\) 0 0
\(709\) 37.9596 + 16.9007i 1.42560 + 0.634719i 0.967198 0.254025i \(-0.0817546\pi\)
0.458404 + 0.888744i \(0.348421\pi\)
\(710\) −9.72133 + 7.06296i −0.364835 + 0.265068i
\(711\) 0 0
\(712\) 27.1917 + 8.83513i 1.01905 + 0.331111i
\(713\) 14.9434 + 1.57062i 0.559635 + 0.0588200i
\(714\) 0 0
\(715\) 3.66606 + 0.0849893i 0.137103 + 0.00317842i
\(716\) −0.651774 0.376302i −0.0243579 0.0140631i
\(717\) 0 0
\(718\) 31.2700 6.64664i 1.16699 0.248050i
\(719\) 27.4285 8.91207i 1.02291 0.332364i 0.250927 0.968006i \(-0.419264\pi\)
0.771984 + 0.635642i \(0.219264\pi\)
\(720\) 0 0
\(721\) 2.03223 + 2.79713i 0.0756843 + 0.104170i
\(722\) −22.4510 + 24.9343i −0.835539 + 0.927960i
\(723\) 0 0
\(724\) −14.2812 + 6.35839i −0.530756 + 0.236308i
\(725\) −7.45956 + 12.9203i −0.277041 + 0.479849i
\(726\) 0 0
\(727\) −9.19217 15.9213i −0.340919 0.590489i 0.643685 0.765291i \(-0.277405\pi\)
−0.984604 + 0.174802i \(0.944071\pi\)
\(728\) −2.54643 1.85009i −0.0943770 0.0685689i
\(729\) 0 0
\(730\) 1.15730 + 3.56181i 0.0428336 + 0.131828i
\(731\) 4.85757 10.9103i 0.179664 0.403532i
\(732\) 0 0
\(733\) 6.56061 30.8652i 0.242322 1.14003i −0.673732 0.738976i \(-0.735310\pi\)
0.916053 0.401057i \(-0.131357\pi\)
\(734\) −13.0155 14.4551i −0.480409 0.533549i
\(735\) 0 0
\(736\) 7.42577 4.28727i 0.273718 0.158031i
\(737\) 10.5710 + 19.3307i 0.389386 + 0.712055i
\(738\) 0 0
\(739\) −26.9990 + 37.1609i −0.993173 + 1.36698i −0.0637507 + 0.997966i \(0.520306\pi\)
−0.929422 + 0.369019i \(0.879694\pi\)
\(740\) −1.04812 4.93100i −0.0385296 0.181267i
\(741\) 0 0
\(742\) 1.01424 + 9.64986i 0.0372340 + 0.354257i
\(743\) −2.27001 21.5977i −0.0832787 0.792344i −0.953846 0.300295i \(-0.902915\pi\)
0.870568 0.492049i \(-0.163752\pi\)
\(744\) 0 0
\(745\) 1.43897 + 6.76981i 0.0527197 + 0.248027i
\(746\) −4.06871 + 5.60010i −0.148966 + 0.205034i
\(747\) 0 0
\(748\) −0.887605 + 6.90204i −0.0324541 + 0.252364i
\(749\) −4.61805 + 2.66623i −0.168740 + 0.0974220i
\(750\) 0 0
\(751\) 11.3807 + 12.6396i 0.415288 + 0.461224i 0.914102 0.405485i \(-0.132897\pi\)
−0.498813 + 0.866709i \(0.666231\pi\)
\(752\) −0.0732877 + 0.344791i −0.00267253 + 0.0125733i
\(753\) 0 0
\(754\) −2.00027 + 4.49267i −0.0728454 + 0.163613i
\(755\) 3.90677 + 12.0238i 0.142182 + 0.437591i
\(756\) 0 0
\(757\) −18.8951 13.7281i −0.686756 0.498957i 0.188836 0.982009i \(-0.439528\pi\)
