Properties

Label 297.2.t.a.17.6
Level $297$
Weight $2$
Character 297.17
Analytic conductor $2.372$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [297,2,Mod(8,297)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("297.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(297, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([5, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.t (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 17.6
Character \(\chi\) \(=\) 297.17
Dual form 297.2.t.a.35.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.536887 - 0.596273i) q^{2} +(0.141763 + 1.34878i) q^{4} +(2.14661 - 1.93281i) q^{5} +(0.542079 - 1.21753i) q^{7} +(2.17861 + 1.58285i) q^{8} -2.31767i q^{10} +(-2.22482 + 2.45971i) q^{11} +(-0.121914 + 0.573561i) q^{13} +(-0.434945 - 0.976903i) q^{14} +(-0.539671 + 0.114711i) q^{16} +(0.407327 - 1.25362i) q^{17} +(4.21041 - 5.79513i) q^{19} +(2.91125 + 2.62130i) q^{20} +(0.272182 + 2.64719i) q^{22} +(2.62500 + 1.51554i) q^{23} +(0.349510 - 3.32536i) q^{25} +(0.276545 + 0.380632i) q^{26} +(1.71903 + 0.558546i) q^{28} +(1.19216 + 0.530783i) q^{29} +(-7.38644 - 1.57004i) q^{31} +(-2.91425 + 5.04763i) q^{32} +(-0.528814 - 0.915932i) q^{34} +(-1.18963 - 3.66129i) q^{35} +(-3.23755 + 2.35222i) q^{37} +(-1.19497 - 5.62189i) q^{38} +(7.73596 - 0.813082i) q^{40} +(2.05694 - 0.915811i) q^{41} +(-11.2365 + 6.48742i) q^{43} +(-3.63301 - 2.65210i) q^{44} +(2.31301 - 0.751541i) q^{46} +(-11.5098 - 1.20973i) q^{47} +(3.49539 + 3.88202i) q^{49} +(-1.79518 - 1.99375i) q^{50} +(-0.790891 - 0.0831260i) q^{52} +(3.40948 - 1.10781i) q^{53} +(-0.0216557 + 9.58019i) q^{55} +(3.10815 - 1.79449i) q^{56} +(0.956546 - 0.425882i) q^{58} +(-5.95883 + 0.626298i) q^{59} +(-1.64415 - 7.73512i) q^{61} +(-4.90186 + 3.56141i) q^{62} +(1.10416 + 3.39825i) q^{64} +(0.846884 + 1.46685i) q^{65} +(-4.35166 + 7.53730i) q^{67} +(1.74861 + 0.371678i) q^{68} +(-2.82183 - 1.25636i) q^{70} +(-4.54327 - 1.47620i) q^{71} +(-5.16130 - 7.10392i) q^{73} +(-0.335634 + 3.19334i) q^{74} +(8.41325 + 4.85739i) q^{76} +(1.78874 + 4.04214i) q^{77} +(10.2545 + 9.23323i) q^{79} +(-0.936746 + 1.28932i) q^{80} +(0.558273 - 1.71819i) q^{82} +(10.5286 - 2.23793i) q^{83} +(-1.54865 - 3.47832i) q^{85} +(-2.16448 + 10.1831i) q^{86} +(-8.74036 + 1.83718i) q^{88} +8.87289i q^{89} +(0.632240 + 0.459350i) q^{91} +(-1.67201 + 3.75540i) q^{92} +(-6.90079 + 6.21350i) q^{94} +(-2.16281 - 20.5778i) q^{95} +(-0.548828 + 0.609535i) q^{97} +4.19137 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 15 q^{2} + 5 q^{4} + 6 q^{5} - 5 q^{7} + 3 q^{11} - 5 q^{13} + 9 q^{14} + 5 q^{16} - 50 q^{19} + 3 q^{20} - 11 q^{22} + 42 q^{23} - 2 q^{25} - 20 q^{28} - 30 q^{29} - 6 q^{31} - 10 q^{34} - 6 q^{37}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{9}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.536887 0.596273i 0.379636 0.421629i −0.522798 0.852457i \(-0.675112\pi\)
0.902434 + 0.430828i \(0.141778\pi\)
\(3\) 0 0
\(4\) 0.141763 + 1.34878i 0.0708813 + 0.674390i
\(5\) 2.14661 1.93281i 0.959991 0.864380i −0.0308346 0.999525i \(-0.509817\pi\)
0.990826 + 0.135144i \(0.0431498\pi\)
\(6\) 0 0
\(7\) 0.542079 1.21753i 0.204887 0.460183i −0.781651 0.623716i \(-0.785622\pi\)
0.986538 + 0.163533i \(0.0522889\pi\)
\(8\) 2.17861 + 1.58285i 0.770254 + 0.559622i
\(9\) 0 0
\(10\) 2.31767i 0.732910i
\(11\) −2.22482 + 2.45971i −0.670809 + 0.741630i
\(12\) 0 0
\(13\) −0.121914 + 0.573561i −0.0338129 + 0.159077i −0.991815 0.127685i \(-0.959245\pi\)
0.958002 + 0.286762i \(0.0925788\pi\)
\(14\) −0.434945 0.976903i −0.116244 0.261088i
\(15\) 0 0
\(16\) −0.539671 + 0.114711i −0.134918 + 0.0286776i
\(17\) 0.407327 1.25362i 0.0987913 0.304048i −0.889432 0.457068i \(-0.848900\pi\)
0.988223 + 0.153019i \(0.0488997\pi\)
\(18\) 0 0
\(19\) 4.21041 5.79513i 0.965935 1.32949i 0.0218608 0.999761i \(-0.493041\pi\)
0.944074 0.329734i \(-0.106959\pi\)
\(20\) 2.91125 + 2.62130i 0.650975 + 0.586141i
\(21\) 0 0
\(22\) 0.272182 + 2.64719i 0.0580294 + 0.564382i
\(23\) 2.62500 + 1.51554i 0.547350 + 0.316013i 0.748053 0.663639i \(-0.230989\pi\)
−0.200702 + 0.979652i \(0.564322\pi\)
\(24\) 0 0
\(25\) 0.349510 3.32536i 0.0699020 0.665073i
\(26\) 0.276545 + 0.380632i 0.0542349 + 0.0746480i
\(27\) 0 0
\(28\) 1.71903 + 0.558546i 0.324866 + 0.105555i
\(29\) 1.19216 + 0.530783i 0.221378 + 0.0985639i 0.514429 0.857533i \(-0.328004\pi\)
−0.293051 + 0.956097i \(0.594671\pi\)
\(30\) 0 0
\(31\) −7.38644 1.57004i −1.32664 0.281987i −0.510521 0.859865i \(-0.670548\pi\)
−0.816123 + 0.577878i \(0.803881\pi\)
\(32\) −2.91425 + 5.04763i −0.515171 + 0.892303i
\(33\) 0 0
\(34\) −0.528814 0.915932i −0.0906908 0.157081i
\(35\) −1.18963 3.66129i −0.201084 0.618872i
\(36\) 0 0
\(37\) −3.23755 + 2.35222i −0.532250 + 0.386702i −0.821199 0.570642i \(-0.806694\pi\)
0.288949 + 0.957345i \(0.406694\pi\)
\(38\) −1.19497 5.62189i −0.193850 0.911991i
\(39\) 0 0
\(40\) 7.73596 0.813082i 1.22316 0.128560i
\(41\) 2.05694 0.915811i 0.321241 0.143026i −0.239780 0.970827i \(-0.577075\pi\)
0.561021 + 0.827802i \(0.310409\pi\)
\(42\) 0 0
\(43\) −11.2365 + 6.48742i −1.71356 + 0.989322i −0.783904 + 0.620882i \(0.786775\pi\)
−0.929652 + 0.368440i \(0.879892\pi\)
\(44\) −3.63301 2.65210i −0.547696 0.399819i
\(45\) 0 0
\(46\) 2.31301 0.751541i 0.341034 0.110809i
\(47\) −11.5098 1.20973i −1.67888 0.176457i −0.783385 0.621537i \(-0.786509\pi\)
−0.895491 + 0.445080i \(0.853175\pi\)
\(48\) 0 0
\(49\) 3.49539 + 3.88202i 0.499341 + 0.554574i
\(50\) −1.79518 1.99375i −0.253877 0.281959i
\(51\) 0 0
\(52\) −0.790891 0.0831260i −0.109677 0.0115275i
\(53\) 3.40948 1.10781i 0.468328 0.152169i −0.0653400 0.997863i \(-0.520813\pi\)
0.533668 + 0.845694i \(0.320813\pi\)
\(54\) 0 0
\(55\) −0.0216557 + 9.58019i −0.00292006 + 1.29179i
\(56\) 3.10815 1.79449i 0.415343 0.239799i
\(57\) 0 0
\(58\) 0.956546 0.425882i 0.125601 0.0559210i
\(59\) −5.95883 + 0.626298i −0.775773 + 0.0815370i −0.484137 0.874992i \(-0.660866\pi\)
−0.291636 + 0.956529i \(0.594200\pi\)
\(60\) 0 0
\(61\) −1.64415 7.73512i −0.210512 0.990381i −0.948796 0.315890i \(-0.897697\pi\)
0.738284 0.674490i \(-0.235637\pi\)
\(62\) −4.90186 + 3.56141i −0.622536 + 0.452299i
\(63\) 0 0
\(64\) 1.10416 + 3.39825i 0.138020 + 0.424781i
\(65\) 0.846884 + 1.46685i 0.105043 + 0.181940i
\(66\) 0 0
\(67\) −4.35166 + 7.53730i −0.531640 + 0.920828i 0.467678 + 0.883899i \(0.345091\pi\)
−0.999318 + 0.0369287i \(0.988243\pi\)
