Properties

Label 297.2.t.a.206.9
Level $297$
Weight $2$
Character 297.206
Analytic conductor $2.372$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [297,2,Mod(8,297)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("297.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(297, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([5, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.t (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 206.9
Character \(\chi\) \(=\) 297.206
Dual form 297.2.t.a.62.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.79897 + 0.800953i) q^{2} +(1.25651 + 1.39549i) q^{4} +(0.804185 + 1.80623i) q^{5} +(0.0659410 + 0.310228i) q^{7} +(-0.0743474 - 0.228818i) q^{8} +3.89347i q^{10} +(2.31445 + 2.37557i) q^{11} +(-1.91314 + 0.201079i) q^{13} +(-0.129852 + 0.610907i) q^{14} +(0.442095 - 4.20626i) q^{16} +(-2.02504 - 1.47127i) q^{17} +(4.44962 - 1.44577i) q^{19} +(-1.51012 + 3.39178i) q^{20} +(2.26090 + 6.12735i) q^{22} +(-4.68148 - 2.70286i) q^{23} +(0.729903 - 0.810640i) q^{25} +(-3.60274 - 1.17060i) q^{26} +(-0.350066 + 0.481825i) q^{28} +(-8.72180 + 1.85388i) q^{29} +(0.0348605 + 0.331676i) q^{31} +(3.92374 - 6.79612i) q^{32} +(-2.46456 - 4.26874i) q^{34} +(-0.507314 + 0.368585i) q^{35} +(2.37275 - 7.30257i) q^{37} +(9.16273 + 0.963042i) q^{38} +(0.353508 - 0.318300i) q^{40} +(9.78937 + 2.08079i) q^{41} +(-7.95160 + 4.59086i) q^{43} +(-0.406974 + 6.21472i) q^{44} +(-6.25699 - 8.61201i) q^{46} +(-6.33820 - 5.70694i) q^{47} +(6.30292 - 2.80624i) q^{49} +(1.96236 - 0.873699i) q^{50} +(-2.68448 - 2.41712i) q^{52} +(-1.05383 - 1.45047i) q^{53} +(-2.42958 + 6.09082i) q^{55} +(0.0660832 - 0.0381531i) q^{56} +(-17.1751 - 3.65069i) q^{58} +(-5.77236 + 5.19746i) q^{59} +(2.45876 + 0.258426i) q^{61} +(-0.202944 + 0.624596i) q^{62} +(5.65871 - 4.11130i) q^{64} +(-1.90171 - 3.29387i) q^{65} +(-5.40401 + 9.36002i) q^{67} +(-0.491320 - 4.67459i) q^{68} +(-1.20786 + 0.256739i) q^{70} +(6.99647 - 9.62982i) q^{71} +(0.116476 + 0.0378454i) q^{73} +(10.1175 - 11.2367i) q^{74} +(7.60855 + 4.39280i) q^{76} +(-0.584352 + 0.874654i) q^{77} +(-5.07900 + 11.4076i) q^{79} +(7.95299 - 2.58408i) q^{80} +(15.9442 + 11.5841i) q^{82} +(0.0451069 - 0.429164i) q^{83} +(1.02896 - 4.84085i) q^{85} +(-17.9818 + 1.88996i) q^{86} +(0.371500 - 0.706204i) q^{88} +8.15328i q^{89} +(-0.188535 - 0.580251i) q^{91} +(-2.11051 - 9.92915i) q^{92} +(-6.83124 - 15.3432i) q^{94} +(6.18971 + 6.87437i) q^{95} +(7.89676 + 3.51587i) q^{97} +13.5864 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 15 q^{2} + 5 q^{4} + 6 q^{5} - 5 q^{7} + 3 q^{11} - 5 q^{13} + 9 q^{14} + 5 q^{16} - 50 q^{19} + 3 q^{20} - 11 q^{22} + 42 q^{23} - 2 q^{25} - 20 q^{28} - 30 q^{29} - 6 q^{31} - 10 q^{34} - 6 q^{37}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.79897 + 0.800953i 1.27206 + 0.566360i 0.927998 0.372586i \(-0.121529\pi\)
0.344067 + 0.938945i \(0.388195\pi\)
\(3\) 0 0
\(4\) 1.25651 + 1.39549i 0.628254 + 0.697747i
\(5\) 0.804185 + 1.80623i 0.359642 + 0.807770i 0.999237 + 0.0390577i \(0.0124356\pi\)
−0.639594 + 0.768712i \(0.720898\pi\)
\(6\) 0 0
\(7\) 0.0659410 + 0.310228i 0.0249234 + 0.117255i 0.988851 0.148910i \(-0.0475766\pi\)
−0.963927 + 0.266166i \(0.914243\pi\)
\(8\) −0.0743474 0.228818i −0.0262858 0.0808993i
\(9\) 0 0
\(10\) 3.89347i 1.23122i
\(11\) 2.31445 + 2.37557i 0.697832 + 0.716262i
\(12\) 0 0
\(13\) −1.91314 + 0.201079i −0.530610 + 0.0557694i −0.366045 0.930597i \(-0.619289\pi\)
−0.164565 + 0.986366i \(0.552622\pi\)
\(14\) −0.129852 + 0.610907i −0.0347045 + 0.163272i
\(15\) 0 0
\(16\) 0.442095 4.20626i 0.110524 1.05156i
\(17\) −2.02504 1.47127i −0.491143 0.356836i 0.314481 0.949264i \(-0.398170\pi\)
−0.805624 + 0.592427i \(0.798170\pi\)
\(18\) 0 0
\(19\) 4.44962 1.44577i 1.02081 0.331682i 0.249661 0.968333i \(-0.419681\pi\)
0.771152 + 0.636651i \(0.219681\pi\)
\(20\) −1.51012 + 3.39178i −0.337672 + 0.758425i
\(21\) 0 0
\(22\) 2.26090 + 6.12735i 0.482025 + 1.30635i
\(23\) −4.68148 2.70286i −0.976157 0.563584i −0.0750491 0.997180i \(-0.523911\pi\)
−0.901108 + 0.433595i \(0.857245\pi\)
\(24\) 0 0
\(25\) 0.729903 0.810640i 0.145981 0.162128i
\(26\) −3.60274 1.17060i −0.706556 0.229574i
\(27\) 0 0
\(28\) −0.350066 + 0.481825i −0.0661563 + 0.0910563i
\(29\) −8.72180 + 1.85388i −1.61960 + 0.344256i −0.926414 0.376506i \(-0.877126\pi\)
−0.693183 + 0.720762i \(0.743792\pi\)
\(30\) 0 0
\(31\) 0.0348605 + 0.331676i 0.00626113 + 0.0595707i 0.997206 0.0746962i \(-0.0237987\pi\)
−0.990945 + 0.134267i \(0.957132\pi\)
\(32\) 3.92374 6.79612i 0.693626 1.20140i
\(33\) 0 0
\(34\) −2.46456 4.26874i −0.422668 0.732083i
\(35\) −0.507314 + 0.368585i −0.0857518 + 0.0623023i
\(36\) 0 0
\(37\) 2.37275 7.30257i 0.390078 1.20054i −0.542652 0.839958i \(-0.682580\pi\)
0.932729 0.360577i \(-0.117420\pi\)
\(38\) 9.16273 + 0.963042i 1.48639 + 0.156226i
\(39\) 0 0
\(40\) 0.353508 0.318300i 0.0558946 0.0503277i
\(41\) 9.78937 + 2.08079i 1.52884 + 0.324965i 0.894139 0.447790i \(-0.147789\pi\)
0.634704 + 0.772756i \(0.281122\pi\)
\(42\) 0 0
\(43\) −7.95160 + 4.59086i −1.21261 + 0.700100i −0.963327 0.268331i \(-0.913528\pi\)
−0.249281 + 0.968431i \(0.580194\pi\)
\(44\) −0.406974 + 6.21472i −0.0613536 + 0.936905i
\(45\) 0 0
\(46\) −6.25699 8.61201i −0.922543 1.26977i
\(47\) −6.33820 5.70694i −0.924521 0.832443i 0.0616625 0.998097i \(-0.480360\pi\)
−0.986184 + 0.165654i \(0.947026\pi\)
\(48\) 0 0
\(49\) 6.30292 2.80624i 0.900418 0.400892i
\(50\) 1.96236 0.873699i 0.277519 0.123560i
\(51\) 0 0
\(52\) −2.68448 2.41712i −0.372271 0.335194i
\(53\) −1.05383 1.45047i −0.144754 0.199237i 0.730483 0.682931i \(-0.239295\pi\)
−0.875238 + 0.483693i \(0.839295\pi\)
\(54\) 0 0
\(55\) −2.42958 + 6.09082i −0.327605 + 0.821286i
\(56\) 0.0660832 0.0381531i 0.00883074 0.00509843i
\(57\) 0 0
\(58\) −17.1751 3.65069i −2.25520 0.479359i
\(59\) −5.77236 + 5.19746i −0.751498 + 0.676652i −0.953046 0.302827i \(-0.902070\pi\)
0.201548 + 0.979479i \(0.435403\pi\)
\(60\) 0 0
\(61\) 2.45876 + 0.258426i 0.314811 + 0.0330880i 0.260617 0.965442i \(-0.416074\pi\)
0.0541948 + 0.998530i \(0.482741\pi\)
\(62\) −0.202944 + 0.624596i −0.0257739 + 0.0793238i
\(63\) 0 0
\(64\) 5.65871 4.11130i 0.707339 0.513912i
\(65\) −1.90171 3.29387i −0.235879 0.408554i
\(66\) 0 0
\(67\) −5.40401 + 9.36002i −0.660205 + 1.14351i 0.320357 + 0.947297i \(0.396197\pi\)
−0.980562 + 0.196211i \(0.937136\pi\)