−0.875592 + 0.483051i \(0.839528\pi\)
\(758\) −4.90028 8.48753i −0.177986 0.308281i
\(759\) 0 0
\(760\) −10.0142 + 17.3451i −0.363253 + 0.629173i
\(761\) −18.5426 + 8.25571i −0.672170 + 0.299269i −0.714297 0.699843i \(-0.753253\pi\)
0.0421271 + 0.999112i \(0.486587\pi\)
\(762\) 0 0
\(763\) −9.82355 + 10.9102i −0.355636 + 0.394974i
\(764\) 1.18346 + 1.62889i 0.0428159 + 0.0589310i
\(765\) 0 0
\(766\) −11.0916 + 3.60388i −0.400755 + 0.130213i
\(767\) 10.0306 2.13208i 0.362185 0.0769848i
\(768\) 0 0
\(769\) −20.3619 11.7559i −0.734268 0.423930i 0.0857137 0.996320i \(-0.472683\pi\)
−0.819981 + 0.572390i \(0.806016\pi\)
\(770\) 0.890813 + 2.97452i 0.0321027 + 0.107194i
\(771\) 0 0
\(772\) −6.62038 0.695830i −0.238273 0.0250435i
\(773\) −12.8627 4.17933i −0.462638 0.150320i 0.0684183 0.997657i \(-0.478205\pi\)
−0.531056 + 0.847337i \(0.678205\pi\)
\(774\) 0 0
\(775\) 21.1676 15.3792i 0.760362 0.552436i
\(776\) 34.2701 + 15.2580i 1.23022 + 0.547731i
\(777\) 0 0
\(778\) −7.98841 + 7.19279i −0.286398 + 0.257874i
\(779\) 10.1674 + 22.8364i 0.364286 + 0.818200i
\(780\) 0 0
\(781\) 36.7775 3.00554i 1.31600 0.107547i
\(782\) 8.49784i 0.303882i
\(783\) 0 0
\(784\) −4.24954 + 13.0787i −0.151769 + 0.467098i
\(785\) −2.04310 1.83962i −0.0729215 0.0656588i
\(786\) 0 0
\(787\) 46.0880 4.84404i 1.64286 0.172671i 0.762503 0.646984i \(-0.223970\pi\)
0.880356 + 0.474313i \(0.157303\pi\)
\(788\) 3.25613 + 0.692112i 0.115995 + 0.0246555i
\(789\) 0 0
\(790\) 0.852102 8.10721i 0.0303164 0.288442i
\(791\) −6.93985 −0.246753
\(792\) 0 0
\(793\) 16.0014 0.568226
\(794\) −1.24415 + 11.8373i −0.0441533 + 0.420090i
\(795\) 0 0
\(796\) −5.03572 1.07038i −0.178486 0.0379384i
\(797\) 48.4746 5.09489i 1.71706 0.180470i 0.805767 0.592232i \(-0.201753\pi\)
0.911291 + 0.411762i \(0.135087\pi\)
\(798\) 0 0
\(799\) 0.371040 + 0.334086i 0.0131265 + 0.0118191i
\(800\) 4.61394 14.2003i 0.163127 0.502055i
\(801\) 0 0
\(802\) 17.0865i 0.603345i
\(803\) 2.65121 11.1909i 0.0935590 0.394919i
\(804\) 0 0
\(805\) −0.782311 1.75710i −0.0275728 0.0619296i
\(806\) 6.40942 5.77107i 0.225762 0.203277i
\(807\) 0 0
\(808\) 17.0416 + 7.58741i 0.599521 + 0.266924i
\(809\) −4.11235 + 2.98780i −0.144583 + 0.105045i −0.657725 0.753258i \(-0.728481\pi\)
0.513143 + 0.858303i \(0.328481\pi\)
\(810\) 0 0
\(811\) 5.95516 + 1.93495i 0.209114 + 0.0679453i 0.411701 0.911319i \(-0.364935\pi\)