\(68\) 1.74861 + 0.371678i 0.212050 + 0.0450726i
\(69\) 0 0
\(70\) −2.82183 1.25636i −0.337273 0.150164i
\(71\) −4.54327 1.47620i −0.539187 0.175192i 0.0267483 0.999642i \(-0.491485\pi\)
−0.565935 + 0.824450i \(0.691485\pi\)
\(72\) 0 0
\(73\) −5.16130 7.10392i −0.604084 0.831451i 0.391990 0.919969i \(-0.371787\pi\)
−0.996075 + 0.0885185i \(0.971787\pi\)
\(74\) −0.335634 + 3.19334i −0.0390166 + 0.371218i
\(75\) 0 0
\(76\) 8.41325 + 4.85739i 0.965065 + 0.557181i
\(77\) 1.78874 + 4.04214i 0.203846 + 0.460645i
\(78\) 0 0
\(79\) 10.2545 + 9.23323i 1.15373 + 1.03882i 0.998703 + 0.0509087i \(0.0162118\pi\)
0.155023 + 0.987911i \(0.450455\pi\)
\(80\) −0.936746 + 1.28932i −0.104731 + 0.144150i
\(81\) 0 0
\(82\) 0.558273 1.71819i 0.0616510 0.189742i
\(83\) 10.5286 2.23793i 1.15567 0.245644i 0.410077 0.912051i \(-0.365502\pi\)
0.745589 + 0.666407i \(0.232168\pi\)
\(84\) 0 0
\(85\) −1.54865 3.47832i −0.167975 0.377277i
\(86\) −2.16448 + 10.1831i −0.233401 + 1.09807i
\(87\) 0 0
\(88\) −8.74036 + 1.83718i −0.931726 + 0.195844i
\(89\) 8.87289i 0.940524i 0.882527 + 0.470262i \(0.155841\pi\)
−0.882527 + 0.470262i \(0.844159\pi\)
\(90\) 0 0
\(91\) 0.632240 + 0.459350i 0.0662768 + 0.0481529i
\(92\) −1.67201 + 3.75540i −0.174319 + 0.391527i
\(93\) 0 0
\(94\) −6.90079 + 6.21350i −0.711762 + 0.640873i
\(95\) −2.16281 20.5778i −0.221900 2.11124i
\(96\) 0 0
\(97\) −0.548828 + 0.609535i −0.0557250 + 0.0618889i −0.770363 0.637606i \(-0.779925\pi\)
0.714638 + 0.699495i \(0.246592\pi\)
\(98\) 4.19137 0.423392
\(99\) 0 0
\(100\) 4.53473 0.453473
\(101\) 11.4734 12.7425i 1.14165 1.26793i 0.183068 0.983100i \(-0.441397\pi\)
0.958579 0.284827i \(-0.0919363\pi\)
\(102\) 0 0
\(103\) −1.01984 9.70315i −0.100488 0.956080i −0.922340 0.386379i \(-0.873726\pi\)
0.821852 0.569701i \(-0.192941\pi\)
\(104\) −1.17346 + 1.05659i −0.115068 + 0.103607i
\(105\) 0 0
\(106\) 1.16995 2.62775i 0.113636 0.255230i
\(107\) −2.38113 1.72999i −0.230193 0.167245i 0.466710 0.884410i \(-0.345439\pi\)
−0.696903 + 0.717165i \(0.745439\pi\)
\(108\) 0 0
\(109\) 1.43952i 0.137881i −0.997621 0.0689404i \(-0.978038\pi\)
0.997621 0.0689404i \(-0.0219618\pi\)
\(110\) 5.70079 + 5.15639i 0.543549 + 0.491643i
\(111\) 0 0
\(112\) −0.152881 + 0.719247i −0.0144459 + 0.0679625i
\(113\) −0.769359 1.72801i −0.0723752 0.162557i 0.873735 0.486402i \(-0.161691\pi\)
−0.946110 + 0.323845i \(0.895024\pi\)
\(114\) 0 0
\(115\) 8.56410 1.82036i 0.798607 0.169749i
\(116\) −0.546906 + 1.68320i −0.0507790 + 0.156282i
\(117\) 0 0
\(118\) −2.82577 + 3.88934i −0.260133 + 0.358043i
\(119\) −1.30552 1.17550i −0.119677 0.107758i
\(120\) 0 0
\(121\) −1.10034 10.9448i −0.100031 0.994984i
\(122\) −5.49497 3.17252i −0.497491 0.287227i
\(123\) 0 0
\(124\) 1.07051 10.1853i 0.0961351 0.914664i
\(125\) 2.81217 + 3.87062i 0.251528 + 0.346199i
\(126\) 0 0
\(127\) −4.49091 1.45919i −0.398504 0.129482i 0.102907 0.994691i \(-0.467186\pi\)
−0.501411 + 0.865209i \(0.667186\pi\)
\(128\) −8.03010 3.57523i −0.709768 0.316009i
\(129\) 0 0
\(130\) 1.32932 + 0.282556i 0.116589 + 0.0247818i
\(131\) −3.94244 + 6.82851i −0.344453 + 0.596609i −0.985254 0.171097i \(-0.945269\pi\)
0.640802 + 0.767707i \(0.278602\pi\)
\(132\) 0 0
\(133\) −4.77337 8.26772i −0.413904 0.716903i
\(134\) 2.15794 + 6.64146i 0.186418 + 0.573735i
\(135\) 0 0
\(136\) 2.87170 2.08641i 0.246247 0.178909i
\(137\) 1.40050 + 6.58885i 0.119653 + 0.562923i 0.996604 + 0.0823435i \(0.0262404\pi\)
−0.876951 + 0.480580i \(0.840426\pi\)
\(138\) 0 0
\(139\) −7.37491 + 0.775135i −0.625532 + 0.0657461i −0.411991 0.911188i \(-0.635166\pi\)
−0.213541 + 0.976934i \(0.568500\pi\)
\(140\) 4.76964 2.12358i 0.403108 0.179475i
\(141\) 0 0
\(142\) −3.31944 + 1.91648i −0.278561 + 0.160827i
\(143\) −1.13956 1.57594i −0.0952945 0.131787i
\(144\) 0 0
\(145\) 3.58500 1.16484i 0.297718 0.0967344i
\(146\) −7.00691 0.736456i −0.579896 0.0609496i
\(147\) 0 0
\(148\) −3.63159 4.03329i −0.298515 0.331534i
\(149\) −4.12377 4.57991i −0.337832 0.375201i 0.550160 0.835059i \(-0.314567\pi\)
−0.887992 + 0.459858i \(0.847900\pi\)
\(150\) 0 0
\(151\) 19.6091 + 2.06100i 1.59577 + 0.167722i 0.860283 0.509817i \(-0.170287\pi\)
0.735486 + 0.677539i \(0.236954\pi\)
\(152\) 18.3457 5.96087i 1.48803 0.483490i
\(153\) 0 0
\(154\) 3.37057 + 1.10360i 0.271609 + 0.0889303i
\(155\) −18.8904 + 10.9064i −1.51731 + 0.876020i
\(156\) 0 0
\(157\) 4.45331 1.98274i 0.355413 0.158240i −0.221261 0.975215i \(-0.571017\pi\)
0.576674 + 0.816975i \(0.304350\pi\)
\(158\) 11.0111 1.15731i 0.875993 0.0920706i
\(159\) 0 0
\(160\) 3.50037 + 16.4680i 0.276729 + 1.30191i
\(161\) 3.26818 2.37447i 0.257569 0.187134i
\(162\) 0 0
\(163\) 3.43006 + 10.5566i 0.268663 + 0.826859i 0.990827 + 0.135137i \(0.0431476\pi\)
−0.722164 + 0.691722i \(0.756852\pi\)
\(164\) 1.52683 + 2.64454i 0.119225 + 0.206504i
\(165\) 0 0
\(166\) 4.31826 7.47945i 0.335162 0.580518i
\(167\) 20.7753 + 4.41592i 1.60764 + 0.341714i 0.922289 0.386501i \(-0.126316\pi\)
0.685349 + 0.728215i \(0.259650\pi\)
\(168\) 0 0
\(169\) 11.5620 + 5.14773i 0.889383 + 0.395979i
\(170\) −2.90548 0.944048i −0.222840 0.0724052i
\(171\) 0 0
\(172\) −10.3430 14.2360i −0.788648 1.08548i
\(173\) 1.29542 12.3251i 0.0984892 0.937062i −0.827997 0.560733i \(-0.810519\pi\)
0.926486 0.376329i \(-0.122814\pi\)
\(174\) 0 0
\(175\) −3.85927 2.22815i −0.291733 0.168432i
\(176\) 0.918516 1.58264i 0.0692357 0.119296i
\(177\) 0 0
\(178\) 5.29067 + 4.76374i 0.396552 + 0.357057i
\(179\) 6.56098 9.03041i 0.490390 0.674964i −0.490070 0.871683i \(-0.663029\pi\)
0.980460 + 0.196719i \(0.0630286\pi\)
\(180\) 0 0
\(181\) −0.00588405 + 0.0181092i −0.000437358 + 0.00134605i −0.951275 0.308344i \(-0.900225\pi\)
0.950838 + 0.309690i \(0.100225\pi\)
\(182\) 0.613340 0.130369i 0.0454638 0.00966362i
\(183\) 0 0
\(184\) 3.31996 + 7.45676i 0.244751 + 0.549719i
\(185\) −2.40335 + 11.3069i −0.176698 + 0.831297i
\(186\) 0 0
\(187\) 2.17732 + 3.79099i 0.159221 + 0.277225i
\(188\) 15.6957i 1.14473i
\(189\) 0 0
\(190\) −13.4312 9.75833i −0.974401 0.707943i
\(191\) −1.06374 + 2.38919i −0.0769692 + 0.172876i −0.947932 0.318474i \(-0.896830\pi\)
0.870962 + 0.491350i \(0.163496\pi\)
\(192\) 0 0
\(193\) 9.54568 8.59497i 0.687113 0.618680i −0.249777 0.968303i \(-0.580357\pi\)
0.936890 + 0.349624i \(0.113691\pi\)
\(194\) 0.0687910 + 0.654503i 0.00493891 + 0.0469906i
\(195\) 0 0
\(196\) −4.74048 + 5.26483i −0.338606 + 0.376060i