\(68\) −0.491320 4.67459i −0.0595813 0.566878i
\(69\) 0 0
\(70\) −1.20786 + 0.256739i −0.144367 + 0.0306862i
\(71\) 6.99647 9.62982i 0.830329 1.14285i −0.157533 0.987514i \(-0.550354\pi\)
0.987862 0.155336i \(-0.0496459\pi\)
\(72\) 0 0
\(73\) 0.116476 + 0.0378454i 0.0136325 + 0.00442947i 0.315825 0.948817i \(-0.397719\pi\)
−0.302193 + 0.953247i \(0.597719\pi\)
\(74\) 10.1175 11.2367i 1.17614 1.30623i
\(75\) 0 0
\(76\) 7.60855 + 4.39280i 0.872761 + 0.503889i
\(77\) −0.584352 + 0.874654i −0.0665931 + 0.0996761i
\(78\) 0 0
\(79\) −5.07900 + 11.4076i −0.571433 + 1.28346i 0.364475 + 0.931213i \(0.381248\pi\)
−0.935908 + 0.352245i \(0.885418\pi\)
\(80\) 7.95299 2.58408i 0.889171 0.288909i
\(81\) 0 0
\(82\) 15.9442 + 11.5841i 1.76074 + 1.27925i
\(83\) 0.0451069 0.429164i 0.00495113 0.0471068i −0.991767 0.128053i \(-0.959127\pi\)
0.996719 + 0.0809457i \(0.0257940\pi\)
\(84\) 0 0
\(85\) 1.02896 4.84085i 0.111606 0.525064i
\(86\) −17.9818 + 1.88996i −1.93902 + 0.203800i
\(87\) 0 0
\(88\) 0.371500 0.706204i 0.0396020 0.0752816i
\(89\) 8.15328i 0.864246i 0.901815 + 0.432123i \(0.142235\pi\)
−0.901815 + 0.432123i \(0.857765\pi\)
\(90\) 0 0
\(91\) −0.188535 0.580251i −0.0197638 0.0608268i
\(92\) −2.11051 9.92915i −0.220035 1.03519i
\(93\) 0 0
\(94\) −6.83124 15.3432i −0.704589 1.58253i
\(95\) 6.18971 + 6.87437i 0.635051 + 0.705295i
\(96\) 0 0
\(97\) 7.89676 + 3.51587i 0.801795 + 0.356982i 0.766377 0.642391i \(-0.222057\pi\)
0.0354174 + 0.999373i \(0.488724\pi\)
\(98\) 13.5864 1.37244
\(99\) 0 0
\(100\) 2.04837 0.204837
\(101\) −1.51058 0.672555i −0.150309 0.0669217i 0.330204 0.943910i \(-0.392883\pi\)
−0.480512 + 0.876988i \(0.659549\pi\)
\(102\) 0 0
\(103\) 4.13083 + 4.58775i 0.407023 + 0.452045i 0.911451 0.411409i \(-0.134963\pi\)
−0.504428 + 0.863454i \(0.668297\pi\)
\(104\) 0.188248 + 0.422811i 0.0184592 + 0.0414600i
\(105\) 0 0
\(106\) −0.734048 3.45342i −0.0712970 0.335426i
\(107\) 3.66316 + 11.2740i 0.354131 + 1.08990i 0.956512 + 0.291694i \(0.0942188\pi\)
−0.602381 + 0.798209i \(0.705781\pi\)
\(108\) 0 0
\(109\) 3.30028i 0.316109i −0.987430 0.158055i \(-0.949478\pi\)
0.987430 0.158055i \(-0.0505222\pi\)
\(110\) −9.24921 + 9.01122i −0.881878 + 0.859186i
\(111\) 0 0
\(112\) 1.33405 0.140215i 0.126056 0.0132490i
\(113\) 1.07633 5.06373i 0.101253 0.476356i −0.898080 0.439832i \(-0.855038\pi\)
0.999333 0.0365240i \(-0.0116285\pi\)
\(114\) 0 0
\(115\) 1.11720 10.6294i 0.104179 0.991199i
\(116\) −13.5461 9.84181i −1.25772 0.913789i
\(117\) 0 0
\(118\) −14.5472 + 4.72668i −1.33918 + 0.435127i
\(119\) 0.322898 0.725240i 0.0296000 0.0664827i
\(120\) 0 0
\(121\) −0.286676 + 10.9963i −0.0260615 + 0.999660i
\(122\) 4.21624 + 2.43425i 0.381721 + 0.220387i
\(123\) 0 0
\(124\) −0.419049 + 0.465401i −0.0376317 + 0.0417942i
\(125\) 11.4532 + 3.72135i 1.02440 + 0.332848i
\(126\) 0 0
\(127\) −2.22013 + 3.05575i −0.197005 + 0.271154i −0.896078 0.443896i \(-0.853596\pi\)
0.699073 + 0.715050i \(0.253596\pi\)
\(128\) −1.87917 + 0.399431i −0.166097 + 0.0353050i
\(129\) 0 0
\(130\) −0.782896 7.44876i −0.0686645 0.653299i
\(131\) −4.45993 + 7.72483i −0.389666 + 0.674921i −0.992405 0.123017i \(-0.960743\pi\)
0.602738 + 0.797939i \(0.294076\pi\)
\(132\) 0 0
\(133\) 0.741931 + 1.28506i 0.0643336 + 0.111429i
\(134\) −17.2186 + 12.5100i −1.48746 + 1.08070i
\(135\) 0 0
\(136\) −0.186098 + 0.572750i −0.0159577 + 0.0491129i
\(137\) 4.79687 + 0.504171i 0.409824 + 0.0430743i 0.307198 0.951646i \(-0.400609\pi\)
0.102626 + 0.994720i \(0.467275\pi\)
\(138\) 0 0
\(139\) −5.34940 + 4.81662i −0.453730 + 0.408540i −0.864054 0.503399i \(-0.832082\pi\)
0.410324 + 0.911940i \(0.365416\pi\)
\(140\) −1.15180 0.244823i −0.0973452 0.0206914i
\(141\) 0 0
\(142\) 20.2995 11.7199i 1.70350 0.983514i
\(143\) −4.90554 4.07942i −0.410222 0.341138i
\(144\) 0 0
\(145\) −10.3625 14.2627i −0.860556 1.18445i
\(146\) 0.179225 + 0.161375i 0.0148328 + 0.0133555i
\(147\) 0 0
\(148\) 13.1721 5.86459i 1.08274 0.482066i
\(149\) −3.10216 + 1.38117i −0.254139 + 0.113150i −0.529852 0.848090i \(-0.677753\pi\)
0.275713 + 0.961240i \(0.411086\pi\)
\(150\) 0 0
\(151\) −6.31260 5.68389i −0.513712 0.462549i 0.371035 0.928619i \(-0.379003\pi\)
−0.884748 + 0.466070i \(0.845670\pi\)
\(152\) −0.661635 0.910663i −0.0536657 0.0738645i
\(153\) 0 0
\(154\) −1.75179 + 1.10544i −0.141163 + 0.0890788i
\(155\) −0.571048 + 0.329695i −0.0458677 + 0.0264817i
\(156\) 0 0
\(157\) 18.0930 + 3.84578i 1.44398 + 0.306927i 0.862261 0.506465i \(-0.169048\pi\)
0.581717 + 0.813391i \(0.302381\pi\)
\(158\) −18.2740 + 16.4539i −1.45380 + 1.30901i
\(159\) 0 0
\(160\) 15.4308 + 1.62184i 1.21991 + 0.128218i
\(161\) 0.529800 1.63056i 0.0417541 0.128506i
\(162\) 0 0
\(163\) −15.0169 + 10.9104i −1.17622 + 0.854572i −0.991740 0.128265i \(-0.959059\pi\)
−0.184478 + 0.982837i \(0.559059\pi\)
\(164\) 9.39669 + 16.2755i 0.733758 + 1.27091i
\(165\) 0 0
\(166\) 0.424886 0.735925i 0.0329776 0.0571188i
\(167\) −1.43137 13.6185i −0.110762 1.05383i −0.898846 0.438265i \(-0.855593\pi\)
0.788083 0.615569i \(-0.211074\pi\)
\(168\) 0 0
\(169\) −9.09624 + 1.93347i −0.699711 + 0.148728i
\(170\) 5.72836 7.88441i 0.439345 0.604707i
\(171\) 0 0
\(172\) −16.3978 5.32796i −1.25032 0.406253i
\(173\) −8.85187 + 9.83099i −0.672995 + 0.747437i −0.978836 0.204646i \(-0.934396\pi\)
0.305841 + 0.952083i \(0.401062\pi\)
\(174\) 0 0
\(175\) 0.299614 + 0.172982i 0.0226487 + 0.0130762i
\(176\) 11.0155 8.68493i 0.830322 0.654651i
\(177\) 0 0
\(178\) −6.53040 + 14.6675i −0.489474 + 1.09938i
\(179\) −5.38656 + 1.75020i −0.402611 + 0.130816i −0.503321 0.864100i \(-0.667889\pi\)
0.100710 + 0.994916i \(0.467889\pi\)
\(180\) 0 0
\(181\) 8.30217 + 6.03188i 0.617096 + 0.448346i 0.851906 0.523695i \(-0.175447\pi\)
−0.234810 + 0.972041i \(0.575447\pi\)
\(182\) 0.125585 1.19486i 0.00930899 0.0885691i
\(183\) 0 0
\(184\) −0.270405 + 1.27216i −0.0199345 + 0.0937847i
\(185\) 15.0982 1.58689i 1.11004 0.116670i
\(186\) 0 0
\(187\) −1.19172 8.21580i −0.0871471 0.600799i
\(188\) 16.0157i 1.16807i
\(189\) 0 0
\(190\) 5.62906 + 17.3245i 0.408375 + 1.25685i
\(191\) 1.17503 + 5.52810i 0.0850225 + 0.400000i 0.999994 0.00351939i \(-0.00112026\pi\)
−0.914971 + 0.403519i \(0.867787\pi\)
\(192\) 0 0
\(193\) −7.30850 16.4152i −0.526078 1.18159i −0.959836 0.280561i \(-0.909480\pi\)
0.433759 0.901029i \(-0.357187\pi\)
\(194\) 11.3900 + 12.6499i 0.817755 + 0.908208i
\(195\) 0 0
\(196\) 11.8358 + 5.26963i 0.845413 + 0.376402i