−0.202587 + 0.979264i \(0.564935\pi\)
\(812\) 2.10073 + 0.220796i 0.0737212 + 0.00774841i
\(813\) 0 0
\(814\) 10.1009 28.7984i 0.354036 1.00938i
\(815\) 17.8786 + 10.3222i 0.626261 + 0.361572i
\(816\) 0 0
\(817\) −25.9977 + 5.52598i −0.909544 + 0.193330i
\(818\) −9.57054 + 3.10966i −0.334626 + 0.108727i
\(819\) 0 0
\(820\) 1.33661 + 1.83969i 0.0466766 + 0.0642448i
\(821\) −23.0033 + 25.5477i −0.802820 + 0.891621i −0.995983 0.0895452i \(-0.971459\pi\)
0.193163 + 0.981167i \(0.438125\pi\)
\(822\) 0 0
\(823\) 9.65088 4.29685i 0.336408 0.149779i −0.231579 0.972816i \(-0.574389\pi\)
0.567987 + 0.823038i \(0.307722\pi\)
\(824\) −6.14077 + 10.6361i −0.213924 + 0.370527i
\(825\) 0 0
\(826\) 4.34157 + 7.51982i 0.151063 + 0.261648i
\(827\) −22.4299 16.2963i −0.779965 0.566678i 0.125004 0.992156i \(-0.460106\pi\)
−0.904969 + 0.425479i \(0.860106\pi\)
\(828\) 0 0
\(829\) 7.49749 + 23.0749i 0.260399 + 0.801425i 0.992718 + 0.120463i \(0.0384379\pi\)
−0.732319 + 0.680962i \(0.761562\pi\)
\(830\) 6.33853 14.2366i 0.220014 0.494158i
\(831\) 0 0
\(832\) 2.10246 9.89132i 0.0728898 0.342920i
\(833\) 13.0336 + 14.4753i 0.451589 + 0.501540i
\(834\) 0 0
\(835\) 0.523508 0.302248i 0.0181168 0.0104597i
\(836\) 13.5879 7.43051i 0.469947 0.256990i
\(837\) 0 0
\(838\) −23.8144 + 32.7778i −0.822656 + 1.13229i
\(839\) −4.51778 21.2545i −0.155971 0.733786i −0.984717 0.174161i \(-0.944279\pi\)
0.828746 0.559625i \(-0.189055\pi\)
\(840\) 0 0
\(841\) 1.66129 + 15.8061i 0.0572857 + 0.545037i
\(842\) 0.192099 + 1.82770i 0.00662015 + 0.0629866i
\(843\) 0 0
\(844\) 3.28936 + 15.4752i 0.113224 + 0.532679i
\(845\) 6.39798 8.80607i 0.220097 0.302938i
\(846\) 0 0
\(847\) 2.41255 9.22492i 0.0828963 0.316972i
\(848\) −18.5207 + 10.6929i −0.636003 + 0.367196i
\(849\) 0 0
\(850\) 9.90144 + 10.9967i 0.339617 + 0.377182i
\(851\) −3.93042 + 18.4912i −0.134733 + 0.633869i
\(852\) 0 0
\(853\) −16.6944 + 37.4962i −0.571604 + 1.28384i 0.364199 + 0.931321i \(0.381343\pi\)
−0.935803 + 0.352523i \(0.885324\pi\)
\(854\) 4.18690 + 12.8860i 0.143273 + 0.440948i
\(855\) 0 0
\(856\) −15.3244 11.1338i −0.523778 0.380547i
\(857\) −3.74660 6.48930i −0.127981 0.221670i 0.794913 0.606723i \(-0.207516\pi\)
−0.922894 + 0.385053i \(0.874183\pi\)
\(858\) 0 0
\(859\) −0.815011 + 1.41164i −0.0278078 + 0.0481646i −0.879594 0.475724i \(-0.842186\pi\)
0.851787 + 0.523889i \(0.175519\pi\)