\(197\) 6.88153 0.490288 0.245144 0.969487i \(-0.421165\pi\)
0.245144 + 0.969487i \(0.421165\pi\)
\(198\) 0 0
\(199\) 0.0675681 0.00478977 0.00239489 0.999997i \(-0.499238\pi\)
0.00239489 + 0.999997i \(0.499238\pi\)
\(200\) 6.02500 6.69144i 0.426032 0.473156i
\(201\) 0 0
\(202\) −1.43810 13.6826i −0.101184 0.962703i
\(203\) 1.29249 1.16376i 0.0907149 0.0816800i
\(204\) 0 0
\(205\) 2.64536 5.94157i 0.184760 0.414978i
\(206\) −6.33327 4.60139i −0.441260 0.320594i
\(207\) 0 0
\(208\) 0.323519i 0.0224320i
\(209\) 4.88694 + 23.2495i 0.338036 + 1.60820i
\(210\) 0 0
\(211\) 0.253153 1.19099i 0.0174278 0.0819911i −0.968574 0.248725i \(-0.919989\pi\)
0.986002 + 0.166733i \(0.0533219\pi\)
\(212\) 1.97753 + 4.44160i 0.135817 + 0.305050i
\(213\) 0 0
\(214\) −2.30995 + 0.490995i −0.157905 + 0.0335637i
\(215\) −11.5815 + 35.6440i −0.789848 + 2.43090i
\(216\) 0 0
\(217\) −5.91561 + 8.14213i −0.401577 + 0.552724i
\(218\) −0.858346 0.772858i −0.0581345 0.0523446i
\(219\) 0 0
\(220\) −12.9246 + 1.32890i −0.871379 + 0.0895947i
\(221\) 0.669370 + 0.386461i 0.0450267 + 0.0259962i
\(222\) 0 0
\(223\) 1.36427 12.9801i 0.0913581 0.869214i −0.848855 0.528626i \(-0.822707\pi\)
0.940213 0.340588i \(-0.110626\pi\)
\(224\) 4.56588 + 6.28440i 0.305071 + 0.419894i
\(225\) 0 0
\(226\) −1.44342 0.468997i −0.0960151 0.0311972i
\(227\) −0.722663 0.321750i −0.0479649 0.0213553i 0.382614 0.923908i \(-0.375024\pi\)
−0.430579 + 0.902553i \(0.641691\pi\)
\(228\) 0 0
\(229\) 9.55393 + 2.03075i 0.631342 + 0.134196i 0.512458 0.858712i \(-0.328735\pi\)
0.118884 + 0.992908i \(0.462068\pi\)
\(230\) 3.51252 6.08387i 0.231609 0.401159i
\(231\) 0 0
\(232\) 1.75709 + 3.04337i 0.115359 + 0.199807i
\(233\) −5.12103 15.7609i −0.335490 1.03253i −0.966480 0.256741i \(-0.917351\pi\)
0.630991 0.775790i \(-0.282649\pi\)
\(234\) 0 0
\(235\) −27.0452 + 19.6495i −1.76423 + 1.28179i
\(236\) −1.68948 7.94836i −0.109976 0.517394i
\(237\) 0 0
\(238\) −1.40183 + 0.147339i −0.0908674 + 0.00955055i
\(239\) 1.11131 0.494785i 0.0718844 0.0320050i −0.370480 0.928841i \(-0.620807\pi\)
0.442364 + 0.896836i \(0.354140\pi\)
\(240\) 0 0
\(241\) −0.657074 + 0.379362i −0.0423258 + 0.0244368i −0.521014 0.853548i \(-0.674446\pi\)
0.478688 + 0.877985i \(0.341113\pi\)
\(242\) −7.11687 5.22003i −0.457490 0.335556i
\(243\) 0 0
\(244\) 10.1999 3.31415i 0.652982 0.212167i
\(245\) 15.0064 + 1.57724i 0.958725 + 0.100766i
\(246\) 0 0
\(247\) 2.81055 + 3.12144i 0.178831 + 0.198612i
\(248\) −13.6070 15.1121i −0.864047 0.959621i
\(249\) 0 0
\(250\) 3.81777 + 0.401263i 0.241457 + 0.0253781i
\(251\) −9.34419 + 3.03611i −0.589800 + 0.191638i −0.588686 0.808362i \(-0.700355\pi\)
−0.00111390 + 0.999999i \(0.500355\pi\)
\(252\) 0 0
\(253\) −9.56795 + 3.08492i −0.601532 + 0.193947i
\(254\) −3.28119 + 1.89439i −0.205880 + 0.118865i
\(255\) 0 0
\(256\) −12.9715 + 5.77529i −0.810719 + 0.360955i
\(257\) −22.1626 + 2.32938i −1.38246 + 0.145303i −0.766385 0.642381i \(-0.777947\pi\)
−0.616079 + 0.787684i \(0.711280\pi\)
\(258\) 0 0
\(259\) 1.10889 + 5.21690i 0.0689029 + 0.324163i
\(260\) −1.85840 + 1.35020i −0.115253 + 0.0837361i
\(261\) 0 0
\(262\) 1.95501 + 6.01691i 0.120781 + 0.371726i
\(263\) −7.68495 13.3107i −0.473874 0.820774i 0.525678 0.850683i \(-0.323812\pi\)
−0.999553 + 0.0299090i \(0.990478\pi\)
\(264\) 0 0
\(265\) 5.17763 8.96791i 0.318059 0.550894i
\(266\) −7.49259 1.59260i −0.459400 0.0976485i
\(267\) 0 0
\(268\) −10.7831 4.80093i −0.658681 0.293264i
\(269\) −0.906419 0.294513i −0.0552653 0.0179568i 0.281254 0.959633i \(-0.409250\pi\)
−0.336519 + 0.941677i \(0.609250\pi\)
\(270\) 0 0
\(271\) 13.1444 + 18.0917i 0.798465 + 1.09899i 0.993002 + 0.118098i \(0.0376796\pi\)
−0.194537 + 0.980895i \(0.562320\pi\)
\(272\) −0.0760186 + 0.723268i −0.00460930 + 0.0438546i
\(273\) 0 0
\(274\) 4.68067 + 2.70238i 0.282769 + 0.163257i
\(275\) 7.40183 + 8.25803i 0.446347 + 0.497978i
\(276\) 0 0
\(277\) 7.70440 + 6.93707i 0.462912 + 0.416808i 0.867305 0.497777i \(-0.165850\pi\)
−0.404392 + 0.914586i \(0.632517\pi\)
\(278\) −3.49730 + 4.81362i −0.209754 + 0.288702i
\(279\) 0 0
\(280\) 3.20355 9.85952i 0.191449 0.589219i
\(281\) 9.29432 1.97557i 0.554453 0.117853i 0.0778399 0.996966i \(-0.475198\pi\)
0.476613 + 0.879113i \(0.341864\pi\)
\(282\) 0 0
\(283\) −5.04823 11.3385i −0.300086 0.674004i 0.699071 0.715052i \(-0.253597\pi\)
−0.999157 + 0.0410477i \(0.986930\pi\)
\(284\) 1.34700 6.33714i 0.0799298 0.376040i
\(285\) 0 0
\(286\) −1.55151 0.166617i −0.0917425 0.00985224i
\(287\) 3.00083i 0.177134i
\(288\) 0 0
\(289\) 12.3476 + 8.97108i 0.726331 + 0.527711i
\(290\) 1.23018 2.76302i 0.0722385 0.162250i
\(291\) 0 0
\(292\) 8.84995 7.96853i 0.517904 0.466323i
\(293\) 2.72141 + 25.8925i 0.158987 + 1.51266i 0.725281 + 0.688453i \(0.241710\pi\)
−0.566294 + 0.824203i \(0.691623\pi\)
\(294\) 0 0
\(295\) −11.5807 + 12.8617i −0.674256 + 0.748838i
\(296\) −10.7766 −0.626375
\(297\) 0 0
\(298\) −4.94488 −0.286449
\(299\) −1.18928 + 1.32083i −0.0687779 + 0.0763856i
\(300\) 0 0
\(301\) 1.80753 + 17.1975i 0.104184 + 0.991248i
\(302\) 11.7568 10.5859i 0.676529 0.609149i
\(303\) 0 0
\(304\) −1.60747 + 3.61044i −0.0921949 + 0.207073i
\(305\) −18.4799 13.4264i −1.05815 0.768795i
\(306\) 0 0
\(307\) 18.0274i 1.02888i 0.857527 + 0.514440i \(0.172000\pi\)
−0.857527 + 0.514440i \(0.828000\pi\)
\(308\) −5.19839 + 2.98564i −0.296206 + 0.170123i
\(309\) 0 0
\(310\) −3.63882 + 17.1193i −0.206671 + 0.972311i
\(311\) −5.11443 11.4872i −0.290013 0.651379i 0.708511 0.705700i \(-0.249367\pi\)
−0.998524 + 0.0543209i \(0.982701\pi\)
\(312\) 0 0
\(313\) −11.4400 + 2.43166i −0.646630 + 0.137445i −0.519540 0.854446i \(-0.673897\pi\)
−0.127089 + 0.991891i \(0.540563\pi\)
\(314\) 1.20867 3.71990i 0.0682091 0.209926i
\(315\) 0 0
\(316\) −10.9999 + 15.1401i −0.618792 + 0.851695i
\(317\) −12.2252 11.0076i −0.686636 0.618250i 0.250128 0.968213i \(-0.419527\pi\)
−0.936763 + 0.349963i \(0.886194\pi\)
\(318\) 0 0
\(319\) −3.95791 + 1.75147i −0.221600 + 0.0980632i
\(320\) 8.93837 + 5.16057i 0.499670 + 0.288485i
\(321\) 0 0
\(322\) 0.338809 3.22355i 0.0188811 0.179641i
\(323\) −5.54990 7.63878i −0.308805 0.425033i
\(324\) 0 0
\(325\) 1.86469 + 0.605874i 0.103434 + 0.0336078i
\(326\) 8.13619 + 3.62247i 0.450622 + 0.200630i
\(327\) 0 0
\(328\) 5.93087 + 1.26064i 0.327477 + 0.0696074i
\(329\) −7.71210 + 13.3578i −0.425182 + 0.736437i
\(330\) 0 0
\(331\) −9.81281 16.9963i −0.539361 0.934201i −0.998939 0.0460631i \(-0.985332\pi\)