\(197\) 2.51065 0.178877 0.0894383 0.995992i \(-0.471493\pi\)
0.0894383 + 0.995992i \(0.471493\pi\)
\(198\) 0 0
\(199\) 12.2300 0.866959 0.433479 0.901163i \(-0.357286\pi\)
0.433479 + 0.901163i \(0.357286\pi\)
\(200\) −0.239755 0.106746i −0.0169532 0.00754807i
\(201\) 0 0
\(202\) −2.17881 2.41981i −0.153300 0.170257i
\(203\) −1.15025 2.58350i −0.0807316 0.181326i
\(204\) 0 0
\(205\) 4.11407 + 19.3552i 0.287339 + 1.35182i
\(206\) 3.75667 + 11.5618i 0.261739 + 0.805551i
\(207\) 0 0
\(208\) 8.13606i 0.564134i
\(209\) 13.7329 + 7.22423i 0.949927 + 0.499711i
\(210\) 0 0
\(211\) 25.1315 2.64142i 1.73012 0.181843i 0.813490 0.581579i \(-0.197565\pi\)
0.916630 + 0.399736i \(0.130898\pi\)
\(212\) 0.699979 3.29314i 0.0480747 0.226174i
\(213\) 0 0
\(214\) −2.44007 + 23.2157i −0.166800 + 1.58699i
\(215\) −14.6867 10.6705i −1.00162 0.727723i
\(216\) 0 0
\(217\) −0.100596 + 0.0326858i −0.00682893 + 0.00221885i
\(218\) 2.64337 5.93711i 0.179032 0.402112i
\(219\) 0 0
\(220\) −11.5525 + 4.26270i −0.778869 + 0.287391i
\(221\) 4.17002 + 2.40756i 0.280506 + 0.161950i
\(222\) 0 0
\(223\) 9.42718 10.4699i 0.631290 0.701119i −0.339620 0.940563i \(-0.610298\pi\)
0.970910 + 0.239444i \(0.0769651\pi\)
\(224\) 2.36708 + 0.769112i 0.158157 + 0.0513884i
\(225\) 0 0
\(226\) 5.99210 8.24741i 0.398588 0.548610i
\(227\) 15.2425 3.23990i 1.01168 0.215040i 0.327890 0.944716i \(-0.393663\pi\)
0.683793 + 0.729676i \(0.260329\pi\)
\(228\) 0 0
\(229\) −2.15145 20.4697i −0.142172 1.35268i −0.800223 0.599702i \(-0.795286\pi\)
0.658051 0.752973i \(-0.271381\pi\)
\(230\) 10.5235 18.2272i 0.693898 1.20187i
\(231\) 0 0
\(232\) 1.07264 + 1.85787i 0.0704224 + 0.121975i
\(233\) −2.11851 + 1.53918i −0.138788 + 0.100835i −0.655013 0.755618i \(-0.727337\pi\)
0.516225 + 0.856453i \(0.327337\pi\)
\(234\) 0 0
\(235\) 5.21096 16.0377i 0.339925 1.04618i
\(236\) −14.5061 1.52465i −0.944264 0.0992461i
\(237\) 0 0
\(238\) 1.16177 1.04606i 0.0753062 0.0678060i
\(239\) −21.7827 4.63006i −1.40901 0.299494i −0.560271 0.828310i \(-0.689303\pi\)
−0.848736 + 0.528816i \(0.822636\pi\)
\(240\) 0 0
\(241\) −21.2923 + 12.2931i −1.37156 + 0.791870i −0.991124 0.132938i \(-0.957559\pi\)
−0.380434 + 0.924808i \(0.624225\pi\)
\(242\) −9.32322 + 19.5523i −0.599319 + 1.25687i
\(243\) 0 0
\(244\) 2.72882 + 3.75589i 0.174695 + 0.240447i
\(245\) 10.1374 + 9.12779i 0.647657 + 0.583153i
\(246\) 0 0
\(247\) −8.22204 + 3.66069i −0.523156 + 0.232924i
\(248\) 0.0733015 0.0326359i 0.00465465 0.00207238i
\(249\) 0 0
\(250\) 17.6233 + 15.8680i 1.11459 + 1.00358i
\(251\) −7.34629 10.1113i −0.463694 0.638220i 0.511576 0.859238i \(-0.329062\pi\)
−0.975270 + 0.221018i \(0.929062\pi\)
\(252\) 0 0
\(253\) −4.41422 17.3768i −0.277519 1.09247i
\(254\) −6.44147 + 3.71898i −0.404174 + 0.233350i
\(255\) 0 0
\(256\) −17.3839 3.69506i −1.08649 0.230942i
\(257\) 9.11426 8.20652i 0.568532 0.511908i −0.333976 0.942582i \(-0.608390\pi\)
0.902508 + 0.430673i \(0.141724\pi\)
\(258\) 0 0
\(259\) 2.42192 + 0.254555i 0.150491 + 0.0158172i
\(260\) 2.20705 6.79261i 0.136876 0.421259i
\(261\) 0 0
\(262\) −14.2105 + 10.3245i −0.877929 + 0.637853i
\(263\) −4.64521 8.04575i −0.286436 0.496122i 0.686520 0.727111i \(-0.259137\pi\)
−0.972956 + 0.230989i \(0.925804\pi\)
\(264\) 0 0
\(265\) 1.77241 3.06990i 0.108878 0.188583i
\(266\) 0.305437 + 2.90604i 0.0187276 + 0.178181i
\(267\) 0 0
\(268\) −19.8520 + 4.21968i −1.21266 + 0.257758i
\(269\) 12.5983 17.3401i 0.768131 1.05724i −0.228363 0.973576i \(-0.573337\pi\)
0.996494 0.0836659i \(-0.0266629\pi\)
\(270\) 0 0
\(271\) −7.87807 2.55974i −0.478559 0.155493i 0.0597976 0.998211i \(-0.480954\pi\)
−0.538356 + 0.842717i \(0.680954\pi\)
\(272\) −7.08382 + 7.86738i −0.429520 + 0.477030i
\(273\) 0 0
\(274\) 8.22561 + 4.74906i 0.496927 + 0.286901i
\(275\) 3.61505 0.142245i 0.217996 0.00857769i
\(276\) 0 0
\(277\) 4.69723 10.5502i 0.282229 0.633898i −0.715687 0.698421i \(-0.753886\pi\)
0.997916 + 0.0645238i \(0.0205528\pi\)
\(278\) −13.4813 + 4.38034i −0.808555 + 0.262715i
\(279\) 0 0
\(280\) 0.122056 + 0.0886792i 0.00729427 + 0.00529959i
\(281\) 0.135394 1.28818i 0.00807691 0.0768467i −0.989741 0.142874i \(-0.954366\pi\)
0.997818 + 0.0660271i \(0.0210324\pi\)
\(282\) 0 0
\(283\) −1.37490 + 6.46839i −0.0817293 + 0.384506i −0.999933 0.0116032i \(-0.996307\pi\)
0.918203 + 0.396109i \(0.129640\pi\)
\(284\) 22.2295 2.33641i 1.31908 0.138641i
\(285\) 0 0
\(286\) −5.55750 11.2679i −0.328622 0.666283i
\(287\) 3.17415i 0.187364i
\(288\) 0 0
\(289\) −3.31717 10.2092i −0.195128 0.600541i
\(290\) −7.21800 33.9580i −0.423856 1.99408i
\(291\) 0 0
\(292\) 0.0935403 + 0.210095i 0.00547403 + 0.0122949i
\(293\) −4.62215 5.13342i −0.270029 0.299897i 0.592845 0.805316i \(-0.298005\pi\)
−0.862874 + 0.505419i \(0.831338\pi\)
\(294\) 0 0
\(295\) −14.0299 6.24649i −0.816850 0.363685i
\(296\) −1.84737 −0.107376
\(297\) 0 0
\(298\) −6.68695 −0.387365
\(299\) 9.49983 + 4.22960i 0.549389 + 0.244604i
\(300\) 0 0
\(301\) −1.94855 2.16409i −0.112313 0.124736i
\(302\) −6.80366 15.2813i −0.391506 0.879338i
\(303\) 0 0
\(304\) −4.11412 19.3554i −0.235961 1.11011i
\(305\) 1.51052 + 4.64890i 0.0864921 + 0.266195i
\(306\) 0 0
\(307\) 11.5549i 0.659473i 0.944073 + 0.329737i \(0.106960\pi\)
−0.944073 + 0.329737i \(0.893040\pi\)
\(308\) −1.95482 + 0.283550i −0.111386 + 0.0161568i
\(309\) 0 0
\(310\) −1.29137 + 0.135728i −0.0733448 + 0.00770885i
\(311\) −1.45143 + 6.82843i −0.0823029 + 0.387205i −0.999948 0.0101961i \(-0.996754\pi\)
0.917645 + 0.397401i \(0.130088\pi\)
\(312\) 0 0
\(313\) 2.99774 28.5216i 0.169442 1.61214i −0.497798 0.867293i \(-0.665858\pi\)
0.667240 0.744843i \(-0.267475\pi\)
\(314\) 29.4685 + 21.4101i 1.66300 + 1.20824i
\(315\) 0 0
\(316\) −22.3011 + 7.24607i −1.25453 + 0.407623i
\(317\) 12.2046 27.4120i 0.685478 1.53961i −0.149161 0.988813i \(-0.547657\pi\)
0.834639 0.550797i \(-0.185676\pi\)
\(318\) 0 0
\(319\) −24.5901 16.4286i −1.37678 0.919823i
\(320\) 11.9766 + 6.91469i 0.669512 + 0.386543i
\(321\) 0 0
\(322\) 2.25910 2.50898i 0.125894 0.139820i
\(323\) −11.1378 3.61888i −0.619722 0.201360i
\(324\) 0 0
\(325\) −1.23341 + 1.69764i −0.0684170 + 0.0941679i
\(326\) −35.7538 + 7.59970i −1.98022 + 0.420909i
\(327\) 0 0
\(328\) −0.251691 2.39468i −0.0138973 0.132224i
\(329\) 1.35251 2.34261i 0.0745661 0.129152i
\(330\) 0 0
\(331\) −4.26661 7.38998i −0.234514 0.406190i 0.724617 0.689151i \(-0.242017\pi\)