\(860\) −2.20877 + 0.983407i −0.0753184 + 0.0335339i
\(861\) 0 0
\(862\) −22.7381 + 25.2532i −0.774463 + 0.860129i
\(863\) −11.2828 15.5294i −0.384070 0.528626i 0.572587 0.819844i \(-0.305940\pi\)
−0.956657 + 0.291217i \(0.905940\pi\)
\(864\) 0 0
\(865\) 12.0324 3.90957i 0.409114 0.132929i
\(866\) −12.9146 + 2.74508i −0.438855 + 0.0932814i
\(867\) 0 0
\(868\) −3.20817 1.85224i −0.108892 0.0628690i
\(869\) −15.1796 + 19.9058i −0.514932 + 0.675259i
\(870\) 0 0
\(871\) −7.79079 0.818845i −0.263981 0.0277455i
\(872\) −49.5978 16.1153i −1.67959 0.545733i
\(873\) 0 0
\(874\) 15.3000 11.1161i 0.517529 0.376007i
\(875\) −6.77204 3.01511i −0.228937 0.101929i
\(876\) 0 0
\(877\) 41.7575 37.5986i 1.41005 1.26962i 0.493472 0.869762i \(-0.335728\pi\)
0.916579 0.399854i \(-0.130939\pi\)
\(878\) 1.42330 + 3.19679i 0.0480342 + 0.107887i
\(879\) 0 0
\(880\) −5.19060 + 4.46020i −0.174975 + 0.150353i
\(881\) 16.2929i 0.548922i 0.961598 + 0.274461i \(0.0884994\pi\)
−0.961598 + 0.274461i \(0.911501\pi\)
\(882\) 0 0
\(883\) −9.20073 + 28.3169i −0.309629 + 0.952941i 0.668280 + 0.743910i \(0.267031\pi\)
−0.977909 + 0.209031i \(0.932969\pi\)
\(884\) −1.83874 1.65561i −0.0618436 0.0556842i
\(885\) 0 0
\(886\) −18.9621 + 1.99299i −0.637043 + 0.0669559i
\(887\) 1.10473 + 0.234817i 0.0370931 + 0.00788437i 0.226421 0.974030i \(-0.427298\pi\)
−0.189328 + 0.981914i \(0.560631\pi\)
\(888\) 0 0
\(889\) 0.575749 5.47789i 0.0193100 0.183722i
\(890\) 10.0284 0.336154
\(891\) 0 0
\(892\) 14.0668 0.470992
\(893\) 0.116147 1.10506i 0.00388670 0.0369794i
\(894\) 0 0
\(895\) −1.02545 0.217966i −0.0342771 0.00728581i
\(896\) 2.26857 0.238436i 0.0757876 0.00796559i
\(897\) 0 0
\(898\) 0.222485 + 0.200326i 0.00742441 + 0.00668497i
\(899\) −7.10316 + 21.8613i −0.236904 + 0.729114i
\(900\) 0 0
\(901\) 30.2916i 1.00916i
\(902\) 1.12128 + 13.7206i 0.0373346 + 0.456846i
\(903\) 0 0
\(904\) −10.0268 22.5205i −0.333486 0.749022i
\(905\) −16.1827 + 14.5710i −0.537932 + 0.484356i
\(906\) 0 0
\(907\) 24.3607 + 10.8461i 0.808882 + 0.360138i 0.769146 0.639073i \(-0.220682\pi\)
0.0397359 + 0.999210i \(0.487348\pi\)
\(908\) −6.46774 + 4.69909i −0.214639 + 0.155945i
\(909\) 0 0
\(910\) −1.04998 0.341161i −0.0348066 0.0113094i
\(911\) −3.89697 0.409588i −0.129112 0.0135703i 0.0397518 0.999210i \(-0.487343\pi\)
−0.168864 + 0.985639i \(0.554010\pi\)
\(912\) 0 0
\(913\) −39.3577 + 27.2241i −1.30255 + 0.900986i