0.459577 0.888138i \(-0.348001\pi\)
\(332\) 4.51104 + 13.8835i 0.247575 + 0.761958i
\(333\) 0 0
\(334\) 13.7871 10.0169i 0.754395 0.548100i
\(335\) 5.22688 + 24.5906i 0.285575 + 1.34353i
\(336\) 0 0
\(337\) 10.6020 1.11431i 0.577527 0.0607005i 0.188738 0.982027i \(-0.439560\pi\)
0.388789 + 0.921327i \(0.372894\pi\)
\(338\) 9.27693 4.13036i 0.504598 0.224662i
\(339\) 0 0
\(340\) 4.47195 2.58188i 0.242526 0.140022i
\(341\) 20.2954 14.6755i 1.09905 0.794721i
\(342\) 0 0
\(343\) 15.4939 5.03428i 0.836592 0.271825i
\(344\) −34.7486 3.65223i −1.87352 0.196915i
\(345\) 0 0
\(346\) −6.65365 7.38963i −0.357703 0.397269i
\(347\) −1.65292 1.83575i −0.0887333 0.0985483i 0.697143 0.716932i \(-0.254454\pi\)
−0.785876 + 0.618384i \(0.787788\pi\)
\(348\) 0 0
\(349\) −12.7960 1.34492i −0.684957 0.0719918i −0.244343 0.969689i \(-0.578572\pi\)
−0.440613 + 0.897697i \(0.645239\pi\)
\(350\) −3.40058 + 1.10491i −0.181768 + 0.0590602i
\(351\) 0 0
\(352\) −5.93202 18.3983i −0.316178 0.980631i
\(353\) 2.97223 1.71602i 0.158196 0.0913345i −0.418812 0.908073i \(-0.637553\pi\)
0.577008 + 0.816738i \(0.304220\pi\)
\(354\) 0 0
\(355\) −12.6058 + 5.61247i −0.669047 + 0.297879i
\(356\) −11.9676 + 1.25784i −0.634281 + 0.0666656i
\(357\) 0 0
\(358\) −1.86209 8.76045i −0.0984145 0.463004i
\(359\) −4.07205 + 2.95852i −0.214915 + 0.156145i −0.690035 0.723776i \(-0.742405\pi\)
0.475120 + 0.879921i \(0.342405\pi\)
\(360\) 0 0
\(361\) −9.98469 30.7297i −0.525510 1.61735i
\(362\) 0.00763899 + 0.0132311i 0.000401496 + 0.000695412i
\(363\) 0 0
\(364\) −0.529934 + 0.917872i −0.0277761 + 0.0481096i
\(365\) −24.8098 5.27349i −1.29861 0.276027i
\(366\) 0 0
\(367\) −2.83110 1.26049i −0.147782 0.0657969i 0.331513 0.943451i \(-0.392441\pi\)
−0.479295 + 0.877654i \(0.659108\pi\)
\(368\) −1.59048 0.516779i −0.0829097 0.0269390i
\(369\) 0 0
\(370\) 5.45166 + 7.50356i 0.283418 + 0.390092i
\(371\) 0.499420 4.75166i 0.0259286 0.246694i
\(372\) 0 0
\(373\) −7.33934 4.23737i −0.380016 0.219403i 0.297809 0.954625i \(-0.403744\pi\)
−0.677825 + 0.735223i \(0.737077\pi\)
\(374\) 3.42944 + 0.737057i 0.177332 + 0.0381123i
\(375\) 0 0
\(376\) −23.1605 20.8538i −1.19441 1.07545i
\(377\) −0.449777 + 0.619065i −0.0231647 + 0.0318835i
\(378\) 0 0
\(379\) 6.66353 20.5082i 0.342283 1.05344i −0.620740 0.784016i \(-0.713168\pi\)
0.963023 0.269421i \(-0.0868322\pi\)
\(380\) 27.4483 5.83433i 1.40807 0.299295i
\(381\) 0 0
\(382\) 0.853505 + 1.91700i 0.0436691 + 0.0980824i
\(383\) −6.68252 + 31.4388i −0.341461 + 1.60645i 0.387486 + 0.921876i \(0.373344\pi\)
−0.728947 + 0.684570i \(0.759990\pi\)
\(384\) 0 0
\(385\) 11.6524 + 5.21959i 0.593863 + 0.266015i
\(386\) 10.3064i 0.524580i
\(387\) 0 0
\(388\) −0.899932 0.653839i −0.0456871 0.0331937i
\(389\) −0.00565467 + 0.0127006i −0.000286703 + 0.000643945i −0.913689 0.406415i \(-0.866779\pi\)
0.913402 + 0.407059i \(0.133446\pi\)
\(390\) 0 0
\(391\) 2.96915 2.67344i 0.150157 0.135202i
\(392\) 1.47041 + 13.9901i 0.0742672 + 0.706605i
\(393\) 0 0
\(394\) 3.69460 4.10327i 0.186131 0.206720i
\(395\) 39.8586 2.00550
\(396\) 0 0
\(397\) −13.9971 −0.702496 −0.351248 0.936283i \(-0.614243\pi\)
−0.351248 + 0.936283i \(0.614243\pi\)
\(398\) 0.0362764 0.0402890i 0.00181837 0.00201951i
\(399\) 0 0
\(400\) 0.192834 + 1.83469i 0.00964170 + 0.0917347i
\(401\) 26.4247 23.7930i 1.31959 1.18816i 0.351894 0.936040i \(-0.385538\pi\)
0.967695 0.252123i \(-0.0811289\pi\)
\(402\) 0 0
\(403\) 1.80102 4.04517i 0.0897154 0.201504i
\(404\) 18.8134 + 13.6687i 0.936000 + 0.680044i
\(405\) 0 0
\(406\) 1.39548i 0.0692567i
\(407\) 1.41720 13.1967i 0.0702478 0.654136i
\(408\) 0 0
\(409\) −2.92170 + 13.7455i −0.144469 + 0.679671i 0.844981 + 0.534796i \(0.179611\pi\)
−0.989450 + 0.144875i \(0.953722\pi\)
\(410\) −2.12254 4.76731i −0.104825 0.235441i
\(411\) 0 0
\(412\) 12.9429 2.75109i 0.637649 0.135536i
\(413\) −2.46762 + 7.59455i −0.121424 + 0.373703i
\(414\) 0 0
\(415\) 18.2753 25.1538i 0.897099 1.23475i
\(416\) −2.53983 2.28688i −0.124526 0.112123i
\(417\) 0 0
\(418\) 16.4868 + 9.56842i 0.806396 + 0.468007i
\(419\) 2.56407 + 1.48037i 0.125263 + 0.0723206i 0.561322 0.827597i \(-0.310293\pi\)
−0.436059 + 0.899918i \(0.643626\pi\)
\(420\) 0 0
\(421\) −2.20232 + 20.9537i −0.107335 + 1.02122i 0.799767 + 0.600310i \(0.204956\pi\)
−0.907102 + 0.420911i \(0.861710\pi\)
\(422\) −0.574241 0.790375i −0.0279536 0.0384749i
\(423\) 0 0
\(424\) 9.18141 + 2.98322i 0.445889 + 0.144878i
\(425\) −4.02639 1.79266i −0.195309 0.0869570i
\(426\) 0 0
\(427\) −10.3090 2.19125i −0.498887 0.106042i
\(428\) 1.99583 3.45688i 0.0964720 0.167094i
\(429\) 0 0
\(430\) 15.0357 + 26.0425i 0.725084 + 1.25588i
\(431\) 11.7908 + 36.2884i 0.567944 + 1.74795i 0.659039 + 0.752109i \(0.270963\pi\)
−0.0910950 + 0.995842i \(0.529037\pi\)
\(432\) 0 0
\(433\) 17.1848 12.4855i 0.825848 0.600014i −0.0925338 0.995710i \(-0.529497\pi\)
0.918382 + 0.395696i \(0.129497\pi\)
\(434\) 1.67893 + 7.89872i 0.0805910 + 0.379151i
\(435\) 0 0
\(436\) 1.94159 0.204070i 0.0929855 0.00977317i
\(437\) 19.8351 8.83116i 0.948842 0.422452i
\(438\) 0 0
\(439\) 23.8477 13.7685i 1.13819 0.657134i 0.192208 0.981354i \(-0.438435\pi\)
0.945982 + 0.324220i \(0.105102\pi\)
\(440\) −15.2112 + 20.8372i −0.725165 + 0.993374i
\(441\) 0 0
\(442\) 0.589813 0.191642i 0.0280545 0.00911547i
\(443\) 26.6084 + 2.79665i 1.26420 + 0.132873i 0.712801 0.701367i \(-0.247426\pi\)
0.551402 + 0.834240i \(0.314093\pi\)
\(444\) 0 0
\(445\) 17.1496 + 19.0466i 0.812971 + 0.902895i
\(446\) −7.00725 7.78234i −0.331803 0.368505i
\(447\) 0 0
\(448\) 4.73601 + 0.497775i 0.223755 + 0.0235176i
\(449\) 28.1364 9.14206i 1.32784 0.431441i 0.442658 0.896690i \(-0.354036\pi\)
0.885179 + 0.465250i \(0.154036\pi\)
\(450\) 0 0
\(451\) −2.32371 + 7.09700i −0.109419 + 0.334185i
\(452\) 2.22164 1.28266i 0.104497 0.0603314i
\(453\) 0 0
\(454\) −0.579840 + 0.258161i −0.0272132 + 0.0121161i
\(455\) 2.24501 0.235960i 0.105248 0.0110620i
\(456\) 0 0
\(457\) 0.0682681 + 0.321176i 0.00319345 + 0.0150240i 0.979715 0.200394i \(-0.0642221\pi\)
−0.976522 + 0.215418i \(0.930889\pi\)
\(458\) 6.34026 4.60647i 0.296261 0.215246i
\(459\) 0 0
\(460\) 3.66933 + 11.2930i 0.171083 + 0.526541i
\(461\) −1.59304 2.75923i −0.0741955 0.128510i 0.826541 0.562877i \(-0.190306\pi\)
−0.900736 + 0.434367i \(0.856972\pi\)
\(462\) 0 0
\(463\) −13.6457 + 23.6350i −0.634169 + 1.09841i 0.352521 + 0.935804i \(0.385324\pi\)