−0.959131 + 0.282961i \(0.908683\pi\)
\(332\) 0.655573 0.476302i 0.0359792 0.0261404i
\(333\) 0 0
\(334\) 8.33283 25.6458i 0.455952 1.40328i
\(335\) −21.2522 2.23369i −1.16113 0.122040i
\(336\) 0 0
\(337\) −8.87505 + 7.99113i −0.483455 + 0.435304i −0.874470 0.485080i \(-0.838791\pi\)
0.391015 + 0.920384i \(0.372124\pi\)
\(338\) −17.9125 3.80742i −0.974311 0.207096i
\(339\) 0 0
\(340\) 8.04828 4.64667i 0.436479 0.252001i
\(341\) −0.707236 + 0.850459i −0.0382990 + 0.0460549i
\(342\) 0 0
\(343\) 2.59115 + 3.56641i 0.139909 + 0.192568i
\(344\) 1.64165 + 1.47815i 0.0885119 + 0.0796965i
\(345\) 0 0
\(346\) −23.7984 + 10.5957i −1.27941 + 0.569631i
\(347\) −13.1923 + 5.87358i −0.708199 + 0.315310i −0.729039 0.684472i \(-0.760033\pi\)
0.0208399 + 0.999783i \(0.493366\pi\)
\(348\) 0 0
\(349\) 23.9844 + 21.5956i 1.28385 + 1.15599i 0.979061 + 0.203568i \(0.0652539\pi\)
0.304793 + 0.952419i \(0.401413\pi\)
\(350\) 0.400446 + 0.551167i 0.0214047 + 0.0294611i
\(351\) 0 0
\(352\) 25.2259 6.40813i 1.34455 0.341554i
\(353\) −5.61311 + 3.24073i −0.298756 + 0.172487i −0.641884 0.766802i \(-0.721847\pi\)
0.343128 + 0.939289i \(0.388513\pi\)
\(354\) 0 0
\(355\) 23.0201 + 4.89308i 1.22178 + 0.259698i
\(356\) −11.3779 + 10.2447i −0.603026 + 0.542967i
\(357\) 0 0
\(358\) −11.0921 1.16583i −0.586236 0.0616159i
\(359\) −2.95299 + 9.08837i −0.155853 + 0.479666i −0.998246 0.0591972i \(-0.981146\pi\)
0.842393 + 0.538863i \(0.181146\pi\)
\(360\) 0 0
\(361\) 2.33755 1.69833i 0.123029 0.0893858i
\(362\) 10.1041 + 17.5008i 0.531060 + 0.919824i
\(363\) 0 0
\(364\) 0.572841 0.992190i 0.0300250 0.0520049i
\(365\) 0.0253109 + 0.240817i 0.00132483 + 0.0126050i
\(366\) 0 0
\(367\) 7.89325 1.67776i 0.412024 0.0875785i 0.00276405 0.999996i \(-0.499120\pi\)
0.409260 + 0.912418i \(0.365787\pi\)
\(368\) −13.4386 + 18.4966i −0.700534 + 0.964202i
\(369\) 0 0
\(370\) 28.4323 + 9.23822i 1.47813 + 0.480272i
\(371\) 0.380486 0.422573i 0.0197539 0.0219389i
\(372\) 0 0
\(373\) −0.603037 0.348164i −0.0312241 0.0180272i 0.484307 0.874898i \(-0.339072\pi\)
−0.515531 + 0.856871i \(0.672405\pi\)
\(374\) 4.43661 15.7345i 0.229411 0.813612i
\(375\) 0 0
\(376\) −0.834621 + 1.87459i −0.0430423 + 0.0966745i
\(377\) 16.3133 5.30050i 0.840175 0.272990i
\(378\) 0 0
\(379\) 2.08014 + 1.51131i 0.106850 + 0.0776308i 0.639927 0.768436i \(-0.278965\pi\)
−0.533077 + 0.846066i \(0.678965\pi\)
\(380\) −1.81572 + 17.2754i −0.0931444 + 0.886210i
\(381\) 0 0
\(382\) −2.31390 + 10.8860i −0.118389 + 0.556979i
\(383\) 6.20139 0.651793i 0.316876 0.0333050i 0.0552447 0.998473i \(-0.482406\pi\)
0.261632 + 0.965168i \(0.415739\pi\)
\(384\) 0 0
\(385\) −2.04975 0.352090i −0.104465 0.0179442i
\(386\) 35.3842i 1.80101i
\(387\) 0 0
\(388\) 5.01598 + 15.4376i 0.254648 + 0.783726i
\(389\) −5.71286 26.8769i −0.289653 1.36271i −0.846629 0.532183i \(-0.821372\pi\)
0.556976 0.830528i \(-0.311961\pi\)
\(390\) 0 0
\(391\) 5.50353 + 12.3611i 0.278325 + 0.625129i
\(392\) −1.11072 1.23358i −0.0561001 0.0623054i
\(393\) 0 0
\(394\) 4.51659 + 2.01092i 0.227543 + 0.101308i
\(395\) −24.6893 −1.24225
\(396\) 0 0
\(397\) 7.45945 0.374379 0.187190 0.982324i \(-0.440062\pi\)
0.187190 + 0.982324i \(0.440062\pi\)
\(398\) 22.0013 + 9.79563i 1.10283 + 0.491010i
\(399\) 0 0
\(400\) −3.08707 3.42854i −0.154354 0.171427i
\(401\) 1.01221 + 2.27346i 0.0505474 + 0.113531i 0.937054 0.349185i \(-0.113542\pi\)
−0.886506 + 0.462716i \(0.846875\pi\)
\(402\) 0 0
\(403\) −0.133386 0.627533i −0.00664444 0.0312596i
\(404\) −0.959514 2.95308i −0.0477376 0.146921i
\(405\) 0 0
\(406\) 5.56894i 0.276382i
\(407\) 22.8394 11.2648i 1.13211 0.558374i
\(408\) 0 0
\(409\) 29.4555 3.09590i 1.45648 0.153082i 0.657054 0.753844i \(-0.271802\pi\)
0.799429 + 0.600761i \(0.205136\pi\)
\(410\) −8.10151 + 38.1146i −0.400105 + 1.88235i
\(411\) 0 0
\(412\) −1.21176 + 11.5291i −0.0596990 + 0.567998i
\(413\) −1.99303 1.44802i −0.0980708 0.0712526i
\(414\) 0 0
\(415\) 0.811442 0.263654i 0.0398321 0.0129422i
\(416\) −6.14011 + 13.7909i −0.301044 + 0.676155i
\(417\) 0 0
\(418\) 18.9189 + 23.9956i 0.925353 + 1.17366i
\(419\) 7.83379 + 4.52284i 0.382706 + 0.220955i 0.678995 0.734143i \(-0.262416\pi\)
−0.296289 + 0.955098i \(0.595749\pi\)
\(420\) 0 0
\(421\) −14.5427 + 16.1513i −0.708770 + 0.787169i −0.984746 0.173996i \(-0.944332\pi\)
0.275977 + 0.961164i \(0.410999\pi\)
\(422\) 47.3264 + 15.3773i 2.30381 + 0.748554i
\(423\) 0 0
\(424\) −0.253544 + 0.348973i −0.0123132 + 0.0169476i
\(425\) −2.67075 + 0.567686i −0.129551 + 0.0275368i
\(426\) 0 0
\(427\) 0.0819620 + 0.779816i 0.00396642 + 0.0377380i
\(428\) −11.1301 + 19.2778i −0.537992 + 0.931830i
\(429\) 0 0
\(430\) −17.8744 30.9593i −0.861979 1.49299i
\(431\) 14.2119 10.3256i 0.684565 0.497366i −0.190304 0.981725i \(-0.560947\pi\)
0.874869 + 0.484359i \(0.160947\pi\)
\(432\) 0 0
\(433\) −4.84981 + 14.9262i −0.233067 + 0.717306i 0.764305 + 0.644855i \(0.223082\pi\)
−0.997372 + 0.0724515i \(0.976918\pi\)
\(434\) −0.207150 0.0217723i −0.00994351 0.00104510i
\(435\) 0 0
\(436\) 4.60552 4.14683i 0.220565 0.198597i
\(437\) −24.7385 5.25834i −1.18340 0.251540i
\(438\) 0 0
\(439\) −10.3281 + 5.96296i −0.492936 + 0.284597i −0.725792 0.687915i \(-0.758526\pi\)
0.232856 + 0.972511i \(0.425193\pi\)
\(440\) 1.57432 + 0.103095i 0.0750528 + 0.00491487i
\(441\) 0 0
\(442\) 5.57340 + 7.67113i 0.265100 + 0.364878i
\(443\) 11.4755 + 10.3326i 0.545219 + 0.490917i 0.895093 0.445879i \(-0.147109\pi\)
−0.349874 + 0.936797i \(0.613776\pi\)
\(444\) 0 0
\(445\) −14.7267 + 6.55675i −0.698112 + 0.310820i
\(446\) 25.3452 11.2844i 1.20013 0.534331i
\(447\) 0 0
\(448\) 1.64858 + 1.48439i 0.0778881 + 0.0701308i
\(449\) 13.6969 + 18.8521i 0.646395 + 0.889687i 0.998936 0.0461094i \(-0.0146823\pi\)
−0.352541 + 0.935796i \(0.614682\pi\)
\(450\) 0 0
\(451\) 17.7139 + 28.0712i 0.834115 + 1.32182i
\(452\) 8.41882 4.86061i 0.395988 0.228624i
\(453\) 0 0
\(454\) 30.0159 + 6.38007i 1.40872 + 0.299432i
\(455\) 0.896449 0.807167i 0.0420262 0.0378406i
\(456\) 0 0
\(457\) −0.614944 0.0646333i −0.0287659 0.00302342i 0.0901346 0.995930i \(-0.471270\pi\)
−0.118900 + 0.992906i \(0.537937\pi\)
\(458\) 12.5249 38.5476i 0.585249 1.80121i
\(459\) 0 0
\(460\) 16.2371 11.7969i 0.757058 0.550035i
\(461\) 11.3787 + 19.7085i 0.529959 + 0.917915i 0.999389 + 0.0349460i \(0.0111259\pi\)
−0.469430 + 0.882969i \(0.655541\pi\)
\(462\) 0 0
\(463\) −3.54426 + 6.13884i −0.164716 + 0.285296i −0.936554 0.350523i \(-0.886004\pi\)