\(914\) −5.42679 3.13316i −0.179502 0.103636i
\(915\) 0 0
\(916\) 6.45273 1.37157i 0.213204 0.0453180i
\(917\) −14.3232 + 4.65390i −0.472994 + 0.153685i
\(918\) 0 0
\(919\) −7.16542 9.86236i −0.236365 0.325329i 0.674313 0.738446i \(-0.264440\pi\)
−0.910678 + 0.413117i \(0.864440\pi\)
\(920\) 4.57168 5.07736i 0.150724 0.167396i
\(921\) 0 0
\(922\) 30.8997 13.7574i 1.01763 0.453077i
\(923\) −6.56003 + 11.3623i −0.215926 + 0.373995i
\(924\) 0 0
\(925\) 16.4592 + 28.5082i 0.541175 + 0.937343i
\(926\) −18.9950 13.8007i −0.624216 0.453519i
\(927\) 0 0
\(928\) 4.05348 + 12.4753i 0.133062 + 0.409522i
\(929\) 1.91994 4.31226i 0.0629912 0.141481i −0.879307 0.476256i \(-0.841994\pi\)
0.942298 + 0.334775i \(0.108660\pi\)
\(930\) 0 0
\(931\) 9.01277 42.4017i 0.295382 1.38966i
\(932\) 7.02682 + 7.80407i 0.230171 + 0.255631i
\(933\) 0 0
\(934\) 0.498520 0.287821i 0.0163121 0.00941778i
\(935\) 1.79511 + 9.52591i 0.0587064 + 0.311530i
\(936\) 0 0
\(937\) −17.0091 + 23.4110i −0.555662 + 0.764803i −0.990767 0.135577i \(-0.956711\pi\)
0.435105 + 0.900380i \(0.356711\pi\)
\(938\) −1.37911 6.48820i −0.0450295 0.211847i
\(939\) 0 0
\(940\) −0.0105656 0.100525i −0.000344613 0.00327877i
\(941\) 5.95507 + 56.6587i 0.194130 + 1.84702i 0.466122 + 0.884720i \(0.345651\pi\)
−0.271992 + 0.962299i \(0.587683\pi\)
\(942\) 0 0
\(943\) −1.77295 8.34105i −0.0577350 0.271622i
\(944\) −11.2490 + 15.4830i −0.366125 + 0.503928i
\(945\) 0 0
\(946\) −14.5174 1.86695i −0.472002 0.0606997i
\(947\) −0.812966 + 0.469366i −0.0264179 + 0.0152524i −0.513151 0.858298i \(-0.671522\pi\)
0.486733 + 0.873551i \(0.338188\pi\)
\(948\) 0 0
\(949\) 2.73617 + 3.03882i 0.0888197 + 0.0986443i
\(950\) 6.84685 32.2119i 0.222141 1.04509i
\(951\) 0 0
\(952\) 3.38420 7.60103i 0.109682 0.246351i
\(953\) 3.50554 + 10.7889i 0.113556 + 0.349488i 0.991643 0.129012i \(-0.0411806\pi\)
−0.878087 + 0.478500i \(0.841181\pi\)
\(954\) 0 0
\(955\) 2.26900 + 1.64853i 0.0734232 + 0.0533451i
\(956\) −10.0876 17.4722i −0.326256 0.565092i
\(957\) 0 0
\(958\) 6.18978 10.7210i 0.199983 0.346380i
\(959\) −14.0170 + 6.24078i −0.452633 + 0.201525i
\(960\) 0 0
\(961\) 6.23130 6.92056i 0.201010 0.223244i
\(962\) 6.37807 + 8.77866i 0.205637 + 0.283035i
\(963\) 0 0
\(964\) 1.21485 0.394730i 0.0391278 0.0127134i
\(965\) −9.07021 + 1.92793i −0.291980 + 0.0620623i
\(966\) 0 0