−0.986691 + 0.162609i \(0.948009\pi\)
\(464\) −0.704259 0.149695i −0.0326944 0.00694941i
\(465\) 0 0
\(466\) −12.1472 5.40829i −0.562709 0.250534i
\(467\) −17.3622 5.64132i −0.803427 0.261049i −0.121615 0.992577i \(-0.538807\pi\)
−0.681811 + 0.731528i \(0.738807\pi\)
\(468\) 0 0
\(469\) 6.81794 + 9.38409i 0.314823 + 0.433317i
\(470\) −2.80375 + 26.6759i −0.129327 + 1.23047i
\(471\) 0 0
\(472\) −13.9733 8.06747i −0.643172 0.371336i
\(473\) 9.04212 42.0720i 0.415757 1.93447i
\(474\) 0 0
\(475\) −17.7993 16.0266i −0.816690 0.735351i
\(476\) 1.40041 1.92750i 0.0641878 0.0883469i
\(477\) 0 0
\(478\) 0.301618 0.928285i 0.0137957 0.0424588i
\(479\) −12.3864 + 2.63282i −0.565951 + 0.120297i −0.481997 0.876173i \(-0.660088\pi\)
−0.0839544 + 0.996470i \(0.526755\pi\)
\(480\) 0 0
\(481\) −0.954437 2.14370i −0.0435186 0.0977444i
\(482\) −0.126571 + 0.595470i −0.00576515 + 0.0271229i
\(483\) 0 0
\(484\) 14.6062 3.03569i 0.663918 0.137986i
\(485\) 2.36921i 0.107580i
\(486\) 0 0
\(487\) 12.3473 + 8.97085i 0.559510 + 0.406508i 0.831280 0.555854i \(-0.187609\pi\)
−0.271769 + 0.962362i \(0.587609\pi\)
\(488\) 8.66158 19.4542i 0.392091 0.880652i
\(489\) 0 0
\(490\) 8.99722 8.10113i 0.406453 0.365972i
\(491\) −2.96920 28.2501i −0.133998 1.27491i −0.830364 0.557222i \(-0.811867\pi\)
0.696365 0.717687i \(-0.254799\pi\)
\(492\) 0 0
\(493\) 1.15100 1.27831i 0.0518384 0.0575724i
\(494\) 3.37018 0.151632
\(495\) 0 0
\(496\) 4.16635 0.187074
\(497\) −4.26013 + 4.73135i −0.191093 + 0.212230i
\(498\) 0 0
\(499\) 2.28531 + 21.7433i 0.102305 + 0.973363i 0.918456 + 0.395524i \(0.129437\pi\)
−0.816151 + 0.577839i \(0.803896\pi\)
\(500\) −4.82196 + 4.34171i −0.215644 + 0.194167i
\(501\) 0 0
\(502\) −3.20642 + 7.20174i −0.143110 + 0.321429i
\(503\) −16.0796 11.6825i −0.716954 0.520898i 0.168455 0.985709i \(-0.446122\pi\)
−0.885410 + 0.464812i \(0.846122\pi\)
\(504\) 0 0
\(505\) 49.5291i 2.20402i
\(506\) −3.29745 + 7.36137i −0.146590 + 0.327253i
\(507\) 0 0
\(508\) 1.33148 6.26412i 0.0590748 0.277925i
\(509\) 12.5317 + 28.1466i 0.555457 + 1.24758i 0.945151 + 0.326633i \(0.105914\pi\)
−0.389694 + 0.920945i \(0.627419\pi\)
\(510\) 0 0
\(511\) −11.4471 + 2.43315i −0.506388 + 0.107636i
\(512\) 1.91196 5.88441i 0.0844976 0.260057i
\(513\) 0 0
\(514\) −10.5099 + 14.4656i −0.463570 + 0.638049i
\(515\) −20.9436 18.8577i −0.922884 0.830969i
\(516\) 0 0
\(517\) 28.5828 25.6193i 1.25707 1.12674i
\(518\) 3.70605 + 2.13969i 0.162834 + 0.0940125i
\(519\) 0 0
\(520\) −0.476771 + 4.53617i −0.0209078 + 0.198924i
\(521\) 16.6718 + 22.9468i 0.730405 + 1.00532i 0.999114 + 0.0420947i \(0.0134031\pi\)
−0.268709 + 0.963221i \(0.586597\pi\)
\(522\) 0 0
\(523\) −12.9420 4.20510i −0.565913 0.183876i 0.0120671 0.999927i \(-0.496159\pi\)
−0.577980 + 0.816051i \(0.696159\pi\)
\(524\) −9.76905 4.34946i −0.426763 0.190007i
\(525\) 0 0
\(526\) −12.0628 2.56402i −0.525962 0.111797i
\(527\) −4.97693 + 8.62030i −0.216799 + 0.375506i
\(528\) 0 0
\(529\) −6.90625 11.9620i −0.300272 0.520086i
\(530\) −2.56753 7.90204i −0.111526 0.343242i
\(531\) 0 0
\(532\) 10.4747 7.61029i 0.454134 0.329948i
\(533\) 0.274503 + 1.29143i 0.0118900 + 0.0559382i
\(534\) 0 0
\(535\) −8.45511 + 0.888668i −0.365546 + 0.0384205i
\(536\) −21.4110 + 9.53278i −0.924813 + 0.411753i
\(537\) 0 0
\(538\) −0.662255 + 0.382353i −0.0285518 + 0.0164844i
\(539\) −17.3252 0.0391632i −0.746251 0.00168688i
\(540\) 0 0
\(541\) −17.0525 + 5.54068i −0.733142 + 0.238212i −0.651712 0.758467i \(-0.725949\pi\)
−0.0814304 + 0.996679i \(0.525949\pi\)
\(542\) 17.8447 + 1.87555i 0.766494 + 0.0805617i
\(543\) 0 0
\(544\) 5.14077 + 5.70941i 0.220409 + 0.244789i
\(545\) −2.78232 3.09008i −0.119181 0.132364i
\(546\) 0 0
\(547\) −20.8643 2.19293i −0.892095 0.0937630i −0.352622 0.935766i \(-0.614710\pi\)
−0.539473 + 0.842003i \(0.681376\pi\)
\(548\) −8.68837 + 2.82302i −0.371149 + 0.120594i
\(549\) 0 0
\(550\) 8.89799 + 0.0201137i 0.379412 + 0.000857649i
\(551\) 8.09543 4.67390i 0.344877 0.199115i
\(552\) 0 0
\(553\) 16.8005 7.48007i 0.714430 0.318085i
\(554\) 8.27278 0.869505i 0.351477 0.0369417i
\(555\) 0 0
\(556\) −2.09097 9.83726i −0.0886770 0.417193i
\(557\) −6.91677 + 5.02533i −0.293073 + 0.212930i −0.724599 0.689170i \(-0.757975\pi\)
0.431526 + 0.902100i \(0.357975\pi\)
\(558\) 0 0
\(559\) −2.35104 7.23574i −0.0994382 0.306039i
\(560\) 1.06200 + 1.83943i 0.0448775 + 0.0777301i
\(561\) 0 0
\(562\) 3.81202 6.60262i 0.160800 0.278515i
\(563\) −32.7814 6.96790i −1.38157 0.293662i −0.543585 0.839354i \(-0.682933\pi\)
−0.837986 + 0.545692i \(0.816267\pi\)
\(564\) 0 0
\(565\) −4.99143 2.22233i −0.209991 0.0934939i
\(566\) −9.47118 3.07737i −0.398103 0.129352i
\(567\) 0 0
\(568\) −7.56140 10.4074i −0.317269 0.436683i
\(569\) −4.15034 + 39.4878i −0.173991 + 1.65542i 0.464343 + 0.885656i \(0.346291\pi\)
−0.638334 + 0.769760i \(0.720376\pi\)
\(570\) 0 0
\(571\) −11.7014 6.75580i −0.489688 0.282721i 0.234757 0.972054i \(-0.424570\pi\)
−0.724445 + 0.689333i \(0.757904\pi\)
\(572\) 1.96406 1.76042i 0.0821213 0.0736069i
\(573\) 0 0
\(574\) −1.78932 1.61111i −0.0746847 0.0672464i
\(575\) 5.95720 8.19938i 0.248432 0.341938i
\(576\) 0 0
\(577\) −10.9864 + 33.8127i −0.457370 + 1.40764i 0.410960 + 0.911654i \(0.365194\pi\)
−0.868330 + 0.495987i \(0.834806\pi\)
\(578\) 11.9785 2.54611i 0.498240 0.105904i
\(579\) 0 0
\(580\) 2.07933 + 4.67024i 0.0863393 + 0.193921i
\(581\) 2.98260 14.0320i 0.123739 0.582147i
\(582\) 0 0
\(583\) −4.86060 + 10.8510i −0.201305 + 0.449403i
\(584\) 23.6462i 0.978487i
\(585\) 0 0
\(586\) 16.9001 + 12.2786i 0.698137 + 0.507226i
\(587\) 10.3483 23.2428i 0.427122 0.959331i −0.563926 0.825825i \(-0.690710\pi\)
0.991048 0.133506i \(-0.0426235\pi\)
\(588\) 0 0
\(589\) −40.1985 + 36.1949i −1.65635 + 1.49139i
\(590\) 1.45155 + 13.8106i 0.0597593 + 0.568572i
\(591\) 0 0
\(592\) 1.47739 1.64080i 0.0607202 0.0674366i
\(593\) −26.4048 −1.08431 −0.542157 0.840277i \(-0.682392\pi\)
−0.542157 + 0.840277i \(0.682392\pi\)
\(594\) 0 0
\(595\) −5.07445 −0.208032
\(596\) 5.59270 6.21132i 0.229086 0.254426i
\(597\) 0 0
\(598\) 0.149067 + 1.41827i 0.00609578 + 0.0579975i
\(599\) −8.53053 + 7.68093i −0.348548 + 0.313834i −0.824745 0.565504i \(-0.808682\pi\)
0.476197 + 0.879339i \(0.342015\pi\)
\(600\) 0 0
\(601\) −12.2205 + 27.4476i −0.498483 + 1.11961i 0.472689 + 0.881229i \(0.343283\pi\)
−0.971172 + 0.238381i \(0.923383\pi\)