0.771839 + 0.635818i \(0.219337\pi\)
\(464\) 3.94201 + 37.5057i 0.183003 + 1.74116i
\(465\) 0 0
\(466\) −5.04395 + 1.07212i −0.233656 + 0.0496652i
\(467\) −3.50195 + 4.82002i −0.162051 + 0.223044i −0.882319 0.470652i \(-0.844019\pi\)
0.720268 + 0.693696i \(0.244019\pi\)
\(468\) 0 0
\(469\) −3.26009 1.05927i −0.150537 0.0489124i
\(470\) 22.2198 24.6776i 1.02492 1.13829i
\(471\) 0 0
\(472\) 1.61843 + 0.934402i 0.0744944 + 0.0430093i
\(473\) −29.3095 8.26430i −1.34765 0.379993i
\(474\) 0 0
\(475\) 2.07579 4.66231i 0.0952440 0.213921i
\(476\) 1.41779 0.460669i 0.0649844 0.0211147i
\(477\) 0 0
\(478\) −35.4780 25.7763i −1.62273 1.17898i
\(479\) −0.184201 + 1.75255i −0.00841635 + 0.0800762i −0.997924 0.0644056i \(-0.979485\pi\)
0.989507 + 0.144482i \(0.0461515\pi\)
\(480\) 0 0
\(481\) −3.07101 + 14.4480i −0.140026 + 0.658770i
\(482\) −48.1505 + 5.06082i −2.19319 + 0.230514i
\(483\) 0 0
\(484\) −15.7054 + 13.4168i −0.713883 + 0.609857i
\(485\) 17.0908i 0.776052i
\(486\) 0 0
\(487\) −5.37983 16.5574i −0.243783 0.750288i −0.995834 0.0911829i \(-0.970935\pi\)
0.752051 0.659105i \(-0.229065\pi\)
\(488\) −0.123670 0.581820i −0.00559827 0.0263378i
\(489\) 0 0
\(490\) 10.9260 + 24.5402i 0.493587 + 1.10861i
\(491\) 22.4852 + 24.9723i 1.01474 + 1.12698i 0.991871 + 0.127245i \(0.0406135\pi\)
0.0228695 + 0.999738i \(0.492720\pi\)
\(492\) 0 0
\(493\) 20.3895 + 9.07799i 0.918297 + 0.408852i
\(494\) −17.7233 −0.797407
\(495\) 0 0
\(496\) 1.41052 0.0633344
\(497\) 3.44880 + 1.53550i 0.154700 + 0.0688767i
\(498\) 0 0
\(499\) 13.0633 + 14.5082i 0.584791 + 0.649477i 0.960834 0.277126i \(-0.0893819\pi\)
−0.376042 + 0.926603i \(0.622715\pi\)
\(500\) 9.19786 + 20.6587i 0.411341 + 0.923886i
\(501\) 0 0
\(502\) −5.11708 24.0740i −0.228386 1.07447i
\(503\) 7.43631 + 22.8866i 0.331569 + 1.02046i 0.968388 + 0.249450i \(0.0802499\pi\)
−0.636819 + 0.771013i \(0.719750\pi\)
\(504\) 0 0
\(505\) 3.26932i 0.145483i
\(506\) 5.97697 34.7960i 0.265709 1.54687i
\(507\) 0 0
\(508\) −7.05390 + 0.741395i −0.312966 + 0.0328941i
\(509\) 3.64390 17.1432i 0.161513 0.759859i −0.820590 0.571517i \(-0.806355\pi\)
0.982103 0.188342i \(-0.0603114\pi\)
\(510\) 0 0
\(511\) −0.00406015 + 0.0386298i −0.000179611 + 0.00170888i
\(512\) −25.2051 18.3126i −1.11392 0.809309i
\(513\) 0 0
\(514\) 22.9693 7.46319i 1.01313 0.329187i
\(515\) −4.96458 + 11.1506i −0.218765 + 0.491355i
\(516\) 0 0
\(517\) −1.11218 28.2653i −0.0489136 1.24310i
\(518\) 4.15309 + 2.39779i 0.182476 + 0.105353i
\(519\) 0 0
\(520\) −0.612308 + 0.680037i −0.0268515 + 0.0298216i
\(521\) −7.32063 2.37862i −0.320723 0.104209i 0.144231 0.989544i \(-0.453929\pi\)
−0.464954 + 0.885335i \(0.653929\pi\)
\(522\) 0 0
\(523\) −7.75187 + 10.6695i −0.338966 + 0.466546i −0.944139 0.329547i \(-0.893104\pi\)
0.605173 + 0.796094i \(0.293104\pi\)
\(524\) −16.3839 + 3.48251i −0.715734 + 0.152134i
\(525\) 0 0
\(526\) −1.91234 18.1947i −0.0833818 0.793325i
\(527\) 0.417392 0.722944i 0.0181819 0.0314919i
\(528\) 0 0
\(529\) 3.11086 + 5.38816i 0.135255 + 0.234268i
\(530\) 5.64736 4.10305i 0.245306 0.178225i
\(531\) 0 0
\(532\) −0.861054 + 2.65005i −0.0373314 + 0.114894i
\(533\) −19.1468 2.01242i −0.829342 0.0871674i
\(534\) 0 0
\(535\) −17.4176 + 15.6829i −0.753030 + 0.678031i
\(536\) 2.54351 + 0.540640i 0.109863 + 0.0233521i
\(537\) 0 0
\(538\) 36.5525 21.1036i 1.57589 0.909842i
\(539\) 21.2542 + 8.47815i 0.915484 + 0.365180i
\(540\) 0 0
\(541\) −8.36941 11.5195i −0.359829 0.495262i 0.590272 0.807204i \(-0.299021\pi\)
−0.950101 + 0.311942i \(0.899021\pi\)
\(542\) −12.1222 10.9149i −0.520692 0.468834i
\(543\) 0 0
\(544\) −17.9447 + 7.98948i −0.769371 + 0.342546i
\(545\) 5.96106 2.65404i 0.255344 0.113686i
\(546\) 0 0
\(547\) −28.1019 25.3030i −1.20155 1.08188i −0.994627 0.103523i \(-0.966988\pi\)
−0.206923 0.978357i \(-0.566345\pi\)
\(548\) 5.32374 + 7.32750i 0.227419 + 0.313015i
\(549\) 0 0
\(550\) 6.61731 + 2.63960i 0.282163 + 0.112553i
\(551\) −36.1284 + 20.8588i −1.53912 + 0.888613i
\(552\) 0 0
\(553\) −3.87388 0.823419i −0.164734 0.0350154i
\(554\) 16.9004 15.2172i 0.718028 0.646515i
\(555\) 0 0
\(556\) −13.4431 1.41293i −0.570116 0.0599216i
\(557\) −4.83577 + 14.8830i −0.204898 + 0.630612i 0.794819 + 0.606846i \(0.207566\pi\)
−0.999718 + 0.0237660i \(0.992434\pi\)
\(558\) 0 0
\(559\) 14.2894 10.3819i 0.604378 0.439106i
\(560\) 1.32608 + 2.29684i 0.0560373 + 0.0970594i
\(561\) 0 0
\(562\) 1.27535 2.20896i 0.0537972 0.0931795i
\(563\) −1.68479 16.0297i −0.0710056 0.675573i −0.970903 0.239472i \(-0.923026\pi\)
0.899898 0.436101i \(-0.143641\pi\)
\(564\) 0 0
\(565\) 10.0118 2.12808i 0.421201 0.0895289i
\(566\) −7.65428 + 10.5352i −0.321734 + 0.442828i
\(567\) 0 0
\(568\) −2.72364 0.884966i −0.114282 0.0371323i
\(569\) 16.2341 18.0298i 0.680569 0.755848i −0.299589 0.954068i \(-0.596849\pi\)
0.980157 + 0.198220i \(0.0635161\pi\)
\(570\) 0 0
\(571\) −14.5377 8.39334i −0.608384 0.351250i 0.163949 0.986469i \(-0.447577\pi\)
−0.772333 + 0.635218i \(0.780910\pi\)
\(572\) −0.471053 11.9715i −0.0196957 0.500553i
\(573\) 0 0
\(574\) −2.54234 + 5.71020i −0.106115 + 0.238339i
\(575\) −5.60807 + 1.82217i −0.233873 + 0.0759899i
\(576\) 0 0
\(577\) 5.58119 + 4.05497i 0.232348 + 0.168811i 0.697867 0.716227i \(-0.254132\pi\)
−0.465519 + 0.885038i \(0.654132\pi\)
\(578\) 2.20960 21.0229i 0.0919073 0.874439i
\(579\) 0 0
\(580\) 6.88300 32.3820i 0.285801 1.34459i
\(581\) 0.136113 0.0143061i 0.00564692 0.000593515i
\(582\) 0 0
\(583\) 1.00667 5.86048i 0.0416919 0.242716i
\(584\) 0.0294655i 0.00121929i
\(585\) 0 0
\(586\) −4.20349 12.9370i −0.173644 0.534422i
\(587\) 5.11090 + 24.0449i 0.210949 + 0.992439i 0.948409 + 0.317048i \(0.102692\pi\)
−0.737460 + 0.675391i \(0.763975\pi\)
\(588\) 0 0
\(589\) 0.634643 + 1.42543i 0.0261500 + 0.0587338i
\(590\) −20.2361 22.4745i −0.833109 0.925261i
\(591\) 0 0
\(592\) −29.6675 13.2088i −1.21933 0.542879i
\(593\) −25.3400 −1.04059 −0.520295 0.853987i \(-0.674178\pi\)
−0.520295 + 0.853987i \(0.674178\pi\)
\(594\) 0 0
\(595\) 1.56962 0.0643481
\(596\) −5.82531 2.59359i −0.238614 0.106238i
\(597\) 0 0
\(598\) 13.7022 + 15.2178i 0.560325 + 0.622304i
\(599\) −8.83839 19.8513i −0.361127 0.811104i −0.999155 0.0410913i \(-0.986917\pi\)
0.638029 0.770013i \(-0.279750\pi\)
\(600\) 0 0
\(601\) 3.90498 + 18.3715i 0.159288 + 0.749389i 0.983179 + 0.182642i \(0.0584650\pi\)
−0.823892 + 0.566747i \(0.808202\pi\)