\(967\) −14.9869 8.65272i −0.481948 0.278253i 0.239280 0.970951i \(-0.423089\pi\)
−0.721228 + 0.692698i \(0.756422\pi\)
\(968\) 33.4215 5.49929i 1.07421 0.176754i
\(969\) 0 0
\(970\) 13.0858 + 1.37538i 0.420161 + 0.0441607i
\(971\) 23.6890 + 7.69701i 0.760215 + 0.247009i 0.663371 0.748291i \(-0.269125\pi\)
0.0968441 + 0.995300i \(0.469125\pi\)
\(972\) 0 0
\(973\) 4.33318 3.14824i 0.138915 0.100928i
\(974\) 32.1213 + 14.3013i 1.02923 + 0.458244i
\(975\) 0 0
\(976\) −22.1924 + 19.9821i −0.710360 + 0.639611i
\(977\) −3.04616 6.84178i −0.0974552 0.218888i 0.858238 0.513251i \(-0.171559\pi\)
−0.955694 + 0.294363i \(0.904892\pi\)
\(978\) 0 0
\(979\) −26.3060 16.0119i −0.840743 0.511743i
\(980\) 3.94338i 0.125967i
\(981\) 0 0
\(982\) 8.92466 27.4673i 0.284797 0.876516i
\(983\) −3.96119 3.56667i −0.126342 0.113759i 0.603538 0.797335i \(-0.293757\pi\)
−0.729880 + 0.683575i \(0.760424\pi\)
\(984\) 0 0
\(985\) 4.61165 0.484703i 0.146939 0.0154439i
\(986\) −12.7159 2.70285i −0.404957 0.0860762i
\(987\) 0 0
\(988\) −0.575581 + 5.47628i −0.0183117 + 0.174224i
\(989\) 9.06669 0.288304
\(990\) 0 0
\(991\) −23.5423 −0.747846 −0.373923 0.927460i \(-0.621988\pi\)
−0.373923 + 0.927460i \(0.621988\pi\)
\(992\) 2.40464 22.8786i 0.0763475 0.726398i
\(993\) 0 0
\(994\) −10.8666 2.30976i −0.344667 0.0732612i
\(995\) −7.13207 + 0.749611i −0.226102 + 0.0237643i
\(996\) 0 0
\(997\) 10.5563 + 9.50498i 0.334323 + 0.301026i 0.819144 0.573588i \(-0.194449\pi\)
−0.484821 + 0.874613i \(0.661115\pi\)
\(998\) 1.76924 5.44517i 0.0560044 0.172364i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.t.a.260.3 80
3.2 odd 2 99.2.p.a.95.8 yes 80
9.2 odd 6 inner 297.2.t.a.62.3 80
9.4 even 3 891.2.k.a.161.7 80
9.5 odd 6 891.2.k.a.161.14 80
9.7 even 3 99.2.p.a.29.8 80
11.8 odd 10 inner 297.2.t.a.206.3 80
33.8 even 10 99.2.p.a.41.8 yes 80
99.41 even 30 891.2.k.a.404.7 80
99.52 odd 30 99.2.p.a.74.8 yes 80
99.74 even 30 inner 297.2.t.a.8.3 80
99.85 odd 30 891.2.k.a.404.14 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.8 80 9.7 even 3
99.2.p.a.41.8 yes 80 33.8 even 10
99.2.p.a.74.8 yes 80 99.52 odd 30
99.2.p.a.95.8 yes 80 3.2 odd 2
297.2.t.a.8.3 80 99.74 even 30 inner
297.2.t.a.62.3 80 9.2 odd 6 inner
297.2.t.a.206.3 80 11.8 odd 10 inner
297.2.t.a.260.3 80 1.1 even 1 trivial
891.2.k.a.161.7 80 9.4 even 3
891.2.k.a.161.14 80 9.5 odd 6
891.2.k.a.404.7 80 99.41 even 30
891.2.k.a.404.14 80 99.85 odd 30