\(602\) 11.2249 + 8.15534i 0.457491 + 0.332387i
\(603\) 0 0
\(604\) 26.7406i 1.08806i
\(605\) −23.5163 21.3675i −0.956074 0.868711i
\(606\) 0 0
\(607\) 8.03806 37.8161i 0.326255 1.53491i −0.443327 0.896360i \(-0.646202\pi\)
0.769582 0.638549i \(-0.220465\pi\)
\(608\) 16.9815 + 38.1411i 0.688690 + 1.54682i
\(609\) 0 0
\(610\) −17.9274 + 3.81059i −0.725860 + 0.154286i
\(611\) 2.09706 6.45408i 0.0848379 0.261104i
\(612\) 0 0
\(613\) 17.6204 24.2524i 0.711681 0.979545i −0.288078 0.957607i \(-0.593016\pi\)
0.999759 0.0219380i \(-0.00698363\pi\)
\(614\) 10.7493 + 9.67869i 0.433805 + 0.390600i
\(615\) 0 0
\(616\) −2.50115 + 11.6375i −0.100774 + 0.468890i
\(617\) 3.50285 + 2.02237i 0.141019 + 0.0814176i 0.568850 0.822441i \(-0.307389\pi\)
−0.427830 + 0.903859i \(0.640722\pi\)
\(618\) 0 0
\(619\) 2.74139 26.0826i 0.110186 1.04835i −0.790079 0.613005i \(-0.789961\pi\)
0.900265 0.435343i \(-0.143373\pi\)
\(620\) −17.3882 23.9329i −0.698328 0.961167i
\(621\) 0 0
\(622\) −9.59538 3.11773i −0.384740 0.125009i
\(623\) 10.8030 + 4.80981i 0.432813 + 0.192701i
\(624\) 0 0
\(625\) 29.8709 + 6.34925i 1.19483 + 0.253970i
\(626\) −4.69208 + 8.12692i −0.187533 + 0.324817i
\(627\) 0 0
\(628\) 3.30560 + 5.72546i 0.131908 + 0.228471i
\(629\) 1.63005 + 5.01679i 0.0649945 + 0.200033i
\(630\) 0 0
\(631\) 12.4984 9.08065i 0.497555 0.361495i −0.310527 0.950564i \(-0.600506\pi\)
0.808082 + 0.589070i \(0.200506\pi\)
\(632\) 7.72579 + 36.3470i 0.307315 + 1.44581i
\(633\) 0 0
\(634\) −13.1271 + 1.37971i −0.521344 + 0.0547955i
\(635\) −12.4606 + 5.54780i −0.494482 + 0.220158i
\(636\) 0 0
\(637\) −2.65271 + 1.53154i −0.105104 + 0.0606819i
\(638\) −1.08060 + 3.30034i −0.0427813 + 0.130662i
\(639\) 0 0
\(640\) −24.1477 + 7.84607i −0.954522 + 0.310143i
\(641\) −12.4339 1.30685i −0.491108 0.0516176i −0.144262 0.989540i \(-0.546081\pi\)
−0.346846 + 0.937922i \(0.612747\pi\)
\(642\) 0 0
\(643\) −3.46334 3.84642i −0.136581 0.151688i 0.670974 0.741481i \(-0.265876\pi\)
−0.807555 + 0.589793i \(0.799209\pi\)
\(644\) 3.66595 + 4.07144i 0.144458 + 0.160437i
\(645\) 0 0
\(646\) −7.53447 0.791905i −0.296440 0.0311571i
\(647\) −5.07677 + 1.64954i −0.199588 + 0.0648502i −0.407105 0.913381i \(-0.633462\pi\)
0.207517 + 0.978231i \(0.433462\pi\)
\(648\) 0 0
\(649\) 11.7168 16.0504i 0.459925 0.630033i
\(650\) 1.36239 0.786578i 0.0534375 0.0308521i
\(651\) 0 0
\(652\) −13.7523 + 6.12293i −0.538583 + 0.239793i
\(653\) 4.72225 0.496328i 0.184796 0.0194228i −0.0116784 0.999932i \(-0.503717\pi\)
0.196474 + 0.980509i \(0.437051\pi\)
\(654\) 0 0
\(655\) 4.73536 + 22.2781i 0.185026 + 0.870478i
\(656\) −1.00502 + 0.730189i −0.0392394 + 0.0285091i
\(657\) 0 0
\(658\) 3.82435 + 11.7701i 0.149089 + 0.458847i
\(659\) −19.9356 34.5295i −0.776581 1.34508i −0.933902 0.357529i \(-0.883619\pi\)
0.157321 0.987547i \(-0.449714\pi\)
\(660\) 0 0
\(661\) −10.4257 + 18.0579i −0.405515 + 0.702372i −0.994381 0.105858i \(-0.966241\pi\)
0.588867 + 0.808230i \(0.299574\pi\)
\(662\) −15.4028 3.27397i −0.598647 0.127246i
\(663\) 0 0
\(664\) 26.4800 + 11.7897i 1.02762 + 0.457528i
\(665\) −26.2265 8.52151i −1.01702 0.330450i
\(666\) 0 0
\(667\) 2.32499 + 3.20007i 0.0900239 + 0.123907i
\(668\) −3.01095 + 28.6473i −0.116497 + 1.10840i
\(669\) 0 0
\(670\) 17.4689 + 10.0857i 0.674884 + 0.389645i
\(671\) 22.6841 + 13.1651i 0.875710 + 0.508234i
\(672\) 0 0
\(673\) −15.2185 13.7028i −0.586629 0.528203i 0.321491 0.946913i \(-0.395816\pi\)
−0.908120 + 0.418709i \(0.862483\pi\)
\(674\) 5.02763 6.91994i 0.193657 0.266546i
\(675\) 0 0
\(676\) −5.30410 + 16.3243i −0.204004 + 0.627859i
\(677\) 6.69542 1.42315i 0.257326 0.0546963i −0.0774423 0.996997i \(-0.524675\pi\)
0.334768 + 0.942301i \(0.391342\pi\)
\(678\) 0 0
\(679\) 0.444619 + 0.998630i 0.0170629 + 0.0383239i
\(680\) 2.13177 10.0292i 0.0817495 0.384601i
\(681\) 0 0
\(682\) 2.14573 19.9806i 0.0821641 0.765098i
\(683\) 4.76117i 0.182181i −0.995843 0.0910905i \(-0.970965\pi\)
0.995843 0.0910905i \(-0.0290353\pi\)
\(684\) 0 0
\(685\) 15.7413 + 11.4368i 0.601446 + 0.436976i
\(686\) 5.31667 11.9414i 0.202992 0.455926i
\(687\) 0 0
\(688\) 5.31985 4.79002i 0.202817 0.182618i
\(689\) 0.219731 + 2.09060i 0.00837109 + 0.0796456i
\(690\) 0 0
\(691\) 33.1686 36.8375i 1.26179 1.40136i 0.383290 0.923628i \(-0.374791\pi\)
0.878504 0.477735i \(-0.158542\pi\)
\(692\) 16.8075 0.638927
\(693\) 0 0
\(694\) −1.98204 −0.0752372
\(695\) −14.3328 + 15.9182i −0.543676 + 0.603813i
\(696\) 0 0
\(697\) −0.310233 2.95167i −0.0117509 0.111802i
\(698\) −7.67197 + 6.90787i −0.290388 + 0.261467i
\(699\) 0 0
\(700\) 2.45819 5.52117i 0.0929107 0.208681i
\(701\) −18.5663 13.4892i −0.701240 0.509480i 0.179096 0.983832i \(-0.442683\pi\)
−0.880336 + 0.474351i \(0.842683\pi\)
\(702\) 0 0
\(703\) 28.6659i 1.08115i
\(704\) −10.8153 4.84459i −0.407615 0.182587i
\(705\) 0 0
\(706\) 0.572536 2.69357i 0.0215477 0.101374i
\(707\) −9.29489 20.8767i −0.349570 0.785148i
\(708\) 0 0
\(709\) −26.9762 + 5.73396i −1.01311 + 0.215343i −0.684415 0.729092i \(-0.739942\pi\)
−0.328696 + 0.944436i \(0.606609\pi\)
\(710\) −3.42133 + 10.5298i −0.128400 + 0.395176i
\(711\) 0 0
\(712\) −14.0445 + 19.3305i −0.526338 + 0.724443i
\(713\) −17.0100 15.3158i −0.637028 0.573582i
\(714\) 0 0
\(715\) −5.49218 1.18038i −0.205396 0.0441438i
\(716\) 13.1101 + 7.56915i 0.489949 + 0.282872i
\(717\) 0 0
\(718\) −0.422145 + 4.01644i −0.0157543 + 0.149892i
\(719\) 21.5090 + 29.6046i 0.802151 + 1.10407i 0.992487 + 0.122347i \(0.0390421\pi\)
−0.190337 + 0.981719i \(0.560958\pi\)
\(720\) 0 0
\(721\) −12.3667 4.01819i −0.460561 0.149645i
\(722\) −23.6840 10.5448i −0.881426 0.392436i
\(723\) 0 0
\(724\) −0.0252595 0.00536908i −0.000938763 0.000199540i
\(725\) 2.18172 3.77884i 0.0810269 0.140343i
\(726\) 0 0
\(727\) 20.4497 + 35.4200i 0.758438 + 1.31365i 0.943647 + 0.330955i \(0.107371\pi\)
−0.185208 + 0.982699i \(0.559296\pi\)
\(728\) 0.650321 + 2.00148i 0.0241025 + 0.0741799i
\(729\) 0 0
\(730\) −16.4645 + 11.9622i −0.609379 + 0.442740i
\(731\) 3.55583 + 16.7289i 0.131517 + 0.618740i
\(732\) 0 0
\(733\) −9.27530 + 0.974873i −0.342591 + 0.0360078i −0.274262 0.961655i \(-0.588433\pi\)
−0.0683291 + 0.997663i \(0.521767\pi\)
\(734\) −2.27158 + 1.01137i −0.0838454 + 0.0373304i
\(735\) 0 0
\(736\) −15.2998 + 8.83335i −0.563958 + 0.325601i
\(737\) −8.85790 27.4730i −0.326285 1.01198i
\(738\) 0 0
\(739\) −25.6359 + 8.32960i −0.943031 + 0.306409i −0.739881 0.672738i \(-0.765118\pi\)