\(602\) −1.77206 5.45383i −0.0722236 0.222281i
\(603\) 0 0
\(604\) 15.9511i 0.649040i
\(605\) −20.0923 + 8.32523i −0.816869 + 0.338469i
\(606\) 0 0
\(607\) −47.7631 + 5.02011i −1.93865 + 0.203760i −0.992704 0.120576i \(-0.961526\pi\)
−0.945942 + 0.324336i \(0.894859\pi\)
\(608\) 7.63354 35.9130i 0.309581 1.45646i
\(609\) 0 0
\(610\) −1.00617 + 9.57309i −0.0407387 + 0.387603i
\(611\) 13.2734 + 9.64370i 0.536985 + 0.390142i
\(612\) 0 0
\(613\) 1.96455 0.638321i 0.0793474 0.0257815i −0.269074 0.963119i \(-0.586718\pi\)
0.348422 + 0.937338i \(0.386718\pi\)
\(614\) −9.25494 + 20.7869i −0.373499 + 0.838893i
\(615\) 0 0
\(616\) 0.243581 + 0.0686819i 0.00981418 + 0.00276727i
\(617\) 29.9543 + 17.2941i 1.20591 + 0.696235i 0.961864 0.273527i \(-0.0881904\pi\)
0.244050 + 0.969763i \(0.421524\pi\)
\(618\) 0 0
\(619\) 18.3552 20.3855i 0.737756 0.819362i −0.251143 0.967950i \(-0.580806\pi\)
0.988899 + 0.148589i \(0.0474730\pi\)
\(620\) −1.17761 0.382630i −0.0472941 0.0153668i
\(621\) 0 0
\(622\) −8.08033 + 11.1216i −0.323992 + 0.445936i
\(623\) −2.52938 + 0.537636i −0.101337 + 0.0215399i
\(624\) 0 0
\(625\) 1.91872 + 18.2554i 0.0767489 + 0.730217i
\(626\) 28.2373 48.9085i 1.12859 1.95478i
\(627\) 0 0
\(628\) 17.3672 + 30.0809i 0.693028 + 1.20036i
\(629\) −15.5490 + 11.2970i −0.619979 + 0.450441i
\(630\) 0 0
\(631\) −8.09100 + 24.9015i −0.322098 + 0.991315i 0.650636 + 0.759390i \(0.274502\pi\)
−0.972734 + 0.231925i \(0.925498\pi\)
\(632\) 2.98788 + 0.314039i 0.118851 + 0.0124918i
\(633\) 0 0
\(634\) 43.9114 39.5380i 1.74395 1.57026i
\(635\) −7.30478 1.55268i −0.289882 0.0616162i
\(636\) 0 0
\(637\) −11.4941 + 6.63613i −0.455413 + 0.262933i
\(638\) −31.0784 49.2501i −1.23041 1.94983i
\(639\) 0 0
\(640\) −2.23267 3.07300i −0.0882539 0.121471i
\(641\) 4.54375 + 4.09121i 0.179467 + 0.161593i 0.753968 0.656911i \(-0.228137\pi\)
−0.574501 + 0.818504i \(0.694804\pi\)
\(642\) 0 0
\(643\) −0.747639 + 0.332870i −0.0294840 + 0.0131271i −0.421426 0.906863i \(-0.638470\pi\)
0.391942 + 0.919990i \(0.371803\pi\)
\(644\) 2.94113 1.30948i 0.115897 0.0516006i
\(645\) 0 0
\(646\) −17.1380 15.4311i −0.674284 0.607128i
\(647\) 3.42533 + 4.71456i 0.134664 + 0.185349i 0.871023 0.491242i \(-0.163457\pi\)
−0.736360 + 0.676590i \(0.763457\pi\)
\(648\) 0 0
\(649\) −25.7068 1.68342i −1.00908 0.0660800i
\(650\) −3.57859 + 2.06610i −0.140364 + 0.0810391i
\(651\) 0 0
\(652\) −34.0944 7.24699i −1.33524 0.283814i
\(653\) 1.93524 1.74250i 0.0757318 0.0681892i −0.630396 0.776274i \(-0.717107\pi\)
0.706127 + 0.708085i \(0.250441\pi\)
\(654\) 0 0
\(655\) −17.5394 1.84347i −0.685322 0.0720302i
\(656\) 13.0802 40.2567i 0.510696 1.57176i
\(657\) 0 0
\(658\) 4.30944 3.13099i 0.168000 0.122059i
\(659\) −11.2518 19.4886i −0.438306 0.759169i 0.559253 0.828997i \(-0.311088\pi\)
−0.997559 + 0.0698283i \(0.977755\pi\)
\(660\) 0 0
\(661\) 3.23287 5.59950i 0.125744 0.217795i −0.796279 0.604929i \(-0.793201\pi\)
0.922024 + 0.387134i \(0.126535\pi\)
\(662\) −1.75647 16.7117i −0.0682673 0.649520i
\(663\) 0 0
\(664\) −0.101554 + 0.0215859i −0.00394105 + 0.000837697i
\(665\) −1.72447 + 2.37353i −0.0668720 + 0.0920414i
\(666\) 0 0
\(667\) 45.8417 + 14.8949i 1.77500 + 0.576732i
\(668\) 17.2061 19.1093i 0.665723 0.739360i
\(669\) 0 0
\(670\) −36.4429 21.0403i −1.40791 0.812859i
\(671\) 5.07675 + 6.43906i 0.195986 + 0.248577i
\(672\) 0 0
\(673\) 0.144560 0.324687i 0.00557238 0.0125158i −0.910738 0.412985i \(-0.864486\pi\)
0.916310 + 0.400469i \(0.131153\pi\)
\(674\) −22.3665 + 7.26731i −0.861524 + 0.279926i
\(675\) 0 0
\(676\) −14.1276 10.2643i −0.543371 0.394782i
\(677\) −3.05705 + 29.0859i −0.117492 + 1.11786i 0.763854 + 0.645389i \(0.223305\pi\)
−0.881346 + 0.472471i \(0.843362\pi\)
\(678\) 0 0
\(679\) −0.570000 + 2.68164i −0.0218746 + 0.102912i
\(680\) −1.18417 + 0.124462i −0.0454110 + 0.00477289i
\(681\) 0 0
\(682\) −1.95348 + 0.963488i −0.0748025 + 0.0368939i
\(683\) 26.1630i 1.00110i −0.865708 0.500549i \(-0.833132\pi\)
0.865708 0.500549i \(-0.166868\pi\)
\(684\) 0 0
\(685\) 2.94692 + 9.06969i 0.112596 + 0.346535i
\(686\) 1.80487 + 8.49125i 0.0689103 + 0.324197i
\(687\) 0 0
\(688\) 15.7950 + 35.4761i 0.602178 + 1.35251i
\(689\) 2.30778 + 2.56305i 0.0879195 + 0.0976445i
\(690\) 0 0
\(691\) 40.7691 + 18.1516i 1.55093 + 0.690518i 0.990478 0.137669i \(-0.0439611\pi\)
0.560451 + 0.828188i \(0.310628\pi\)
\(692\) −24.8415 −0.944334
\(693\) 0 0
\(694\) −28.4370 −1.07945
\(695\) −13.0018 5.78879i −0.493187 0.219581i
\(696\) 0 0
\(697\) −16.7624 18.6165i −0.634921 0.705151i
\(698\) 25.8501 + 58.0602i 0.978440 + 2.19761i
\(699\) 0 0
\(700\) 0.135072 + 0.635463i 0.00510524 + 0.0240182i
\(701\) −3.87098 11.9137i −0.146205 0.449972i 0.850959 0.525232i \(-0.176021\pi\)
−0.997164 + 0.0752595i \(0.976021\pi\)
\(702\) 0 0
\(703\) 35.9241i 1.35490i
\(704\) 22.8635 + 3.92730i 0.861699 + 0.148016i
\(705\) 0 0
\(706\) −12.6935 + 1.33414i −0.477726 + 0.0502110i
\(707\) 0.109036 0.512974i 0.00410072 0.0192924i
\(708\) 0 0
\(709\) 1.17524 11.1817i 0.0441371 0.419937i −0.950036 0.312141i \(-0.898954\pi\)
0.994173 0.107796i \(-0.0343794\pi\)
\(710\) 37.4934 + 27.2406i 1.40710 + 1.02232i
\(711\) 0 0
\(712\) 1.86562 0.606176i 0.0699169 0.0227174i
\(713\) 0.733272 1.64696i 0.0274613 0.0616790i
\(714\) 0 0
\(715\) 3.42340 12.1411i 0.128028 0.454053i
\(716\) −9.21066 5.31778i −0.344219 0.198735i
\(717\) 0 0
\(718\) −12.5917 + 13.9845i −0.469918 + 0.521897i
\(719\) 8.20360 + 2.66551i 0.305942 + 0.0994067i 0.457965 0.888970i \(-0.348579\pi\)
−0.152022 + 0.988377i \(0.548579\pi\)
\(720\) 0 0
\(721\) −1.15086 + 1.58402i −0.0428602 + 0.0589920i
\(722\) 5.56547 1.18298i 0.207125 0.0440259i
\(723\) 0 0
\(724\) 2.01430 + 19.1648i 0.0748607 + 0.712252i
\(725\) −4.86324 + 8.42338i −0.180616 + 0.312837i
\(726\) 0 0
\(727\) 23.7016 + 41.0524i 0.879044 + 1.52255i 0.852391 + 0.522905i \(0.175152\pi\)
0.0266533 + 0.999645i \(0.491515\pi\)
\(728\) −0.118755 + 0.0862803i −0.00440134 + 0.00319776i
\(729\) 0 0
\(730\) −0.147350 + 0.453496i −0.00545366 + 0.0167847i
\(731\) 22.8567 + 2.40234i 0.845385 + 0.0888536i
\(732\) 0 0
\(733\) 11.5041 10.3583i 0.424913 0.382593i −0.428747 0.903425i \(-0.641045\pi\)
0.853660 + 0.520831i \(0.174378\pi\)
\(734\) 15.5435 + 3.30388i 0.573722 + 0.121948i
\(735\) 0 0
\(736\) −36.7379 + 21.2106i −1.35418 + 0.781833i
\(737\) −34.7427 + 8.82565i −1.27976 + 0.325097i
\(738\) 0 0
\(739\) 25.0234 + 34.4418i 0.920502 + 1.26696i 0.963451 + 0.267885i \(0.0863246\pi\)
−0.0429492 + 0.999077i \(0.513675\pi\)
\(740\) 21.1856 + 19.0756i 0.778797 + 0.701232i
\(741\) 0 0
\(742\) 1.02295 0.455445i 0.0375535 0.0167199i
\(743\) 44.1108 19.6394i 1.61827 0.720499i 0.620308 0.784358i \(-0.287007\pi\)
0.997959 + 0.0638590i \(0.0203408\pi\)
\(744\) 0 0
\(745\) −4.98942 4.49249i −0.182798 0.164592i
\(746\) −0.805983 1.10934i −0.0295091 0.0406159i
\(747\) 0 0
\(748\) 9.96770 11.9863i 0.364455 0.438261i
\(749\) −3.25597 + 1.87984i −0.118971 + 0.0686877i
\(750\) 0 0
\(751\) −25.1708 5.35021i −0.918494 0.195232i −0.275676 0.961251i \(-0.588902\pi\)
−0.642818 + 0.766019i \(0.722235\pi\)
\(752\) −26.8070 + 24.1371i −0.977549 + 0.880189i
\(753\) 0 0
\(754\) 33.5925 + 3.53072i 1.22337 + 0.128581i
\(755\) 5.18991 15.9729i 0.188880 0.581314i
\(756\) 0 0
\(757\) −41.1683 + 29.9105i −1.49629 + 1.08712i −0.524454 + 0.851439i \(0.675731\pi\)
−0.971832 + 0.235676i \(0.924269\pi\)
\(758\) 2.53162 + 4.38490i 0.0919527 + 0.159267i
\(759\) 0 0
\(760\) 1.11279 1.92741i 0.0403651 0.0699144i
\(761\) −2.23110 21.2275i −0.0808772 0.769495i −0.957523 0.288358i \(-0.906891\pi\)
0.876645 0.481137i \(-0.159776\pi\)
\(762\) 0 0
\(763\) 1.02384 0.217624i 0.0370655 0.00787851i
\(764\) −6.23800 + 8.58587i −0.225683 + 0.310626i
\(765\) 0 0
\(766\) 11.6782 + 3.79447i 0.421950 + 0.137100i
\(767\) 9.99825 11.1042i 0.361016 0.400949i
\(768\) 0 0
\(769\) 18.7124 + 10.8036i 0.674786 + 0.389588i 0.797888 0.602806i \(-0.205951\pi\)
−0.123102 + 0.992394i \(0.539284\pi\)
\(770\) −3.40544 2.27516i −0.122723 0.0819910i
\(771\) 0 0
\(772\) 13.7241 30.8248i 0.493940 1.10941i
\(773\) 9.33763 3.03398i 0.335851 0.109125i −0.136236 0.990676i \(-0.543501\pi\)
0.472088 + 0.881552i \(0.343501\pi\)
\(774\) 0 0
\(775\) 0.294314 + 0.213832i 0.0105721 + 0.00768106i
\(776\) 0.217389 2.06832i 0.00780380 0.0742482i
\(777\) 0 0
\(778\) 11.2499 52.9264i 0.403327 1.89750i
\(779\) 46.5673 4.89442i 1.66845 0.175361i
\(780\) 0 0
\(781\) 39.0693 5.66708i 1.39801 0.202784i
\(782\) 26.6454i 0.952837i
\(783\) 0 0
\(784\) −9.01729 27.7524i −0.322046 0.991155i
\(785\) 7.60374 + 35.7728i 0.271389 + 1.27679i
\(786\) 0 0
\(787\) −14.2836 32.0814i −0.509154 1.14358i −0.967053 0.254574i \(-0.918065\pi\)
0.457899 0.889004i \(-0.348602\pi\)
\(788\) 3.15466 + 3.50360i 0.112380 + 0.124811i
\(789\) 0 0
\(790\) −44.4152 19.7749i −1.58022 0.703561i
\(791\) 1.64189 0.0583787
\(792\) 0 0
\(793\) −4.75591 −0.168887
\(794\) 13.4193 + 5.97468i 0.476235 + 0.212033i
\(795\) 0 0
\(796\) 15.3671 + 17.0668i 0.544671 + 0.604918i
\(797\) 19.8012 + 44.4743i 0.701395 + 1.57536i 0.813435 + 0.581656i \(0.197595\pi\)
−0.112040 + 0.993704i \(0.535738\pi\)
\(798\) 0 0
\(799\) 4.43860 + 20.8820i 0.157026 + 0.738752i
\(800\) −2.64525 8.14125i −0.0935238 0.287837i
\(801\) 0 0
\(802\) 4.90063i 0.173047i
\(803\) 0.179673 + 0.364289i 0.00634054 + 0.0128555i
\(804\) 0 0
\(805\) 3.37122 0.354329i 0.118820 0.0124885i
\(806\) 0.262667 1.23575i 0.00925204 0.0435274i
\(807\) 0 0
\(808\) −0.0415846 + 0.395651i −0.00146294 + 0.0139189i
\(809\) −1.95603 1.42114i −0.0687705 0.0499647i 0.552869 0.833268i \(-0.313533\pi\)
−0.621639 + 0.783304i \(0.713533\pi\)
\(810\) 0 0
\(811\) 22.4513 7.29488i 0.788373 0.256158i 0.112962 0.993599i \(-0.463966\pi\)
0.675411 + 0.737441i \(0.263966\pi\)
\(812\) 2.15996 4.85136i 0.0757999 0.170249i
\(813\) 0 0
\(814\) 50.1099 1.97172i 1.75635 0.0691089i
\(815\) −31.7832 18.3500i −1.11332 0.642773i
\(816\) 0 0
\(817\) −28.7443 + 31.9238i −1.00564 + 1.11687i
\(818\) 55.4693 + 18.0231i 1.93944 + 0.630162i
\(819\) 0 0
\(820\) −21.8407 + 30.0611i −0.762710 + 1.04978i
\(821\) 35.0071 7.44099i 1.22176 0.259692i 0.448498 0.893784i \(-0.351959\pi\)
0.773258 + 0.634092i \(0.218626\pi\)
\(822\) 0 0
\(823\) 3.75180 + 35.6960i 0.130779 + 1.24428i 0.841285 + 0.540591i \(0.181800\pi\)
−0.710506 + 0.703691i \(0.751534\pi\)
\(824\) 0.742643 1.28629i 0.0258712 0.0448102i
\(825\) 0 0
\(826\) −2.42561 4.20128i −0.0843978 0.146181i
\(827\) 11.6799 8.48596i 0.406151 0.295086i −0.365891 0.930658i \(-0.619236\pi\)
0.772042 + 0.635572i \(0.219236\pi\)
\(828\) 0 0
\(829\) −16.7616 + 51.5868i −0.582153 + 1.79168i 0.0282623 + 0.999601i \(0.491003\pi\)
−0.610415 + 0.792082i \(0.708997\pi\)
\(830\) 1.67094 + 0.175622i 0.0579990 + 0.00609594i
\(831\) 0 0
\(832\) −9.99922 + 9.00334i −0.346661 + 0.312135i
\(833\) −16.8924 3.59059i −0.585287 0.124407i
\(834\) 0 0
\(835\) 23.4471 13.5372i 0.811421 0.468474i
\(836\) 7.17418 + 28.2416i 0.248124 + 0.976754i
\(837\) 0 0
\(838\) 10.4702 + 14.4110i 0.361686 + 0.497819i
\(839\) −41.3232 37.2076i −1.42664 1.28455i −0.900987 0.433847i \(-0.857156\pi\)
−0.525649 0.850702i \(-0.676177\pi\)
\(840\) 0 0
\(841\) 46.1401 20.5429i 1.59104 0.708375i
\(842\) −39.0984 + 17.4078i −1.34742 + 0.599911i
\(843\) 0 0
\(844\) 35.2640 + 31.7518i 1.21384 + 1.09294i
\(845\) −10.8073 14.8750i −0.371784 0.511717i
\(846\) 0 0
\(847\) −3.43025 + 0.636170i −0.117865 + 0.0218591i
\(848\) −6.56695 + 3.79143i −0.225510 + 0.130198i
\(849\) 0 0
\(850\) −5.25930 1.11790i −0.180392 0.0383436i
\(851\) −30.8458 + 27.7737i −1.05738 + 0.952069i
\(852\) 0 0
\(853\) −16.0536 1.68730i −0.549665 0.0577721i −0.174374 0.984679i \(-0.555790\pi\)
−0.375290 + 0.926907i \(0.622457\pi\)
\(854\) −0.477149 + 1.46851i −0.0163277 + 0.0502515i
\(855\) 0 0
\(856\) 2.30735 1.67639i 0.0788637 0.0572979i
\(857\) −23.6770 41.0098i −0.808792 1.40087i −0.913701 0.406387i \(-0.866789\pi\)
0.104909 0.994482i \(-0.466545\pi\)
\(858\) 0 0
\(859\) 4.16516 7.21427i 0.142114 0.246148i −0.786179 0.617999i \(-0.787944\pi\)
0.928292 + 0.371851i \(0.121277\pi\)
\(860\) −3.56333 33.9028i −0.121509 1.15608i
\(861\) 0 0
\(862\) 33.8372 7.19232i 1.15250 0.244971i
\(863\) −3.57452 + 4.91990i −0.121678 + 0.167475i −0.865511 0.500890i \(-0.833006\pi\)
0.743833 + 0.668366i \(0.233006\pi\)
\(864\) 0 0
\(865\) −24.8756 8.08256i −0.845795 0.274815i
\(866\) −20.6798 + 22.9673i −0.702730 + 0.780460i
\(867\) 0 0
\(868\) −0.172013 0.0993118i −0.00583850 0.00337086i
\(869\) −38.8547 + 14.3368i −1.31806 + 0.486343i
\(870\) 0 0
\(871\) 8.45653 18.9937i 0.286539 0.643576i
\(872\) −0.755163 + 0.245367i −0.0255730 + 0.00830918i
\(873\) 0 0
\(874\) −40.2922 29.2740i −1.36290 0.990208i
\(875\) −0.399236 + 3.79848i −0.0134967 + 0.128412i
\(876\) 0 0
\(877\) 2.58745 12.1730i 0.0873719 0.411053i −0.912626 0.408797i \(-0.865949\pi\)