−0.203150 + 0.979148i \(0.565118\pi\)
\(740\) −15.5912 1.63870i −0.573144 0.0602398i
\(741\) 0 0
\(742\) −2.56516 2.84890i −0.0941699 0.104586i
\(743\) −14.2469 15.8228i −0.522667 0.580481i 0.422790 0.906228i \(-0.361051\pi\)
−0.945457 + 0.325747i \(0.894384\pi\)
\(744\) 0 0
\(745\) −17.7042 1.86079i −0.648632 0.0681740i
\(746\) −6.46702 + 2.10126i −0.236775 + 0.0769327i
\(747\) 0 0
\(748\) −4.80456 + 3.47415i −0.175672 + 0.127027i
\(749\) −3.39708 + 1.96131i −0.124127 + 0.0716646i
\(750\) 0 0
\(751\) 21.5176 9.58027i 0.785190 0.349589i 0.0253327 0.999679i \(-0.491935\pi\)
0.759857 + 0.650090i \(0.225269\pi\)
\(752\) 6.35027 0.667440i 0.231570 0.0243390i
\(753\) 0 0
\(754\) 0.127653 + 0.600558i 0.00464883 + 0.0218710i
\(755\) 46.0766 33.4766i 1.67690 1.21834i
\(756\) 0 0
\(757\) −10.5548 32.4845i −0.383622 1.18067i −0.937475 0.348053i \(-0.886843\pi\)
0.553853 0.832615i \(-0.313157\pi\)
\(758\) −8.65095 14.9839i −0.314217 0.544239i
\(759\) 0 0
\(760\) 27.8597 48.2544i 1.01058 1.75037i
\(761\) 35.6019 + 7.56741i 1.29057 + 0.274318i 0.801535 0.597948i \(-0.204017\pi\)
0.489031 + 0.872266i \(0.337350\pi\)
\(762\) 0 0
\(763\) −1.75266 0.780333i −0.0634504 0.0282499i
\(764\) −3.37329 1.09605i −0.122041 0.0396537i
\(765\) 0 0
\(766\) 15.1583 + 20.8637i 0.547693 + 0.753835i
\(767\) 0.367245 3.49410i 0.0132605 0.126165i
\(768\) 0 0
\(769\) 13.6195 + 7.86320i 0.491130 + 0.283554i 0.725043 0.688703i \(-0.241820\pi\)
−0.233913 + 0.972258i \(0.575153\pi\)
\(770\) 9.36834 4.14570i 0.337611 0.149401i
\(771\) 0 0
\(772\) 12.9460 + 11.6566i 0.465935 + 0.419530i
\(773\) −5.16073 + 7.10313i −0.185619 + 0.255482i −0.891678 0.452671i \(-0.850471\pi\)
0.706059 + 0.708153i \(0.250471\pi\)
\(774\) 0 0
\(775\) −7.80258 + 24.0139i −0.280277 + 0.862604i
\(776\) −2.16048 + 0.459225i −0.0775568 + 0.0164852i
\(777\) 0 0
\(778\) 0.00453711 + 0.0101905i 0.000162663 + 0.000365347i
\(779\) 3.35334 15.7762i 0.120146 0.565241i
\(780\) 0 0
\(781\) 13.7390 7.89085i 0.491619 0.282357i
\(782\) 3.20576i 0.114638i
\(783\) 0 0
\(784\) −2.33166 1.69405i −0.0832737 0.0605019i
\(785\) 5.72724 12.8636i 0.204414 0.459121i
\(786\) 0 0
\(787\) −6.03768 + 5.43635i −0.215220 + 0.193785i −0.769688 0.638420i \(-0.779588\pi\)
0.554468 + 0.832205i \(0.312922\pi\)
\(788\) 0.975543 + 9.28167i 0.0347523 + 0.330646i
\(789\) 0 0
\(790\) 21.3995 23.7666i 0.761362 0.845578i
\(791\) −2.52095 −0.0896348
\(792\) 0 0
\(793\) 4.63701 0.164665
\(794\) −7.51487 + 8.34611i −0.266693 + 0.296192i
\(795\) 0 0
\(796\) 0.00957862 + 0.0911345i 0.000339505 + 0.00323018i
\(797\) 0.960021 0.864407i 0.0340057 0.0306189i −0.651953 0.758260i \(-0.726050\pi\)
0.685958 + 0.727641i \(0.259383\pi\)
\(798\) 0 0
\(799\) −6.20479 + 13.9362i −0.219510 + 0.493027i
\(800\) 15.7666 + 11.4551i 0.557435 + 0.405000i
\(801\) 0 0
\(802\) 28.5305i 1.00745i
\(803\) 28.9565 + 3.10965i 1.02185 + 0.109737i
\(804\) 0 0
\(805\) 2.42608 11.4138i 0.0855082 0.402285i
\(806\) −1.44508 3.24570i −0.0509007 0.114325i
\(807\) 0 0
\(808\) 45.1655 9.60023i 1.58892 0.337735i
\(809\) −12.8311 + 39.4900i −0.451117 + 1.38840i 0.424517 + 0.905420i \(0.360444\pi\)
−0.875634 + 0.482975i \(0.839556\pi\)
\(810\) 0 0
\(811\) 8.32868 11.4634i 0.292459 0.402536i −0.637352 0.770573i \(-0.719970\pi\)
0.929811 + 0.368037i \(0.119970\pi\)
\(812\) 1.75289 + 1.57831i 0.0615142 + 0.0553877i
\(813\) 0 0
\(814\) −7.10797 7.93017i −0.249134 0.277952i
\(815\) 27.7670 + 16.0313i 0.972635 + 0.561551i
\(816\) 0 0
\(817\) −9.71499 + 92.4319i −0.339884 + 3.23378i
\(818\) 6.62746 + 9.12191i 0.231724 + 0.318940i
\(819\) 0 0
\(820\) 8.38889 + 2.72572i 0.292953 + 0.0951862i
\(821\) 49.5964 + 22.0817i 1.73093 + 0.770658i 0.995679 + 0.0928594i \(0.0296007\pi\)
0.735247 + 0.677799i \(0.237066\pi\)
\(822\) 0 0
\(823\) −25.4218 5.40357i −0.886148 0.188357i −0.257716 0.966221i \(-0.582970\pi\)
−0.628432 + 0.777864i \(0.716303\pi\)
\(824\) 13.1368 22.7536i 0.457642 0.792660i
\(825\) 0 0
\(826\) 3.20360 + 5.54879i 0.111467 + 0.193067i
\(827\) −6.86114 21.1164i −0.238585 0.734290i −0.996626 0.0820821i \(-0.973843\pi\)
0.758040 0.652208i \(-0.226157\pi\)
\(828\) 0 0
\(829\) 6.23980 4.53348i 0.216717 0.157454i −0.474131 0.880455i \(-0.657238\pi\)
0.690848 + 0.723000i \(0.257238\pi\)
\(830\) −5.18677 24.4018i −0.180035 0.846999i
\(831\) 0 0
\(832\) −2.08371 + 0.219007i −0.0722398 + 0.00759271i
\(833\) 6.29035 2.80065i 0.217948 0.0970366i
\(834\) 0 0
\(835\) 53.1314 30.6755i 1.83869 1.06157i
\(836\) −30.6657 + 9.88732i −1.06060 + 0.341960i
\(837\) 0 0
\(838\) 2.25932 0.734097i 0.0780468 0.0253589i
\(839\) 46.6084 + 4.89874i 1.60910 + 0.169123i 0.865996 0.500052i \(-0.166686\pi\)
0.743105 + 0.669175i \(0.233352\pi\)
\(840\) 0 0
\(841\) −18.2653 20.2856i −0.629837 0.699505i
\(842\) 11.3117 + 12.5630i 0.389829 + 0.432948i
\(843\) 0 0
\(844\) 1.64227 + 0.172610i 0.0565293 + 0.00594147i
\(845\) 34.7686 11.2970i 1.19608 0.388629i
\(846\) 0 0
\(847\) −13.9221 4.59326i −0.478370 0.157826i
\(848\) −1.71292 + 0.988954i −0.0588219 + 0.0339608i
\(849\) 0 0
\(850\) −3.23063 + 1.43837i −0.110810 + 0.0493357i
\(851\) −12.0635 + 1.26792i −0.413530 + 0.0434638i
\(852\) 0 0
\(853\) −6.89791 32.4521i −0.236180 1.11114i −0.923146 0.384450i \(-0.874391\pi\)
0.686966 0.726690i \(-0.258942\pi\)
\(854\) −6.84135 + 4.97053i −0.234106 + 0.170088i
\(855\) 0 0
\(856\) −2.44923 7.53796i −0.0837130 0.257642i
\(857\) 1.62627 + 2.81679i 0.0555524 + 0.0962196i 0.892464 0.451118i \(-0.148975\pi\)
−0.836912 + 0.547338i \(0.815641\pi\)
\(858\) 0 0
\(859\) −3.97946 + 6.89262i −0.135777 + 0.235173i −0.925894 0.377783i \(-0.876686\pi\)
0.790117 + 0.612956i \(0.210020\pi\)
\(860\) −49.7178 10.5678i −1.69536 0.360361i
\(861\) 0 0
\(862\) 27.9682 + 12.4522i 0.952599 + 0.424124i
\(863\) 38.4621 + 12.4971i 1.30926 + 0.425405i 0.878795 0.477200i \(-0.158348\pi\)
0.430469 + 0.902605i \(0.358348\pi\)
\(864\) 0 0
\(865\) −21.0414 28.9610i −0.715429 0.984704i
\(866\) 1.78153 16.9501i 0.0605388 0.575988i
\(867\) 0 0
\(868\) −11.8206 6.82461i −0.401216 0.231642i
\(869\) −45.5256 + 4.68091i −1.54435 + 0.158789i
\(870\) 0 0
\(871\) −3.79257 3.41485i −0.128506 0.115708i
\(872\) 2.27854 3.13614i 0.0771611 0.106203i
\(873\) 0 0
\(874\) 5.38343 16.5685i 0.182097 0.560437i
\(875\) 6.23701 1.32572i 0.210850 0.0448175i
\(876\) 0 0
\(877\) −11.4141 25.6365i −0.385427 0.865684i −0.997209 0.0746577i \(-0.976214\pi\)
0.611782 0.791027i \(-0.290453\pi\)