0.999997 0.00225604i \(-0.000718120\pi\)
\(878\) −23.3561 + 2.45482i −0.788230 + 0.0828463i
\(879\) 0 0
\(880\) 24.5454 + 12.9122i 0.827427 + 0.435269i
\(881\) 59.2385i 1.99580i −0.0647993 0.997898i \(-0.520641\pi\)
0.0647993 0.997898i \(-0.479359\pi\)
\(882\) 0 0
\(883\) −13.1258 40.3970i −0.441718 1.35947i −0.886043 0.463603i \(-0.846556\pi\)
0.444325 0.895866i \(-0.353444\pi\)
\(884\) 1.87993 + 8.84437i 0.0632288 + 0.297468i
\(885\) 0 0
\(886\) 12.3682 + 27.7794i 0.415518 + 0.933268i
\(887\) −15.3978 17.1009i −0.517006 0.574193i 0.426946 0.904277i \(-0.359590\pi\)
−0.943952 + 0.330084i \(0.892923\pi\)
\(888\) 0 0
\(889\) −1.09438 0.487249i −0.0367043 0.0163418i
\(890\) −31.7446 −1.06408
\(891\) 0 0
\(892\) 26.4561 0.885815
\(893\) −36.4535 16.2301i −1.21987 0.543121i
\(894\) 0 0
\(895\) −7.49306 8.32188i −0.250465 0.278170i
\(896\) −0.247829 0.556634i −0.00827939 0.0185958i
\(897\) 0 0
\(898\) 9.54060 + 44.8850i 0.318374 + 1.49783i
\(899\) −0.918932 2.82818i −0.0306481 0.0943251i
\(900\) 0 0
\(901\) 4.48773i 0.149508i
\(902\) 9.38303 + 64.6873i 0.312421 + 2.15385i
\(903\) 0 0
\(904\) −1.23869 + 0.130192i −0.0411983 + 0.00433012i
\(905\) −4.21848 + 19.8464i −0.140227 + 0.659716i
\(906\) 0 0
\(907\) 1.18005 11.2274i 0.0391829 0.372800i −0.957306 0.289076i \(-0.906652\pi\)
0.996489 0.0837239i \(-0.0266814\pi\)
\(908\) 23.6736 + 17.1999i 0.785637 + 0.570799i
\(909\) 0 0
\(910\) 2.25919 0.734055i 0.0748914 0.0243337i
\(911\) −9.96223 + 22.3755i −0.330063 + 0.741335i −0.999999 0.00108422i \(-0.999655\pi\)
0.669936 + 0.742419i \(0.266322\pi\)
\(912\) 0 0
\(913\) 1.12391 0.886122i 0.0371959 0.0293263i
\(914\) −1.05450 0.608815i −0.0348797 0.0201378i
\(915\) 0 0
\(916\) 25.8620 28.7227i 0.854505 0.949024i
\(917\) −2.69055 0.874214i −0.0888499 0.0288691i
\(918\) 0 0
\(919\) 20.6927 28.4811i 0.682590 0.939504i −0.317371 0.948301i \(-0.602800\pi\)
0.999961 + 0.00879691i \(0.00280018\pi\)
\(920\) −2.51526 + 0.534636i −0.0829258 + 0.0176264i
\(921\) 0 0
\(922\) 4.68437 + 44.5688i 0.154271 + 1.46779i
\(923\) −11.4489 + 19.8301i −0.376845 + 0.652714i
\(924\) 0 0
\(925\) −4.18788 7.25361i −0.137696 0.238497i
\(926\) −11.2929 + 8.20480i −0.371109 + 0.269626i
\(927\) 0 0
\(928\) −21.6229 + 66.5485i −0.709807 + 2.18456i
\(929\) −18.0243 1.89443i −0.591359 0.0621543i −0.195877 0.980628i \(-0.562755\pi\)
−0.395481 + 0.918474i \(0.629422\pi\)
\(930\) 0 0
\(931\) 23.9884 21.5993i 0.786190 0.707888i
\(932\) −4.80985 1.02236i −0.157552 0.0334887i
\(933\) 0 0
\(934\) −10.1605 + 5.86618i −0.332462 + 0.191947i
\(935\) 13.8813 8.75954i 0.453966 0.286468i
\(936\) 0 0
\(937\) −17.7777 24.4689i −0.580772 0.799365i 0.413007 0.910728i \(-0.364478\pi\)
−0.993780 + 0.111363i \(0.964478\pi\)
\(938\) −5.01638 4.51677i −0.163791 0.147478i
\(939\) 0 0
\(940\) 28.9281 12.8796i 0.943531 0.420087i
\(941\) −23.9373 + 10.6576i −0.780333 + 0.347427i −0.757941 0.652323i \(-0.773795\pi\)
−0.0223916 + 0.999749i \(0.507128\pi\)
\(942\) 0 0
\(943\) −40.2047 36.2005i −1.30924 1.17885i
\(944\) 19.3099 + 26.5778i 0.628484 + 0.865035i
\(945\) 0 0
\(946\) −46.1076 38.3428i −1.49909 1.24663i
\(947\) 28.0006 16.1662i 0.909897 0.525330i 0.0294993 0.999565i \(-0.490609\pi\)
0.880398 + 0.474235i \(0.157275\pi\)
\(948\) 0 0
\(949\) −0.230445 0.0489827i −0.00748057 0.00159004i
\(950\) 7.46859 6.72475i 0.242313 0.218180i
\(951\) 0 0
\(952\) −0.189955 0.0199650i −0.00615646 0.000647070i
\(953\) −10.9868 + 33.8138i −0.355897 + 1.09534i 0.599591 + 0.800306i \(0.295330\pi\)
−0.955488 + 0.295031i \(0.904670\pi\)
\(954\) 0 0
\(955\) −9.04008 + 6.56800i −0.292530 + 0.212536i
\(956\) −20.9090 36.2154i −0.676244 1.17129i
\(957\) 0 0
\(958\) −1.73509 + 3.00526i −0.0560581 + 0.0970954i
\(959\) 0.159902 + 1.52137i 0.00516352 + 0.0491276i
\(960\) 0 0
\(961\) 30.2138 6.42214i 0.974638 0.207166i
\(962\) −17.0968 + 23.5317i −0.551223 + 0.758693i
\(963\) 0 0
\(964\) −43.9090 14.2669i −1.41421 0.459506i
\(965\) 23.7722 26.4017i 0.765253 0.849900i
\(966\) 0 0
\(967\) −37.9734 21.9240i −1.22114 0.705027i −0.255981 0.966682i \(-0.582398\pi\)
−0.965161 + 0.261655i \(0.915732\pi\)
\(968\) 2.53745 0.751947i 0.0815569 0.0241685i
\(969\) 0 0
\(970\) −13.6889 + 30.7458i −0.439524 + 0.987188i
\(971\) 24.4501 7.94432i 0.784641 0.254945i 0.110820 0.993840i \(-0.464652\pi\)
0.673820 + 0.738895i \(0.264652\pi\)
\(972\) 0 0
\(973\) −1.84700 1.34192i −0.0592120 0.0430200i
\(974\) 3.58356 34.0953i 0.114825 1.09248i
\(975\) 0 0
\(976\) 2.17401 10.2279i 0.0695884 0.327388i
\(977\) −16.5029 + 1.73452i −0.527974 + 0.0554923i −0.364766 0.931099i \(-0.618851\pi\)
−0.163208 + 0.986592i \(0.552184\pi\)
\(978\) 0 0
\(979\) −19.3687 + 18.8703i −0.619027 + 0.603099i
\(980\) 25.6159i 0.818269i
\(981\) 0 0
\(982\) 20.4485 + 62.9340i 0.652538 + 2.00830i
\(983\) −8.71340 40.9933i −0.277914 1.30748i −0.866552 0.499087i \(-0.833669\pi\)
0.588637 0.808397i \(-0.299665\pi\)
\(984\) 0 0
\(985\) 2.01903 + 4.53481i 0.0643316 + 0.144491i
\(986\) 29.4091 + 32.6621i 0.936576 + 1.04017i
\(987\) 0 0
\(988\) −15.4395 6.87412i −0.491197 0.218695i
\(989\) 49.6337 1.57826
\(990\) 0 0
\(991\) −21.9883 −0.698482 −0.349241 0.937033i \(-0.613561\pi\)
−0.349241 + 0.937033i \(0.613561\pi\)
\(992\) 2.39089 + 1.06449i 0.0759108 + 0.0337977i
\(993\) 0 0
\(994\) 4.97442 + 5.52465i 0.157779 + 0.175231i
\(995\) 9.83515 + 22.0901i 0.311795 + 0.700303i
\(996\) 0 0
\(997\) −9.83942 46.2909i −0.311618 1.46605i −0.803458 0.595361i \(-0.797009\pi\)
0.491841 0.870685i \(-0.336324\pi\)
\(998\) 11.8800 + 36.5629i 0.376055 + 1.15738i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.t.a.206.9 80
3.2 odd 2 99.2.p.a.41.2 yes 80
9.2 odd 6 inner 297.2.t.a.8.9 80
9.4 even 3 891.2.k.a.404.4 80
9.5 odd 6 891.2.k.a.404.17 80
9.7 even 3 99.2.p.a.74.2 yes 80
11.7 odd 10 inner 297.2.t.a.260.9 80
33.29 even 10 99.2.p.a.95.2 yes 80
99.7 odd 30 99.2.p.a.29.2 80
99.29 even 30 inner 297.2.t.a.62.9 80
99.40 odd 30 891.2.k.a.161.17 80
99.95 even 30 891.2.k.a.161.4 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.2 80 99.7 odd 30
99.2.p.a.41.2 yes 80 3.2 odd 2
99.2.p.a.74.2 yes 80 9.7 even 3
99.2.p.a.95.2 yes 80 33.29 even 10
297.2.t.a.8.9 80 9.2 odd 6 inner
297.2.t.a.62.9 80 99.29 even 30 inner
297.2.t.a.206.9 80 1.1 even 1 trivial
297.2.t.a.260.9 80 11.7 odd 10 inner
891.2.k.a.161.4 80 99.95 even 30
891.2.k.a.161.17 80 99.40 odd 30
891.2.k.a.404.4 80 9.4 even 3
891.2.k.a.404.17 80 9.5 odd 6