\(878\) 4.59375 21.6119i 0.155032 0.729366i
\(879\) 0 0
\(880\) −1.08726 5.17263i −0.0366516 0.174369i
\(881\) 23.2639i 0.783780i 0.920012 + 0.391890i \(0.128179\pi\)
−0.920012 + 0.391890i \(0.871821\pi\)
\(882\) 0 0
\(883\) −23.6812 17.2054i −0.796937 0.579008i 0.113077 0.993586i \(-0.463929\pi\)
−0.910014 + 0.414578i \(0.863929\pi\)
\(884\) −0.426360 + 0.957620i −0.0143400 + 0.0322082i
\(885\) 0 0
\(886\) 15.9533 14.3644i 0.535960 0.482581i
\(887\) 0.509963 + 4.85197i 0.0171229 + 0.162913i 0.999742 0.0227207i \(-0.00723284\pi\)
−0.982619 + 0.185634i \(0.940566\pi\)
\(888\) 0 0
\(889\) −4.21104 + 4.67683i −0.141234 + 0.156856i
\(890\) 20.5644 0.689320
\(891\) 0 0
\(892\) 17.7008 0.592665
\(893\) −55.4715 + 61.6074i −1.85628 + 2.06161i
\(894\) 0 0
\(895\) −3.37026 32.0659i −0.112655 1.07184i
\(896\) −8.70590 + 7.83883i −0.290844 + 0.261877i
\(897\) 0 0
\(898\) 9.65488 21.6852i 0.322188 0.723645i
\(899\) −7.97246 5.79233i −0.265896 0.193185i
\(900\) 0 0
\(901\) 4.72544i 0.157427i
\(902\) 2.98419 + 5.19585i 0.0993626 + 0.173003i
\(903\) 0 0
\(904\) 1.05905 4.98243i 0.0352234 0.165713i
\(905\) 0.0223710 + 0.0502462i 0.000743638 + 0.00167024i
\(906\) 0 0
\(907\) 10.0126 2.12823i 0.332461 0.0706669i −0.0386566 0.999253i \(-0.512308\pi\)
0.371118 + 0.928586i \(0.378975\pi\)
\(908\) 0.331524 1.02033i 0.0110020 0.0338607i
\(909\) 0 0
\(910\) 1.06462 1.46532i 0.0352918 0.0485749i
\(911\) 4.84142 + 4.35923i 0.160403 + 0.144428i 0.745424 0.666590i \(-0.232247\pi\)
−0.585021 + 0.811018i \(0.698914\pi\)
\(912\) 0 0
\(913\) −17.9196 + 30.8763i −0.593053 + 1.02186i
\(914\) 0.228161 + 0.131729i 0.00754689 + 0.00435720i
\(915\) 0 0
\(916\) −1.38465 + 13.1740i −0.0457501 + 0.435283i
\(917\) 6.17680 + 8.50163i 0.203976 + 0.280749i
\(918\) 0 0
\(919\) 22.0654 + 7.16949i 0.727871 + 0.236500i 0.649432 0.760419i \(-0.275007\pi\)
0.0784385 + 0.996919i \(0.475007\pi\)
\(920\) 21.5392 + 9.58985i 0.710125 + 0.316168i
\(921\) 0 0
\(922\) −2.50054 0.531507i −0.0823510 0.0175042i
\(923\) 1.40058 2.42587i 0.0461006 0.0798485i
\(924\) 0 0
\(925\) 6.69043 + 11.5882i 0.219980 + 0.381016i
\(926\) 6.76675 + 20.8259i 0.222369 + 0.684382i
\(927\) 0 0
\(928\) −6.15344 + 4.47074i −0.201997 + 0.146759i
\(929\) 1.54441 + 7.26589i 0.0506705 + 0.238386i 0.996194 0.0871692i \(-0.0277821\pi\)
−0.945523 + 0.325555i \(0.894449\pi\)
\(930\) 0 0
\(931\) 37.2138 3.91133i 1.21963 0.128189i
\(932\) 20.5320 9.14145i 0.672549 0.299438i
\(933\) 0 0
\(934\) −12.6853 + 7.32387i −0.415076 + 0.239644i
\(935\) 12.0011 + 3.92942i 0.392479 + 0.128506i
\(936\) 0 0
\(937\) −44.2612 + 14.3813i −1.44595 + 0.469817i −0.923747 0.383004i \(-0.874890\pi\)
−0.522203 + 0.852821i \(0.674890\pi\)
\(938\) 9.25595 + 0.972839i 0.302217 + 0.0317643i
\(939\) 0 0
\(940\) −30.3368 33.6924i −0.989478 1.09893i
\(941\) −11.8484 13.1590i −0.386247 0.428971i 0.518396 0.855141i \(-0.326529\pi\)
−0.904643 + 0.426170i \(0.859863\pi\)
\(942\) 0 0
\(943\) 6.78743 + 0.713388i 0.221029 + 0.0232311i
\(944\) 3.14396 1.02153i 0.102327 0.0332481i
\(945\) 0 0
\(946\) −20.2318 27.9795i −0.657792 0.909691i
\(947\) −24.8531 + 14.3490i −0.807618 + 0.466278i −0.846128 0.532980i \(-0.821072\pi\)
0.0385102 + 0.999258i \(0.487739\pi\)
\(948\) 0 0
\(949\) 4.70377 2.09425i 0.152691 0.0679823i
\(950\) −19.1125 + 2.00880i −0.620091 + 0.0651742i
\(951\) 0 0
\(952\) −0.983581 4.62739i −0.0318781 0.149974i
\(953\) −30.0074 + 21.8016i −0.972033 + 0.706224i −0.955914 0.293646i \(-0.905131\pi\)
−0.0161193 + 0.999870i \(0.505131\pi\)
\(954\) 0 0
\(955\) 2.33443 + 7.18465i 0.0755405 + 0.232490i
\(956\) 0.824898 + 1.42877i 0.0266791 + 0.0462096i
\(957\) 0 0
\(958\) −5.08024 + 8.79924i −0.164135 + 0.284290i
\(959\) 8.78130 + 1.86652i 0.283563 + 0.0602732i
\(960\) 0 0
\(961\) 23.7746 + 10.5851i 0.766923 + 0.341456i
\(962\) −1.79066 0.581820i −0.0577331 0.0187586i
\(963\) 0 0
\(964\) −0.604824 0.832469i −0.0194801 0.0268120i
\(965\) 3.87835 36.9000i 0.124848 1.18785i
\(966\) 0 0
\(967\) 47.1454 + 27.2194i 1.51609 + 0.875317i 0.999822 + 0.0188923i \(0.00601398\pi\)
0.516272 + 0.856425i \(0.327319\pi\)
\(968\) 14.9268 25.5862i 0.479766 0.822370i
\(969\) 0 0
\(970\) 1.41270 + 1.27200i 0.0453590 + 0.0408414i
\(971\) 4.73162 6.51252i 0.151845 0.208997i −0.726317 0.687360i \(-0.758770\pi\)
0.878162 + 0.478363i \(0.158770\pi\)
\(972\) 0 0
\(973\) −3.05404 + 9.39936i −0.0979080 + 0.301330i
\(974\) 11.9782 2.54604i 0.383806 0.0815805i
\(975\) 0 0
\(976\) 1.77460 + 3.98582i 0.0568035 + 0.127583i
\(977\) −2.64186 + 12.4290i −0.0845205 + 0.397638i −0.999989 0.00475272i \(-0.998487\pi\)
0.915468 + 0.402390i \(0.131820\pi\)
\(978\) 0 0
\(979\) −21.8247 19.7406i −0.697522 0.630912i
\(980\) 20.4640i 0.653698i
\(981\) 0 0
\(982\) −18.4389 13.3967i −0.588409 0.427504i
\(983\) −2.14903 + 4.82680i −0.0685434 + 0.153951i −0.944568 0.328315i \(-0.893519\pi\)
0.876025 + 0.482266i \(0.160186\pi\)
\(984\) 0 0
\(985\) 14.7719 13.3007i 0.470673 0.423796i
\(986\) −0.144268 1.37262i −0.00459444 0.0437132i
\(987\) 0 0
\(988\) −3.81170 + 4.23332i −0.121266 + 0.134680i
\(989\) −39.3279 −1.25055
\(990\) 0 0
\(991\) 54.4977 1.73118 0.865589 0.500756i \(-0.166945\pi\)
0.865589 + 0.500756i \(0.166945\pi\)
\(992\) 29.4509 32.7085i 0.935067 1.03850i
\(993\) 0 0
\(994\) 0.533972 + 5.08040i 0.0169365 + 0.161141i
\(995\) 0.145042 0.130596i 0.00459814 0.00414018i
\(996\) 0 0
\(997\) 3.11130 6.98810i 0.0985360 0.221315i −0.857551 0.514399i \(-0.828015\pi\)
0.956087 + 0.293084i \(0.0946816\pi\)
\(998\) 14.1919 + 10.3110i 0.449236 + 0.326389i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.t.a.17.6 80
3.2 odd 2 99.2.p.a.50.5 yes 80
9.2 odd 6 inner 297.2.t.a.116.6 80
9.4 even 3 891.2.k.a.809.13 80
9.5 odd 6 891.2.k.a.809.8 80
9.7 even 3 99.2.p.a.83.5 yes 80
11.2 odd 10 inner 297.2.t.a.233.6 80
33.2 even 10 99.2.p.a.68.5 yes 80
99.2 even 30 inner 297.2.t.a.35.6 80
99.13 odd 30 891.2.k.a.728.8 80
99.68 even 30 891.2.k.a.728.13 80
99.79 odd 30 99.2.p.a.2.5 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.2.5 80 99.79 odd 30
99.2.p.a.50.5 yes 80 3.2 odd 2
99.2.p.a.68.5 yes 80 33.2 even 10
99.2.p.a.83.5 yes 80 9.7 even 3
297.2.t.a.17.6 80 1.1 even 1 trivial
297.2.t.a.35.6 80 99.2 even 30 inner
297.2.t.a.116.6 80 9.2 odd 6 inner
297.2.t.a.233.6 80 11.2 odd 10 inner
891.2.k.a.728.8 80 99.13 odd 30
891.2.k.a.728.13 80 99.68 even 30
891.2.k.a.809.8 80 9.5 odd 6
891.2.k.a.809.13 80 9.4 even 3